Andrew Pitonyak

@penOffice.org
Macros Explained

OpenOffice.org Macros Explained
OOME Third Edition

Last Modified
Saturday, April 30, 2016 at 09:05:51 AM

Document Revision: 567

General Information

The contents of this document is Copyright 2011 - 2014 by Andrew D. Pitonyak. I will make
a final license decision when I am finished.

I created a second edition that was never released, which is why I refer to this book as the
third edition.

I have been repeatedly asked about the cover page so.... I am neither an artist nor a designer,
the cover was created by Amanda Barham (see http://www.amandabarham.com). She did an
awesome job.

Many people contributed to this document in one form or another. Feedback from community
members helps greatly. For reasons I don't understand, my wife allows me to take time away
from my family to work on this document, so, I suppose that the person to really thank is her
(send her enough money that she can get a fully body massage and she may force me to work
on this document).

While taking this document to the latest version, many errors, corrections, and suggestions
were provided by Volker Lenhardt who is providing a full translation into German. This
document has been greatly improved based on his work.

Thank you Volker Lenhardt (https://www.uni-due.de/~abi070/000.html).

http://www.amandabarham.com/
https://www.uni-due.de/~abi070/ooo.html

Table of Contents

General INfOIMATION.vvvvviiiiieiiiieiieieeeeeeeeeeeeee ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaans 1
01 0) (o) il O] 417 0L £ PR 1
1. Introduction and NOUSEKEEPDING........uuvuurrrerrrrirririreieieieierereeererererereeeree—————————————————————————eeernns 13
1.1. Comments from the AULNOT..........uuueeeiiei s 13
1.2. Environment and COMIMENES..........evvvviiieiieeieiiieeaans 13

B 111 N 72 o [« PSR 14
2.1, MACTO SEOTAZE. .ccuvvieiuiieeeiiee ettt ettt ettt et e ettt e ettt e e bt e e et e e e bt e e sabteesabeeeabeesnsneeeeens 14

0 U T 05 10) 21 VA o) 1 L2110 1=) PO 14

0 B 5 o) 1 4 (=TSP RPRPP 15
2.1.3. Modules and dialogs...........coovviiiiiiiiiiiiiieee e 16
2,14, KEY POIMES. ..eouetiiiiiieeiieeeitee ettt ettt ettt e st e st e e st e e st e e e sabee e st e ebteesbbeeenreeens 16

2.2. Creating new modules and IDIATIES.uueeeeereeeeeeeieei e eeeeeannns 16
R T\ e (o3 21 Yo T PR 18
2.4. Create 2 module in 8 AOCUIMENLuuueeeeeeeieieeiiiieieieeeee e eeeeennnns 18
2.5. Integrated Debugging ENVIrONMENt.ceevuiiiriiiiiieeiiiee ettt 21
AT 2101053 A1 0 (530 1 17 163 € 0 JRRR TR 24
B R0 (T 1 0T Te) ¢ o YOO 25
R T\ e (oI T=rea UV L PN 25
2.9. USING DIEAKPDOINLS. . .uvvvvereeenrreneieiieiieeseeisessiesssssesssssesasnsssnsnensnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnns 28
2.10. HoW Iibraries are StOrEd............uuuueuererermrernrererersesesssssssssssssssnsesssssesssssnneeeseesnneeeeseees 28
2.11. HOW dOCUMENLS AT€ STOTEM........eevvveriiiiiieiieeieieeesneeeeseeeanns 29

2 B 0] 1 o] L1 F] () o R 30

I 721 4 Ve L =Yool O] 011 5.1 o) £ 31
3.1. Compatibility with Visual BasiC............ccccccooiiiiiiiiie 32
3.2. Compiler options aNd dITECHIVES.uuuuurueeeeeeeneeeniieenienesaenesnsnnnenenennnnnennnnnnnnnnnnnnnnnnnnnnnnns 33

R TV 1 o) [R 33
3.3.1. Constant, subroutine, function, label, and variable names...............cccccevvuueneennn. 33
3.3.2. Declaring VATIADIES.uuuvurueeerereeeeeieieireeeeeeaeeeeeeereeeeeseeesreeseeeeeeeeeee——————————————————— 34
3.3.3. Assigning values to variables..........ccoeuiiiriiiiiiiiiiieeee e 36
3.3.4. Boolean variables are True or FalSe..........ccooovvviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e 36
3.3.5. NUMETIC VATIADIES......ccoeiiiiiiiiiieieee e 37
INLE T VATIADIES. ... uuuvveeeieiiiieiiiiiiitiieitieteteteaaaeaaeeaaaaeaaeaasaaaesaesassssassasssssssasassesesssssnnennnnn 38

Long Integer variables..........ooooviiiiiiiiiiiii 39
CUrrency VariabIes.........oooovviiiiiiiiiiieceeeeeeee e 39

SINGIE VATIADIES. .. .eeiiiiiiiiiieiie ettt s s 40

Double Variables.........oooovvveiiiiiiiii 40

3.3.6. String variables CONLAIN T8XE........ceeeeeeeeeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerenrniaeeeeees 40
3.3.7. Date VALIaADIES.cooeeeeieeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 41
3.3.8. Create your OWN data tYPES......cccevveeeiiiiiieeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 42
3.3.9. Declare variables With SPECIAl tYDES......uvvvuverrrrrrrrirereerererererererereeeeeereereeerereeeea—... 43
3.3.10. ODJECt VATIADIES......coeeeieiiiieieeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 44

3.3.11. Variant VATIADIES.cooeevieieeeeee ettt e ettt e e e e e e e eetaaaeeaeseeeeesaaannaaeseseeennns 44

3,312, COMSLANLS. ...eeeeeeieeeirireeeeeeeeeeeeitrreeeeeeeeeeesrrreeeeeeeeeesettrrreeeseeeesensannnnneeeeeeeeaeaaens 45
3.4. The With StALEINEIL.ccccvvvrieiieeeeeieiiiireeeeeeeeeeeereree e e e eeeearre e e e e eeeeeseeeeeeeeeeeeeaaaens 46
B AITAY St iieeeiieeette ettt et ettt ettt et e et e et ee e ateeebbeeebbeeebae e e nnbaaeeeenn 47

3.5.1. Changing the dimension Of AN AITAY........ccccveeeieiiiiiiiiiireeeeeeeeeeeeirreeeeeeeeeeenrnnnns 49

3.5.2. The unexpected behavior Of AITAYS..........ccoovvvvivveiieeeeiiiiiiireeeeeeeeeeeerreeeeeeeeeeeaans 51
3.6. Subroutines and fUNCHOMNS.ccccevrreeeeeeeeieiiiirreeeeeeeeeeeerrreeeeeeeeeeesestreeeeeeesseeeeeeeeereees 53

3.0, 1. ATGUITIEILS . ..veeeiiieeniieeeiieeeiteeeiteesieeesiteeestteeeateesaseesssaeesnseeesaseeeeesnnnsaeeeessnnnsnees 54

Pass by reference or bY VAIUC..........coovcuvvvieiiieiieieiieeeeee e 54
OpLONAL ATZUINIEIILS ... vvvvvvreeeeeeeeeeiiiirreeeeeeeeeeeiitrreeeeeeeeeeesstrrreeeeeeeeensesrrrreeseeeessnsnnnnns 57
Default argument VALUES.eeeieeeeeiiiiirieeeeeeeeeeeieiiereeeeeeeeeeeiirreeeeeeeeeeeseasssnnnnnneeees 58

3.6.2. RECUISIVE TOULIMES......coeeuvrrereeeeeeeeiiiirreeeeeeeeeeesitrreeeseeeeeeneissreeeeeeeeeeeeeeseasesseseeeeees 58
3.7. Scope of variables, subroutines, and fUNCLIONS............eevveeeeiimiiiirrieeeeeeeeieeeeeeeeeeeeeeenn, 59

3.7.1. Local variables defined in a subroutine or function..........ccecevvveeieeeeeeenniireeennnnns 60

3.7.2. Variables defined in @ MOAUIE............cooeeeviemiiiiiiiiiiieeieiirieeeeee e eeeeeeeeees 60

(€3 0e] 021 FUE U PUUORPUPPRTRRNt 61
PUDLIC. ..ttt et e e e e et e e e et e e e e et e e e e e e e ataaaraaeeeeas 61
Private OF DIIM......cooouvviiiiiiieiieciieeeec et eet e e e e e et r e e e e e e e e eenaarareeeaeeens 62
IR T 01 1C) L0 5 TSROSO SPRRRPRPPP 62
3.8.1. Mathematical and StIriNg OPETALOTS........cccvuvrrerreeeeeeeiirrrreeeeeeeeeinaerieeeeeeeeeeeeaeaenns 63
Unary plus (+) and MINUS (=)...cceeeuvveeeeeieeieiiiirreeeeeeeeeeeeiiireeeeeeeeeeeeeanressssrsranneees 64
EXPONENIALION (N).eiiiiiiiiiiieiriieeeeeeeeeeeieirereeeeeeeeeeeitraeeeeeeeeeensettrrreeseeeeeeeeresesssrsanaaannnns 64
Multiplication (*) and DiVISION (/).....eeeeeieeeeeieiiirieeieeeeeeeiiiireeeeeeeeeeeeeeeeeeeeeeeeraaaraannaes 65
Remainder after division (MOD).........ccooviuvieiiieieiieiiieeeeeee e eeeirree e 65
Integer diVISION (V)...eiiiiiiiieeiriieeiee e eeeecire et e eeeeerre e e e e e eeeetbareeeeeeeeeeeeeeeessssaaaaaannnns 66
Addition (+), subtraction (-), and string concatenation (& and +)..........ccceeeuvveeeeenen.. 67
3.8.2. Logical and bit-WiSE OPEIALOIS.cccerrrrrrrrereeeeeeeiirrrreeeeeeeerinsnnneeeeeeeeeeeeeaenns 67
AND e e et e e e e e rae e e enrraaeaee s 70
OR. e e e e e e e e e e e e e e —— e e e e ntaeeeea—raaaeeaeaaan 70
XOR et e e et e e e e n it e e e ee——t e e e en———aaaaaeaaaaaan 71
BV e et e e et e e e e e e e e e e e e e nnnaas 71
IIMIP...cccceeeeeeeeeeeeeee et e et e e e e e e e e e e ra e e e e e e e e e e e e eeannan 72
NOT ..ttt e e e e et e e e eeata e e e eetaeeeeeeaaeeaeeeeeeeaeeeannnaes 73

3.8.3. COMPATISON OPETALOLS.cceeeerurrrrreeeeeeeeeiriirrreeeeeeeeeeniirrreeseseeeenmmsissreseseseesemssssssnes 73
3.9, FLOW COMIIOL.....uuvveieiiieiieeiieieeeeee ettt e et e e e e e e eeeeeeeeeaaaans 74

3.9.1. Define a label aS @ JUMP LATZEL.......uvvveeeeeeeieiiiiieeeeeeeeeeeiiirereeeeeeeeeeiieeeeeeeeeeeeeaaaens 74

30,2, GOSUD. ..o a e e e e e e ae s 74

I 2 T € o Y Ko OSSO PRTT 75

3.9.4. On GOT0 and On GOSUD........evviiiiiiiiiiiieeeiee et e e e e e e e e e e eeeeeeees 75

3.0.5. I THEN EISC....c.ciiiiiiiiieiieee ettt e e e e e e e e e e eeeeaaeas 76

IR 2 TN U S TSP P URRT 77

il

30,7 CIIOOSE ettt e e e e e ettt eee e e e e e e e te e e e eaesee et e aaaaaaeseatanaeeenaaaaens 77

3.0.8. SCLECE CASE....uuvvvveeiieeeeeeeireeeee e e e eeeeeeree e e et et ee et eeeeeeeeeetaareeeeeeeeeeesarareeeeeeeeenns 78
CASE CXPIESSIONS. 1uvvvvveereeeeeieiurrrrreeeeeeeeeieitarrreeseeeeeensissrreeeseeeeeasaisrrrseseseesemmnsssssnnnnnnnnns 78

If Case statements are easy, why are they frequently incorrect?..........cooeevvvvvvnnnnnnnn. 79
Writing cOrrect Case EXPIESSIONS.uuurrrrreeeeeeeererirrrereeeeeeeennirrrrreeeeesseseeresssssrsnnnnnnnns 80
3.9.9. WHILE ... WENd......oooiiiiiiiiiiie ettt eeare e e e e e 82
3.9.10. DO . LLOOD ittt ettt ettt et et sttt e e e sbeeeeeena 82
EXIt the DO LLOOD.....ciioiiieieiiie ettt e e e e e e e e e e e e e eeee e e e 83
Which D0 L.oop ShOUId T USE7......cvviiiiiiiiiiiiieeeieeee et 83

3.0 11, FOT . INEXL.cciiiiireeeiieeeeeeeeiieee e e e eeeerre e e e e eeeeeeaareeeeeeeeeesentaareeeseeeeeenssssssnnssnnes 84
3.9.12. Exit Sub and EXit FUNCHION.........ccccvuvvreiieeieeiiiieeeee e eeeeevareee e e e 85
3.10. Error handling using On EITOL.............cooiiiiiiiiiieiieieeeeeieeeeeee e e e e eeeeeans 86
I O T GV = & TSRS 87
3.10.2. Ignore errors with On Error ReSume NeXt............coivvvvinrreeieeeeiiiiiiieeeeeeeeeeenennnn. 88
3.10.3. Clear an error handler with On Error GOTO O.......oevvvveeiveiivieeiieeiiiiieeieeeeeeennnnn, 88
3.10.4. Specify your own error handler with On Error GoTo Label............................. 89
3.10.5. Error handlers — why use them?...........cooeviiiiiiiiiieiiiiieceeeeeeeeeeeeeeeeeeeeeeeeeee, 91
3.1 1. CONCIUSION. ...uuvtrrieiieeeeeieiirteeeeeeeeeeeeettrreeeeeeeeeesstrrareeeeeeeeasssassreeeeeseesessssrsreeeeeeeesnnares 93
4, NUMETICAL ROULIIIES. .. .cciiiiiiiiiiieeieeeeeeieeireee e e eeeeetaee e e e e e eeeeatrareeeeeeeeeaeeeeeeeeeeaeaeeseeeeeeennes 94
4.1. Trigonometric fUNCHOMS.cooevurrrreeeeeeeeieiiirreeeeeeeeeeeieirrreeeeeeeeeesisrrneereeeeeesnsssnnnnnnnns 95
4.2. Rounding errors and PreCiSION.........cccerrrurrreeereeeeiiiiirreeeeeeeeeeniiirrreeeeeeeeessseeeeesessssrnnne 97
4.3. Mathematical fUNCHONS........cccuvveeiieeeeiiiiiieeeeeeeeeeereirreee e e eeeeerrareeeeeeeeeeseaanssaaeannnnes 100
4.4, NUMETIC CONVEISIONS.uuuvrrrrereeeeeeeisitrrreeereeeeeeniisrreeeeseeeesomsissssssssseeesmmmsisseseseseeeeeees 101
4.5. Number tO String CONVEISIONS.......ccoevurrreereeeeeieiirrrreeeeeeeeeiiiirrreeeeeeeeeeeseeseeeseeeeessssssnne 107
4.6. SIMPIE FOIMAEING. . ..veeiieiiiieiiiieieee e e et eeeee e e e e e e eeeearrreeeeeeeeeesarbrereeeeeeeens 107
4.7. Other number bases, hexadecimal, octal, and binary..............ccceevevvvveeeieeeeerneiieeeennn. 108
4.8. RaNAOM NUIMDETS.uvvvviiiiiiiiiiiiieeeeee et eeeerr et eeeeereeeeeeeeeeeeeeaaeaaaeeeeeeees 111
4.9, CONCIUSION.ccoivutrrieiieeeeeeeiittreeeeeeeeeeeeerrr et eeeeeeeertrrereeeeeeeessssasrreeeeeeessennsrrereeeeeeenns 112
5. ATTAY ROULIIIES. .. uuvvvvveiiieiiiieiiieeeee e eeecctrtee e e e eeee et e e e eeeeesetaaaaeeeeeeeeeessnsssseeeeseeeessernnnes 113
5.1. Array() quickly builds a one-dimensional array with data..............ccceeevvvvvveeieeeeennnnn. 114
5.2. DimArray creates empty multi-dimensional arrays..........ccooevvvvveeeeeeeeeiiieeeeeeeeeenennnnn. 116
5.3. Change the dimension Of AN AITAY............ccooevvirvreeieeeeiiiiiiiieeee e e eeeeerreeeeeeeeeeenearanaaes 117
5.4. Array to String and back gaiN..........cccvveeiieieiiiiiiiireeeeeeeeeeeeireeee e eeeeerree e e e e e e 118
5.5. Array inSpection fUNCLIONS.uvveiieeieiiiiirireiieeeeeeeireeeeeeeeeeerirrrreeeeeeeeneeeeeeeeeeaaaaaaens 119
5.6. CONCIUSION.uuuvvreieieeeeeeiiiirreeeee e et eeeitrereeeeeeeeestasreeeeeeeeeeesiassrreeseseeeesansrrsreeeeeeeesnnranes 122
6. DALE ROULIIIES. ...vveiiieieiieiiiiieeiee e e e eeeeitteeeeeeeeeeeetare e e e eeeeesstasraeeeeeeeeeesitsrsresaeeeeesnsssrssnssnnnes 123
6.1. COMPAUDILILY ISSUES....uvvvvrreeeeeeieiiirrrrreeeeeeeeeeiirrreeeeeeeeeeriirreeeseseeeesssisrrrereseessessseeeeeeees 124
6.2. Retrieve the current date and tME...........vvveeeeiieiieiiiireeieee e e e e e 124
6.3. Dates, nUmMbErs, and StIINZS.eeieeeeiieiirreeeeeeeeeieiitrrereeeeeeeeierrrrrrrrranrreeeeeeeens 124
6.4. Locale formatted dates........cccuvvreiieeiiiiiiriieiiee ettt e e eeerree e e eeeee e e e e e e eeeaaaaaens 126
6.5. ISO BOOTL AALES....uvveeeeeereeeeeeiriee et eeeee e eeee e e eete e e e eeaeeeeeeiaaeeeeeeaaeeeeeeeeeeeeeennnnnes 126

il

6.6. Problems With atesS......ccevvteueeeeeeee ettt ettt e e e ettt taeeeeeeeeeaeeeeeaeeeeeanaeeenans 127

6.7. Extract €ach part Of @ date............coovviuvviiiiiiiiiiiiiieeeiee e eeeeraeee e eeeeeaanes 131
6.8. DAte AIItNIMEIC.ceeeeuvirreieeeeee ettt e e eeeeerr e eeeeeeeerarereeeeeeeessnsarrreeeeeeeseeseeeeernnes 135
6.9. Assembling dates fTom COMPONENLS.........ccovuvrrrerieeeeeieiirrrreeeeeeeeeiieeereeeeeeeeeeeaeaaens 136
6.10. Measuring elapsed time over ShOrt iINtEIValS...........cooovvvuvvveeiieeeeiiriiireeeeeeeeeeeerannens 137
6.11. How fast does this run? A real-world example!..........ccccoevvvvveiiiiiiiiiiiiireeeeeeeeeeenn, 139
6.12. Long time intervals and special dates.........ccvveeieeeeiieiiiiieieeeeeeeeiiieeeeeeeeeeeeeeeeeeenn 142
0.13. CONCIUSION.uvvrvieiieeeeeiiiirrreeeeeeeeeeiiiireeeeeeeeeeestirrreeeeeeeeeesissrreeseeeeeessssrrsreeeeeeeesnnrnne 143
7. SIING ROULINES.ceeeieirieeieeeeeeeeieiieeeeeeeeeeeeeetreeeeeeeeeeeeetaraeeeseeeeesesarsreeseeeeesnsnsrnseeeeeeeenns 144
7.1. ASCII and Unicode VALUES..........uuvveeeeeeeiieiiiiireeeeeeeeeeeiirrreeeeeeeeeeeitareeeeeeeeeenseannsnnnnns 146
7.2. Standard String fUNCLIONS.vvveiieeeeieiiiiirreeeeeeeeeeiiirrereeeeeeeeneeirrreeeeeeeeeensrrrrreeeeeeeens 149
7.3. LOCALE AN SIIIIIZS.uvvvveeiieeeeeiiiiiieeeeeeeeeeerittreeeeeeeeeeeniaarreeeeeeeeeeeiaaaaeeeeeeeeeeaaesssseeeneees 153
T4 SUDSEIINZS. ¢eeeuvveeiiieeeiiee ettt e ettt e et e e st e e steeesatee s atee s aeeesnteesnsteesasseesnsaeesnsaeesnsaeeesssnnnes 153
7.5, REPIACE. .. eeieeeiieeee ettt ettt et e st e st e et e e et e e s e e et b e aeeeennnn 154
7.6. Aligning strings with L.Set and RSet.............coovvviiviiiiiiiiiiiieieecceeeeereeeeee e 155
7.7. Fancy formatting With FOIMAL.............ccoomiiiiiiiiiiieiieiiiiiieeeeee e eeeieeeeeeeeeeeee e e eeeeeeeees 157
7.8. Converting data t0 & SIIIMZ.......cccvvveeieeeeeeieiiirreeeeeeeeeeiiiirereeeeeeeeensisrereeeeseeeeeeseesresrane 162
7.9. Advanced SEArCHING..........ccoouvriiiiiee ettt eeeeeerr e e e e e e e e e e e e e eeeeeeraa e 163
T.10. CONCIUSION.utrrrieiieeeeeieiiitreeeeeeeeeeeeetareeeeeeeeeestrrereeeeeeeesssassreeeeeeeesesssrrereeeeeeenns 164
8. FILE ROULIIIES.cceeiiiiiieeiieeeeeeeeiieee et e e e eeeeee et eeeeeer e e e e e eeeeeeatareeeeeeeeeesnssssssannnnnnnnnnnes 166
8.1. Using URL notation to Specify a file........ccovvreiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeee e 167
8.2. Directory manipulation fUNCHIONS.......cccuvveeeeeeeieiiiiirreeeeeeeeeeeiirreeeeeerrerraeeeeeeeeens 168
8.3. File manipulation fUNCHOMNS.........cccvvveiieeeeiiiiiiireeeeeeeeeeeiireeeeeeeeeeeetrrreeeeeeeeeesnnreeeeess 169
8.4. File attributes, bitmasks, and binary NUMDETLS...........ccccvveeieieeiiiiiiineeeeeeeeeeeiireeeeeeees 172
8.5. Obtaining a direCtOry LIStINMZ......ccccvvreeieeeeeieiiirreeeeeeeeeeriirereeeeeeeeeesarrreeeeeeeeeennsreneeess 174
8.6, OPEN @ fI1€...ccuuiieiiiiiiiiie et ettt e e e e abaaeeeeas 175
8.7. Information about OPEN FIlES..........ccovvuurrreiiieeeiieiieeeee e e e 177
8.8. Reading and WIiting data..............ccooeriiirrreeieeeeiiiiiiiireeeeeeeeeeeeirreeeeeerirrraeeeeeeeeeens 180
8.9. File and directory related SEIVICES. .. uuuuiiiiiiiireiurrreeeeeeeeieiirireeeeeeeeeeieitrereeeeeeeeesninsneenes 186
8.9.1. Path SELUNES.....veeererieeiiieeiiee ettt ettt ettt et e et e et eetaeeeeabee e e saabraeeeeenns 186
8.9.2. Path SUDSHLULION. .. .uvvvveeiieeeieiiiiirreeeeeeeeeeiiiirereeeeeeeeeeeitrreeeeeeeeeeensassrreeeseeeeeensnnns 190
8.9.3. SiMPIE FIle ACCESS...uuuurrreiieeeeeieitiieeeee e e e eeeeeiree e e e eeeeetarreeeeeeeeeeeeeeeaeaeaaeeeeeeees 192
B.0. 4. SIECAIMIS. .. .uvvvvveieeee e e ettt e e eeeeettae e e e e e e e eeeeerareeeeeeeeeesatarreeseaeeeeeeeeeeaaeaaeeeeeeeees 192
.05, PP cutiieieeiie ettt et ettt e et e e aeeta e e e tbeeeenbaeeenbeeeann 196
8.10. CONCIUSION. . vvvviiieeeeeiiiirreeeeeeeeeeeeitrreeeeeeeeeesiitrrreeeeeeeeessrtrarereeeeeesesirereeeeeeessesssrrneees 197
9. MiScellaneous ROULIMES.ecieeiiiieiiirieieeeeeeeeieiiireeeeeeeeeeesittreeeeeeeeeeeesiasrreeeeeeeeeeseesrsasrannans 198
0.1. DiSplay And COLOT.......uuuvriiiiiiieiieiiieeeee et eeee e e e e e e e e e e e e eeeeeaeaaaeas 198
9.1.1. Determing the GUI LYDC...uvvveieeieiieiiieeeeee ettt e e eeeeaeee e e eeeeeeev b annes 198
9.1.2. Determine pixel S1Z€ (I EWIDS).....ccovvurrrreereeeeeiiiiirreeeeeeeeeeiirrreeeeeeeeeesnssnrrreeeeeeens 199
9.1.3. USE COIOL fUNCHIOMNS. 1.vvveiiieeeeieiiiireeieeeeeeeieitrreeeeeeeeeeearrreeeeeeeeeesnsrrereeeeeeeesaeneeees 200
S) (L o0 111 (o) PO SRR 202

0.2.1. REIUIN AN AIGUINIENT. ¢eevvvvneeeeeeeeeeieeeeeeeeeeeeetteaeeeeeseeeeetaeanaaeeseeeesanssesneseseneserens 203

9.2.2. Pause or end the IMACTO.........ccccvrvrieieeeeeeiiireeeeeeeeeeeerreeeeeeeeeeeetrrereeeeeeeeeneneeees 204
9.2.3. Dynamic Link LIDIATIES........ccoevuvvreiiieeeiieiiiiieeeeeeeeeeeeeiireeeee e eeeeeveee s 205
9.2.4. Calling external apPliCAtIONS.ec.eeeeeeeiiurreeereeeeeeeiiirrreeeeeeeeeeeesrrreeeerrrrrrnnannnan 206
9.2.5. Dynamic Data EXChange........cccuvvveiiiiiiiiiiiieeeiec et eeeeiveeeeevava s 207
0.3, USEr inPUt aNd OULDUL.......ceeeeeeeieiiirrrereeeeeeeeieiirrreeeeeeeeeeriisrreeeeeeeeeesssisrrereeesssesseesessnnes 208
0.3.1. SIMPIE OULPUL.....eeeieeiiieeiieeieeeie et eete ettt e ettt e eaeestaeebeesseessbeeseesnsaenseessseenses 209
9.3.2. MUlti-ling OULPUL......cuvvvriiiiieieeieiiiieeeee et eeeerr e e e e e e eeeatrrrreeeeeeeenenes 210
9.3.3. Prompting fOI INPUL..........evveiieeieiiiiiireeeeeeeeeeeieitrreeeeeeeeeesirrereeeeeeeereeerrsrrannannnnns 212
0.4, Error-related TOULIMES.uvvvviieeeeeeiiiiireeeeeeeeeeeeiirreeeeeeeeeeeiarreeeeeeeeeenaaeaeeeeeeeeesaaeessens 214
0.5. MiSCellaneOouUs TOULIMES.ccuvvvrreereeeeeieirirrreeeeeeeeeesiirrrreeeeeeeeensssrsreseeeseesmmsssssssessessnnes 215
0.6, PATLILION.uvvvveeiieeeeeieeiiiieeeeeeeeeeecitee e e e e e e eeeetttrreeeeeeeeeesissseeeeeeeeeesssssssrereeeessesseeeernnnes 218
9.7. Inspection and identification of variables..........ccceeiieeeiiiriiiieieieieeieeieeeeeeeeeeeeeeeeeeee 220
9.8. Routines you should not use and other CUTIOSILIES........cccuvveeeeeeeeerieirrreeeeeeeeeeeeeeeeennns 225
9.9. Routines I do not UNderstand............cccuveeeeieeiieiiiiiiieeeiee et eeerrree e e e e 226
O.10. CONCIUSION.uvvvrreeieeeeiiiiiirreeeeeeeeeeiiitrereeeeeeeesetirrrreeeeeeeeesissrreeseseeeesssssrsreeseeseesnnrnes 227
10. Universal NetWork ODJECLS.......ccoevurrrriieeeeeieiiiireeeeeeeeeeeeiirreeeeeeeeeeesettrereseeeeeessssssresernnes 228
10.1. Base types and SIIUCLUIES.eeeeeeeeieeiirrreeeeeeeeeeeiiirreeeeeeeeeessisrrreeeseeeseesseseeesessrerrane 229
10.2. UNO INEEITACE.uuuvvveeeiieeeeeiecitreeeee e e e e eeeeire et e e e eeeeetaree e e e e eeeeestasreeeeeesaeeeeeeeeeenrraees 231
1O.3. UNQO SEIVICE....ccouurrrreieeeeeeieiirreeeeeeeeeeeeiirreeeeeeeeeesistrsrseeeseeeesssssrsesesesessemissssnsesssssnnes 232
10.3.1. Setting a Read-Only ValUe..........coooveeeiiiiiiiiiiiieeeie e 236
LO. . COMEEX L. uvvvveiieeeeeeeiirrereeeeeeeeeieittrreeeeeeeeeeeitrreeeeeeeeeeesisssaseeeeeeeensasbrsseeseeeeesaaasseeeeerenees 237
10.5. Inspecting Universal NetWork ODJECES.....ccovvvveeeiieeiiiiiiiriieeieeeeeieeeeeeeeeeeeeeeeeeeeeeennns 237
10.6. Using the type deSCription MANAZET............coeervirrrreeeeeeeeeiiiirrrreeeeeeeeensirreeeseeesessrrnnns 242
10.7. USE ObJECt OF VATIANL.......uvvvveieeeeeeieiirrreeeeeeeeeeiitrreeeeeeeeeeenssrreeeeeeeeeeesisrreeessseeeennnnns 245
10.8. Comparing UNO variables........cccovvveeiieieiiiiiiiieeeeeeeeeeeieiireeeeeeeeeeenenrreeeeeseeeennnnsannnns 246
10.9. Built-in global UNO variables.........ccocvveeiiieiiiiiiiirieeeeeeeeeeeiiiieeeeeeeeeeeeeeeeeeeeeeeeeennnns 247
10.10. Creating UNO values for OO0 Internals.........ccceeeeeeeeeeeieiivereereeeeeieirreeeeeeeeeeeennnns 250
10.11. Finding objects and PrOPEILIES.......cccvvrreeeeeeeeeeiiiirreeeeeeeeeeniiirreeeeeeeeeeeeeeseeeeeeeeeernnns 251
JO.12. UNO LISEEIETS. . uuvvvvreeeeeeeeeitirrreeeeeeeeieeiirreeeeeeeeeenssssreeeeseeeesssisssesesssessmmisssssssssssssses 252
1O.12.1. YOUL fIrSt LISEEIIET .. uvvvveieeeeeieeiiirreeeeeeeeeeeeiitreeeeeeeeeeeetrrreeeeeeeeeeesarrrreeeeeeeeeenns 253
10.12.2. A complete listener: selection change liStENET.............evvvvveeeeneeeeieeiiiieeeeeeens 254
10.13. Creating @ UNO dialO@......ceeeiieiieiiiiiiiiiieeeeeeeeiiieeeeee e eeeeerreee e e eeeeeearrreeeeeeeeeennns 256
1O 14, CONCIUSION.uvvveireeieiieiiiiieeeeeeeeeeeiiireeeeeeeeeeeeerrreeeeeeeeeesssssrreeeeeeeeesnssrrreseeeeeesnninnes 260
L1, The DISPALCRET....uvvviiiiiiiiieiiiieeeee ettt eeee et e e e e e eeeesaaabaeeeeeeeeeseeeeeeeees 261
11.1. The ENVIIONIMENL.cccvvvvereieeeeeeieiireeeeeeeeeeeeittreeeeeeeeeeeesasrreeeeeeeeeeeeeeasseeseseeessrnrrnnes 261
11.1.1. Two different methods to control OOO0.........cccvvveeieeeeiiiiiiiieieieeeeeeeeeeeeeeeeeeeenans 261
11.1.2. Finding dispatch cOmMMANAS.............ceeeieeriiirreeeeeeeeeieiiirreeeeeeeeeeeernreeerrarrannnnns 263
USE the WIKT.....cooiiiieeiiee et e e e e e e e e e e e eeeeaaaeas 263
Probe the INEITACE......c.uuvvveiiiieeieecieeeeee et e e e e e 263
Read SOUICE COUC.....ccoouurriiiiieeeeeeeteeeeeee et e e e e e e e e e e 266

11.2. Writing a macro using the diSPaAtCRET......ccuuuuueeeeeieeeetieeeee ettt eeeeeeeeeee e 266

11.3. Dispatch failure — an advanced clipboard example...........ccccvvveeieeeeeiiiiineeeeeeeeeennnnn. 266
11,4, CONCIUSION.uvvvvreiieeeeiieiitreeeeeeeeeeeeerer et eeeeeeeeearrreeeeeeeeeessssrreeseseeeeesssassreseeeeeesnnnnes 267
12, StATDESKLOP. .. teeuetieeiiieeiie ettt ettt te et e et e ettt e st e e s beeesabeeeabeeestbeesnbbeesaseeesnbeeenabaeeennns 268
12.1. The FIame SEIVICE.uuvvveeiieeeeeeiiiirrreeeeeeeeeeeitrreeeeeeeeeesiisrreeeseseeeenssarsresseessseseeseerennes 268
12.1.1. The XIndeXACCESS INEITACE.......cocvvrrreiieeeeiieiirreeeeeeeeeeeree e eeeearrree e 269
12.1.2. Find frames with FrameSearchFlag constants...........ccccceeveeeeeieiiiineeeeeeeeeennnnn. 269
12.2. The XEventBroadcaster iNterface..........vueviieieiiiiiivieiiieeeeieeiiiieeeeeeeeeeeeeeeeeeeeeeeeeavaans 271
12.3. The XDeSKtOD INLEIEACE.cciervrrrrreiieeeeeieiiitreeeee e e eeeeeerrre e e e eeeeeeeeeeeeeeaeaeeeeeeeeenees 271
12.3.1. Closing the desktop and contained COMPONENLS.......cccvvveeeeeeeeierviirrereeeeeeeenenn 271
12.3.2. Enumerating components using XEnumerationACCeSS.vvvveeeeeeeeevrvvvreereenn. 272
12.3.3. CUrrent COMPONENL.........cceevurrrrreeeeeeeieiiirrreeeeeeeeeeisirrreeeeeeeesemsessrreessssrssrrnsnnnnnns 273
12.3.4. Current cOmMPONENt (AZAIN)....uvvveeeeeeeeieiirrrreeeeeeeeeeiiiireeeereeeeeensirrreeeeeeeeeemnnnneeess 274
12.3.5. CUITENt fTAIMNIC. . .eiiiiieiieeiireeeie ettt e e eeeeaa e e e e e e e e eeeaarrreeeeeeeas 274
12.4. Load @ dOCUINENL.uuvviieiieeiiiiiiiireeeeeeeeeeeeireeeeeeeeeeeesttreeeeeeeeeessssassreeeeesseeeeeeeerrnees 275
12.4.1. Named argUITIEINLES.ccoouvvvreeeeeeeeeieiirrreeeeeeeeeeeeitrrreeeeeeeeensesrreeeeseeeeesnissssnsnnnnnes 279
12.4.2. Loading a teIMPIALE.......ccuvvvveeiieeeeeiiiirreeeeeeeeeeeeieirreeeeeeeeeeesisrreeeeeeeeeserssrsssaannnes 281
12.4.3. Enabling macros while loading a document.............cccovveeeieeeeiiniiineeeeeeeeeennnnn. 282
12.4.4. Importing and €XPOITINZ........ccccvvvrereeeeeeieriiirreeeeeeeeeeesirrrereeeeeeeessssnrerssrrssannnnes 283
12.4.5. FIItEI AINES. .. vvvvveieeeeeieiiiieeeeeeeeeeeeetteeeeeeeeeeeeettareeeeeeeeeeesassseeeeeeeeeserssssssaannnes 283
12.4.6. Loading and saving dOCUIMENLS.eeeeieeeeieiiiirrreeeeeeeeeeeriirrreeeeeeeeeereerrrrrannnne 289
12.4.7. Error handling while loading a dOCUMENL............c.ceeeeeevinrreeeieeeeeieeeiieeeeeeeennnns 291
12.5. CONCIUSION.uvvivieiieeeeiieiiirreeeee e eeeeeeeree et e e eeeeesearreeeeeeeeeesstasreeeeseeeeesessrrreseeeeeesnnnnes 291
13. Generic Document MethOdS.oeiiiiiieiiiiiieieiieeeeeeecireeeee e eeeeeeee e e e eeeeees 292
13.1. SEIVICE IMAMAZET........ccoeiiurrreeieeeeeeeeiitereeeeeeeeeeeeetaaereeeeeeeeeesasareeeeeeeeeesittrseeeeeeeeennnns 292
13.2. Services and INLEIEACES.uvvveiieeiiiieiirieeieeeeeeeeiiitreeee e e e e eeeeerrreeeeeeeeeesasveeeeeeeseserraees 293
13.3. Getting and SEtHNE PIODPEITICS.uvvvrrreeeeeeeierirrrrreeeeeeeeieiirrrreeeeeeeeeeeeeeeeeeseeseesesssrnnes 294
13.4. DOCUINENE PIOPEILIES.eeeeeeeurrrreeeeeeeeeeiiittrereeeeeeeeensisrreeeeeeeeessesissrreeseessessesesssssrrrnes 296
13.4.1. Document properties from a closed dOCUmMENnt............ccoeevvvveeeeeeeeeerinrrrennnnnnn. 298
13.4.2. CUSLOIN PIOPEILICS. ..vvvvvrrereeeeeeeiirrrreeeeeeeeeeeeirrreeeeseeeeesssrrrrreseseesemsirsrrreseseeessennns 298
13.4.3. Deprecated document information ObjeCt.........cocevuvvveiiieiiiiieeeeeeeiiiiiiiiieeeeeeinnn, 299
13,5, LSE EVEIES. ..uvvvveiieeeeiieiirreeeeeeeeeeeeitrreeeeeeeeeeeetareeeeeeeeeeeessssaaeeeeeeeeeeeeeaesaesseseesnrerraees 300
13.5.1. Registering YOUI OWIN LISEEIETvveiieeeeieeiirieeeeeeeeeeeeiirreeeeeeeeeeenrreeeeeeeeeeneenns 301
13.5.2. Intercepting dispatch cOmmAandS..........cccvvveeeeeeeeiiiiinreeeeeeeeeeeieirreeeeeererreeeannne 302
13.6. LINK LATZEES...eeeutreeriiieeriiieeiieeeitee ettt e eiteesiteesteeesiteeesteeeeaeesnsseesnsaeenaseeenaseesnnseesnnnes 304
13.7. Accessing view data: XViewDataSupplier.........ccooovvvveeiiiieiiiiiiiirieeieeeeeeeeeeeeeeeenanns 306
13.8. Close a document: XCIOSEADIE.uvviiiiiiiiiiiiriieiieeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeaaans 307
13.9. Draw Pages: XDrawPagesSSUPDLET..........uvvviiieiiiiiiiieieeeeeeeeieeiirieeeeeeeeeeseiaveeeeeeeeennns 308
13.9.1. Draw and IIMPIESS....ceeeeeeeieiiirreeeeeeeeeeieiitreeeeeeeeeeeeettreeeeeeeeeeensarrereeeeeeeeesneneeens 308
13.9.2. Draw lines with arrows in CalC...........eecieeeeeiiirveeiieeeeeeeiiiiieeeeeeeeeeeeeeeeeeeeeeeaeans 311
13.0.3. WILET. ... uvvveeeeiee ettt ettt e e e ee et e e e e e eeeeataaaeeeeeeeesensatrrreeeaeeeeanaes 312

13,10, THRE INOAELc.eeeeeeeeeeeeeeeeee ettt e e e e e ettt eae e e e e e e teaaaaaeaeseseeeesannanes 313

13.10.1. DOCUMENT ATZUITNIEIIES.uvvvvrrreeeeeeeeiiirrreeeeeeeeeeeiitrrreeeeeeeeeensrrrrreeeeeeeenmnnnneeens 314
13.11. SAVINZ 8 dOCUIMENL.cceiieiirrieiieeeeeeeiiirreeeeeeeeeeeeitrreeeeeeeeeeseettrreeeeeeseeeeeeeeeeenrranes 316
13.12. Manipulating SEYIES.......ccoveiiiirrriiiieeeeeeeirreeeeeeeeeeeetrreeeeeeeeeesabrrreeseeeeeeaaaeeeeeeeeenees 319

13,121, StY1E ULIIEIES .eevveeerieereeieeriieeieeriteeteeieeereeteeeteeseessaeenseessneensaessseenseaesnsseeas 324
13.13. Dealing With IOCAIE.........cccoevuvreieiiieeeeeieieeeee et e e e e e e eeeeeeeeeeeeeeeees 329
13.14. ENUMETAtNG PIINEETS. ...uuvvvvreeeeeeeeieiirreeeeeeeeeeniiirrreeeeeeeeesssssrsrresseeeesmmsirssrsesessessesseses 337
13.15. Printing dOCUITIEILS.uuvvveeeeeeeeieiiireeeeeeeeeeeeirrreeeeeeeeeesissreeeseeeeeesnsarrreseseeessnninnes 337

13.15.1. Printing Writer dOCUIMEILS. . ..eceeeeeeieeurrreeeeeeeeeeeiiirreeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeennes 341

13.15.2. Printing Calc dOCUMEILS.ccovvvrvreeeeeeeeeiitrrrreeeeeeeeeeitrreeeeeeeeeeesnrrreeeeeeeeenns 343

13.15.3. A Calc example with a Print LiSt€Ner..........cccevvvveeieeeeiieiiiireeeeeeeeeeeeirvieeieennns 344

13.15.4. Print examples by Vincent Van HOUtte..............cooovvvvrvveieiieeiiiiiiinreeeeiiiiienne. 346
13.16. CrEatiNg SEIVICES. .uvvvreeeeeeeeieiurrreeeeeeeeeesiirurereeseeeeeensisrreeeesseeemmmmisssrsseessssssssssssssrsses 356
13.17. DOCUIMENLE SELUIIS.ccouvvrrreeeeeeeeiriirreeieeeeeeeeiiitreeeeeeeeeeesesrrrreeseeeeeassnrrrresesseeseesenes 357
13.18. The coolest trick T KNOW.......cccociuvvriiiieiiiiiiieeeee e eeeearee e e e e e eeeavaeaee 359
13.19. Converting to a URL in other [anguages.........cccuvveeeeeeeeiniiivreieeeeeeeeeiiireeeeeeeeeeeenns 359
13.20. CONCIUSION.uvvveiieeeeiieiiiieeeeeeeeeeeiiirreeeeeeeeeeeesrreeeeeeeeeessisssreeeeseeeeesesrrreseeeeeesnninnes 359

14, WIItEr DOCUINIEIIES.vvvvveiiieeeeeieitirreeeeeeeeeeeiitreeeeeeeeeeeettrreeeeseeeeeesssrsreeeeseeeenssssssseesssnsernres 360
14.1. Basic bUilding DIOCKS.........coovvuvrriiiiieiieieiieeeeeee ettt eeeetrre e e e e eeeeeeeeeeeeeenees 361

14.1.1. Primary text content: the XTeXt interface.......cccccvveeeeeeevvivreeeiieeeeieeeiieeeeeeeeennn, 361

14.1.2. Text ranges: the XTextRange interface.........ccoovvvveeieieiiiiiiinneeeeeeeeeeeeeiiinnnns 362

14.1.3. INnSErting SIMIPIE LEXL....uuvvrrreeeeeeeeieiirrreeeeeeeeeeiiiirreeeeeeeeeeesisrreeeeeeerssersrrreraannnes 364

14.1.4. Text content: the TeXtCONtENt SEIVICE.....c.uuvrveeeeeeeeeerrirrrreeeeeeeeeeniirrereeeeeeeeenens 364
14.2. ENUMErating PAraglaDIIS.vveeieeeeeieeirireeeeeeeeeeritrreeeeeeeeeeenssrrreeeeeseeeesisrrreessseeeesnnnns 366

14.2.1. Paragraph PrOPEITIES.uuvveerieeeeeieiirrereeeeeeeeeieitrrreeeeeeeeeesesrreeeeseeeeeesisssssnsnnnnnns 366

INSErt 8 PAZE DIEAK.......coiiiiiiieeeiee e 370
Set the Paragraphl SEYI.......ccccuvvveiiieeiiieiiiieeeee e e eeee e e e e e eeeeeearrreeeeeeraaans 371

14.2.2. CharaCter PIODEITICS. .. .uuvvvereeeeeeeeerirrrreeeeeeeeeeiiissrreereeeeeemnsisrrseeseeesemmmsisrsresseeeens 371

14.2.3. Enumerating text sections (paragraph POItiONS).........eeeeeeeeeeevvrvreeeeeeeeeeesseeeeenns 376
14,3, GIAPNICS .. uvtieeiiieeitieeite ettt ettt et e ettt e ettt e ettt e st e e stbeesabbeesabsaeaeesannsbaeeessnnnnees 378
14.4. Paste HTML then embed linked graphicCs........ccccvvveiieeeeiiiiiieeeieeeeeeeeireeeeeeeeeeeeennnns 381
L.5. CUISOIS. ...uetvvreeeeeeeeeeeeiitrreeeee e et eeeeeiarreeeeeeeeeeesetarareeeeeeeeessissraaeeeaeeeeeeeeeeeseesseeeerererranes 383

T4.5.1. VICW CUISOIS. ..ueeiiieeeiieiiiirreeeeeeeeeeeiiitreeeeeeeeeeeseisrrreeseeeeeensessrreseseeeeemsissssssnnnnnns 383

14.5.2. TeXt (INON-VIEW) CUISOTIS.....uuvvrreeeeeeeeeeriurrreeereeeeeesssssrrreseseeeeseeseeseessssessssessessssnes 385

14.5.3. USING CUISOIS tO trAVEISE LEXL...cceeuvrrrrrereeeeeeriirrrrereeeeeeeerirrreeeeeeeeseeeeseeeereesssnnes 386

Keep the view cursor and teXt CUISOL 1N SYNC....uvvvereeeeeeeieurereeeeeeeeeenurrrererssrsnnnnnnnnns 388

14.5.4. AccesSing CONLENE USING CUISOLS.eceeeeeerrurrrreeeeeeeennirrrrreeeeeeesemsirsrrreseseeeenannns 389
14,6, SCLECTEA LEXL. . uuuvvrrreeeeeeieeiiirrreeeeeeeeeeeiitrreeeeeeeeeeeearreeeeeeeeeesssarrrereseeeeesaaaasseeeersnrrnees 391

14.6.1. IS teXt SELECIEA?.....ccei it eeee e e e e et reeaeeeeas 392

14.6.2. Selected text: Which end is Which?.......c.c..eevviiiiiiiiiiiiiiiiiicieeeieee e, 393

14.6.3. Selected teXt frameEWOIK........cccuvvveiiieeeiieiiieeee e e e eeeeare e aaaes 394

14.6.4. Remove empty spaces and lines: A larger eXample........covvvueveeeeeeennereeenneneen. 396

WHhat iS WHIte SPACET....uuvveeeieieeiieiiirreeeee e e eeetree e e e eee e e e e e e e e e e eeeeeeere s aabaaannnnns 396
Rank characters for deletion.........cccuvvveiiiiieiiiiiiiieeeeee et e e 397

Use the standard frameWOTrK.........cccvvveiiiiiiiiiiiiiieeie e 398

The WOIKET INACTO.......cuvvvvviiiieeeeieiiiieieeeeeeeeeeetre e eeeeeeeeettarreeeeeeeeeenasbrereeeeeeeeaaaaeens 398
14.6.5. Selected text, closing thOUZGNLS..........vvvveeieieiiiiiiireeeeee et 400
14.7. Search and IePIACE........cocvvvveeiiee et eeeee e e e eeeetarraeeeeeeeeennns 400
14.7.1. Searching selected text or a specified Tange........cccovvveeeeeeeeiviiinveeeeeeeeeeeriiiinnnn. 401
Searching fOr all OCCUITEIICES.covvrrrreiieeeeeiiirrreeeeeeeeeeritrreeeeeeeeeeerrreeeeeeeeeeeeeeaaaaaaaens 402
14.7.2. Searching and rePlaCING..........eeeiieieeieiiiiiiieiieeeeeeiicieeeeeeeeeeeeeeeeeeeeeee e eeeeeenennans 403
14.7.3. Advanced search and r€Place.............coovevvurrreeiieeieiiiiiireeeeeeeeeeeeeeeeeeeeeeeeeeeaanans 403
14,8, TEXE COMEEIML. . .eeiiiieeiietirreeieeeeeeeiitrreeeeeeeeeeeiitrreeeeeeeeeeseaarreeeseeeeeansssrrreseseeeennnnsannnen 406
14,9, TEXELADIES.ceieeiirreeeeee e ettt e eeeecre e e e e e ee et e e e e e eeeeeestasaaeeeeeeaeeeeeeeeeeaeranes 407
14.9.1. Using the COITECt tEXL ODJEC. .vvviiiiiiiiieiirrreiieeeeeeeiiireeee e e e eeeeeerrree e e e e e eeeneeeeees 409
14.9.2. Methods and PIOPEITIES........ccoevuvrreiieeeeeieiiirreeeeeeeeeeeeiirrreeeeeeeeeeeeeaaeaeeeeeeeeeeenees 410
14.9.3. Simple and compleX tADIES.........ccovviuvrreeiieeeeieeireeeee e eeeeerree e e e 412
14.9.4. Tables coONtain CEIIS...........coiviriiirieiieeeeeeeiiieeee e eeeeeree e et e eeeeeee e e e e eeeeeenans 415
14.9.5. USING A tADIE CUISOLeveiiieiiiieiiriieeieeeeeeeiiiirreeeeeeeeeeesitrreeeeeeeeeeesssssseessssssannnnns 417
14.9.6. Formatting a teXt table........ccuvveeiiiiiiiiiiiieieee e 420
14,10, TEXEEIELAS. ...uvvveeeeeieeee ettt ee ettt e e e et e e e et e e e eetreeeeeennaeeeeas 421
14.10.1. Text Master fIeldS.......cccvuvrieiiieiieiiiiieeeee ettt eeeeerree e eeeeeeeeeraasaaanaes 430
14.10.2. Creating and adding text fields........cccovvveieiiiiiiiiiiirieeiieeeeeeeeeeee e 432
14,11, BOOKINATKS. .. .eeiiiiiiiieiiiiieiiee ettt eeeetaee et e e e eeeettbreeeeeeeeeeeeeeeesaeeeeeeeseearraees 435
14.12. Sequence fields, references, and fOrmatting..........ccocvveeeeeeeeiieeeieeeeeeeeeeeeeneeeeeeeennnns 436
14.12.1. Formatting numbers and datesS..............ceeeervviuvrreereeeeiiniirreeeeeeeeeeesirreeeeeeeeeenns 436
List formats known to the current dOCUMENt...........ccccvvveeeiieeieiiiiiireeeeeeeeeeeeeeeeennn. 437
Find or create a NUMETIC FOIMAL...........ccoeiurriieieieiiiiiireeeee et eeearree e 437
Default fOIMIALS.ceeieerrieieee e e ettt eeeeeee e e e ee et e e e e e ee sttt eeeeeeeeeas 438
14.12.2. Create a field MASIET........veiieeiiiieiiieeeeeeeeeeeeeirieeeee e e eeeetrrr e e e e e eeeenaassaaaaaennes 439
14.12.3. Insert a Sequence field...........ccoovvuvreieiiiiiiiiiiiiiieeeee e, 439
14.12.4. Replace text with a sequence field.........ccovveeiiiiiiiiiiiiieeiieieeiiieeieeeeeiiaa, 440
14.12.5. Create a GetReference field.........ccvveeeeiieiiiiiiiiieieieeeeeeeeeeeeee e 441
14.12.6. Replace text with a GetReference field.............ccoooevvrveeiiiiiiiiiiiieiiiinnn, 442
14.12.7. The worker that ties it all tOZEtNET.........cccuvvvveiiiiiieiiiieeeeeeeeceeeee e, 444
14.13. Table Of COMEEILS.uuvvvereieeeeeeiiiiireeeeeeeeeeeeitrrreeeeeeeeesrtrreeeeeeeeeeesearrreeeeesseeeeeeeerrnees 445
T4, 14, CONCIUSION.uvvveiieeeeiieiiiireeeee e et eeeiereeeeeeeeeeeesrrreeeeeeeeeesstsrreeeeseeeeasesrrreeeeeeeesnninnes 451
15. CalC DOCUIMIEIIES. ...vvveeieeeeeeeiiireeeeeeeeeeeeiirreeeeeeeeeeesetrraeeeseeeeeassaassseeeeseeeensessssreseseeeerssernres 452
15.1. ACCESSING SHEELS. ...eceeeiieirirrieieeeeeeeeeitrreee e e e e e eeeetrereeeeeeeeeeeaaareeeeeeeeeesntarreeeeeeeeennnnns 453
15.2. Sheet cells contain the data............ccoeevvveeeiiieiiiiiiiiiieeeee e eeeee e eeeeeeeeeeaaaaaes 455
15.2.1. Cell AdAIESS......uvvvvreeiieeeeieiiirrieeee e e eeeeeirree e e e e eee et eeeeeeeeeeeeeeeeeeaaaeeeeeeeeeaeanaes 456
15.2.2. CIl AALA.....cccceereeeeeeeieee e e e et e e et eeee e e e e eeraaaaeeens 456

15.2.3. Cell PIOPEILIES. ..eeeuvreeriieeeiiieesiiieesiieeesiteeesiteeeereestteestteessbaeeesessnseeeesssnnseeeesns 458

15.2.4. Cell ANNOLALIONS.uuvvvrreeeeeeeeieiiirrreeeeeeeeeeiiitrreeeeeeeeeeesisrrereeeeeeeemssssresssrsssannnnes 463
15.3. Uninterpreted XIML AIDULES.uvvvveeieeeeiieiiieeeeeeeeeeeiiireeeeeeeeeeencarrreeeeeeeeeenssannnns 464
15.4. SHEEL CEILTANZES.....ccovvvvreeeieeeeeeeetreeeeee e eeeeettee e e e e et ee st e e e e e eeeenaasrrreeeeeeeennssannnen 466

15.4.1. Sheet cell Tange PrOPEITIES.cccevvuurrrereeeeeeeeiiiirreeeeeeeeeeeiirrrreeeeeeeeeeesarrreeeeeeens 466

Validation SELLIMZS. ...uvvveeeieeeeieriirreeeeeeeeeeeiiitrrreeeeeeeeeesiirreeeeeeeeeessisserrrrssrrsrnnnnnnnnnenes 467
Conditional fOrMALINEZ........cccvvveiieeeeeieiiiiireeeeeeeeeieiirrreeeeeeeeeeesrrrereeeeeeeeensarrreeeeeeeens 470
15.4.2. Sheet Cell TANZE SEIVICES.....ccoviurrreeeeeeeeieeiitrreeeeeeeeeeriiirreereseeeenssirrreeeeeeeeeensinnes 470
Retrieving cells and TANZES......ccvvveiieeieiieiiirreeeeeeeeeeeeiree e e eeeerrree e e e e eeeeeeeeeeaaeas 470
UCTVINE CRIIS ..veiiiiiiiiiitieeie ettt et e e e et e et eeeeeeeeseabnrreeseeeeenennnees 471
Finding non-empty CellS iN @ TANZE..........ccoeervrrrrereeeeeeeiiiirreeeeeeeeeeeeeeeeeeeeeeerrraaaannan 472
USING COMPLEX QUETIES. ..vvvveeeeeeeeeiiiirreeeeeeeeeeeiitreeeeeeeeeeeieiarreeeseeesessreseeesrsrrrrsrarrennnn. 473
Query Precedents and Dependents.cooevvvrrreeeeeeeeiieiiinreeeeeeeeeeeiirereeeeeeeeenns 474
Query Column Differences......coouvveveeieeieiiiiiiieeiieeeeeeeiicireeee e eeeeeevr e 475

15.4.3. Searching and rePlaCING...........eeiieieeieiiiiireieieeeeieeicreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeanans 475

15.4.4. MEr@ING COIIS....uviiiiiieeiiieeiite ettt ettt et e ettt e et e st e e st e e sabee e s s nnbeeeeeens 476

15.4.5. Retrieving, inserting, and deleting columns and rows.............cccoooevvvevvveevnnnns 476

15.4.6. Retrieving and setting data a8 an AITAY............ccoovvevrvreeeeeeeeeimiiirreeeeeeeeeeieeneeenns 478

15.4.7. Computing functions ON & TAINZE.eeeeerrrrrvrrerreeeeeiniirrereeeeeeeemsiirrrreeeeeeeenns 479

15.4.8. Clearing cells and Cell TANZES.uvveeeeeiieiiiirreeeeeeeeeieiiirreeeeeeeeeeeeeinreeeerassaannnes 480

15.4.9. Automatic data fill...........cceeeeiiiiiiiiiiiiiiiiic e 480

15.4.10. Array fOIMULAS........coooivvreieiieee ettt eeee e e e eeetarrreeeeeeees 481

15.4.11. Computing multiple functions On a TANGE..........ceeeeeeeeeeeriivreeeeeeeeereererrernnnnnns 483

15.4.12. Cells with the same fOrmatting..........ccovveeeeeeeiieiiiirreeeeeeeeeieirrreeeeeeeeeeseeeeeenes 485

BT B TN 10 51 1 RSP PRPPPP 487
15,5, SHERLS. ..ottt et e e et e e e et e e e eeeeeaa e e e e e e rr——————— 490

15.5.1. Linking to an external spreadSheet.........coovvvveeeiieieeieiiiieeeeeeeeeeeeeinreeeevievaeeaees 491

15.5.2. Finding dependencies by using auditing functions...........cccceeeeeeereeeiieeeeeennnnnns 493

15.5.3. OULLIES. ...cceevveiee et ettt eee e eea e e eea e e e e e e e e eetaeeeeeensaeeeeensareeeeenes 495

15.5.4. Copying, moving, and inserting CelIS.........covvvviriiieiiniiiirrereeeeeeeeieiinreererrernnnnnns 495

15.5.5. Copy data between dOCUMENLS..........coovvvreeeeeeeeeiiiiirreeeeeeeeeeererrrrerererrrrannannnnes 497

Data FUNCHOMS.covvvvrreeeieeeeeeeiiieeeee e eeeer et e e e eeeta e e e e eeeeeaarareeeeeeeeeeeeeeeeaaeens 497
(3 T 0] 07021 4« O SRS PPPRTRSPUSRP 497
Transferable COMLENL.........cccvvveiieeieeieiiiiieeeeeeeeeeeeeeeeeeeeeeeearreeeeeeeeeeeeeeesrarsanaannnnes 498
15.5.6. Data pilot and PivOL tADIES..........ccovvurrreeiieeeeieiireeeee e eeeeerree e e e eee e 498
A data PIlOL EXAIMPLE....eveeieeieeieiieeiiee ettt eeeeere e e e ee e e e e e e e e e e eeeeaaaaas 498
Generating the data.........cc..eeeeiiiieiiiiiiiieeeee e 499
Creating the data PIlot tADIE............ceieiiiirireeiieeeeeeeeirieeeee e e 500
Manipulating data pilot tADIES.........uvvveiieeiiiiiiiirieiieee e ———— 502
Data PIIOL FICLAS.uvvvreeiieeeeiieiieeeee e e eee e e e e e e e e e eeeeas 502
Filtering data Pilot fIEldS.........eeviiieiiiiiiiiiieieeee et e e 503

ix

15.5.7. SHEEL CUISOIS......ccoeeuurreeiieeeeeeeieirteeeeeeeeeeeeetreeeeeeeeeeeeetarreeeeeeeesensstrrreeeeeeeenaanes 504
15.6. CalC dOCUIMEILS.uvvvvreiieeeeiieiirieeeeeeeeeeeeitireeeeeeeeeeeeetreeeeeeeeeeeeessasreeeeeeseeeeeeeesenerraees 506
15.6.1. NAMEA TANZE. ...vveeeiiieeiiieeiieeeiteeeite et ee et ee et e s ateeebteesbaeesnbeeesabaeensseeensneeens 507
15.6.2. DAtabase TANZE........ccoevvurrereieeeeeeeeiirreeeeeeeeeeeeeitrreeeeeeeeeeeearrreeeeeeeeeesesarrreeseeeens 509
I5.0.3. FIILEIS.cooieiieeeeeee ettt e e e e e e e e e e e e e eeanes 510
15.6.4. Protecting documents and ShELS........cccuvvveeeeieeiiiiiiirreeeeee e e 513
15.6.5. Controlling recalCulation.........ccc.vveeeeeeeeeeiiiiirreeeeeeeeeeeiirrreeeeeeeeeeeeesrseeeesrrsrannnans 513
15.6.6. USING GOAl SEEK.....uuvvviiiiiieiieietieeiee e eeeeceeee e eeeeeaae e e e e e eeeeaanreesesaasaannans 513
15.7. Write your own Calc fUNCHOMNS........cccovvveeeeeeieieiiirieeeeeeeeeeeiiirreeeeeeeeeeeeeeeeeeeereranaann 514
15.8. Using the current CONLIOLIET.iieiiiiiiiiireeeieeeeeeeiirreee e eeeeeeieee e e eeeeeeeeeeeeeeeeeeeeees 516
15.8.1. SEleCted CIIS. ...vvveiiieiiieiirieieeee ettt eeeere et e e eeee e e e eeeeeeeeeeasasaananen 516
Enumerating the selected CeIIS...........coummiimiriiiiiiiiiiieeeeee et 517
SEIECHNZ LEXE.veeuvreerurreerireeerreeeriteeetteesiteesteeesreeesaseessaseesasseesseeeessssnssneeessssnnsseeesnns 518

The ACHIVE CElL...eeiiiiiiiiiiiiieeiie et eee et e e e e et eeeeeeaaaaeeas 518
15.8.2. General funCtioNality...........cooevvirvreiieeeeiieiiiiieeee e eeeeriireeeeeeeeeeeeetanreeeeraaeaaaaaes 519
15.9. Control Calc from Microsoft OFfiCe........cuvveiiiiiiiiiiiiiiieiiieeeeieeiiieeeeeeeeeeeeeeeeeeeeeeeees 521
15.10. Accessing Calc fUNCLIONS.uvvveiieeeeeieiiiireeeeeeeeeeeeiiirreeeeeeeeeeeestrreeeeeeeeeeeeeeereeaeaanes 522
15.11. Finding URLS 10 CalC..uuuveiiiiiiiiiiiiieieeice ettt eeeeeiteee e e eeeeeeeeeeeeeeeeeeeeeannanns 522
15.12. Importing and Exporting XML Files Using CalC...........cccoooevviiiiiiiieieiiiiiiieneeeen 523
15.12.1. Read an XML fIl€.........uuvveiiiiiiiiiiiieeeieccc ettt eeee e 523
15.12.2. Write XML FIlE.....cooioiiiiiiiiiieee ettt 531
L1513, CRAIES ..o itieeieeeee ettt eeer et e e e et ee et eeeeeeeeeeeabbaaeeeeeeeeeeeeeaesaeeseeeeserarraees 541
15,14, CONCIUSION.uvvveiieeiiiieiiiireeeeeeeeeeeietereeeeeeeeeeearreeeeeeeeeessssrreeeeseeeessnsarrreeeeeeeeennnnes 547
16. Draw and Impress DOCUIMIEIILS.........coovuvvreeieeeeeeieiiirreeeeeeeeeesitrrereeeeeeeeeesssrreeeeeeeeeseeseeseees 548
L6, 1. DIQW PAZES. . veeeiiiieriiieeiiieeitee et e ettt e et e e st e e steeesebeeetbeessebeesnsaeessseeenaseeesnseeesnnnsees 549
16.1.1. GENELIC ATAW PAZE....ccuvvvvreeeeeeeeeieiiireeeeeeeeeeeeeirreeeeeeeeeeesesrrreeeseeeeeesissssssssnnnnes 550
16.1.2. COmMbINING SHADPES.ccoeeiiirrieiieeeeeieeiirreeeeeeeeeeeeeirrree e e e eeeeeeeeeeeeeeeeeaeeeeeeeeeeees 552
16.2. SRAPES. .. evteeeeiieeeiie ettt ettt ettt et et e e e e e e e bt e e e e e earaeeas 554
16.2.1. COMMON AtTIDULES. . .vvvveiieeieeeiiirieeeeeeeeeeiiirreeeeeeeeeeeeiaareeeeeeeeeeeeeeeaeeeeeeeeeeereeees 557
DIAWING LEXE SEIVICE.....cceeuvrrereeeeeeeeeiiiirreeeeeeeeeeniirreeeeeeeeeensiirrrereseeeeemnisssnnnnnneeees 563
MEASUIESHAPE. ..cevvieeiiieeiiie ettt ettt e et e et e e st e e st ae e s e e e abaeeeeennas 565
Drawing line PIODPEILICS.uvvvreeieeeeeierirrrrereeeeeeeeiiiirrereeeeeeeeinsisrreeeessessesssssrrsrsnnnnnnnnn 566
Filling space with a ClosedBezierShape.coevvviurrieiiieieiieiiiieeeeee e 567
Shadows and a RectangleShape.........c.uveeeiiieiiiiiiiieieiieeeeeeeeireeeeee e eeeeae 570
Rotation and SHEATINIG..........ccoovvuvrieiiieeiiieiieeeeeee e eeeeerree e e e eeeetre e ees 571
16.2.2. SNAPE LYPES.cuvrieeurieeriiieeiieeeriiteeriteesettee sttt e steeesbeeesseeesaseeessseesssaessseesnnnseaeeens 572
STMPIE TINES. ..veeeuveeeeiiteiiieertee et ee ettt et e et ee et eestteesbteeeessnsbaeeeseannseeeeenns 572
POLVLANESINAPE. ...ttt e e e e e e e e e e e eeaaaaaas 573
POIYPOLYZONSIADE.uvvveiiiiiieiiieeeeee et e e eeeeeeeeaaaeas 575
RectangleShape and TeXtSNaPE.......ccccvvvvveiiiiiiiiiiiiiieeee et 575

EIIPSESNAPE. ... eeeiiiiieiiieeeite ettt et e e e e e s eabae e e e s nans 576

BeZIET CUIVES. ...eeiiiiieiiiiieeeiee ettt eeeeeet e e e e et e et e e e e e e e e e eeeeeeess s ar b aannnnns 578
CONNECIOISIIADE. .. vvvvveieeee ettt eeecr e eeee e e e e e e e eerebareeeeeeeeeesestsasannnnnnnnns 581
Creating your OWN glUE POINES........uvvveereeeeeieiiiirrereeeeeeeeiiiirreeeeeeeeesnsisssrssssnnnnnnnnns 584
Adding arrows by USING SEYIES.......ccoovurrrreiiieeiiiiirreeeeee e eeeeeirree e eeee e e e e eeeeeeans 584

INSErt 8 TaADIESHADE. . .vvviiieiiiieireeeee e e e et 586
L6.3. FOIIIIS.coiiiiiiieieeie ettt e e eee et e e e e e e eesataaeeeeeeeeeesntsrrreeeeeeeeennannes 587
16.4. PreSENLALIONS.ccuvvvvveeeeeeeeeeeitrreeeeeeeeeeeeitrreeeeeeeeeeesitrrrreeeseeeesanissasaeeeeeeessaaassseseeseees 589
16.4.1. Presentation draW PAZES.........ccooevvvrrerereeeeeeniiirreeeeeeeeeeesisrrereeeseesseseseeeereessnnnns 591
16.4.2. Presentation SNAPES.ciiieieiivrreeieeeeeeeeiireeeeeeeeeeeeiarreeeeeeeeeeesarrrreeeseeeeeeens 592
16.5. CONCIUSION.uuvvvieiieeeeiieiiitreeieeeeeeeeeireee et e eeeeeeetrreeeeeeeeeessssrreeeseeeeessesrrreseeeeeesnnnnes 594
17. Library Mana@emEnl........cccuvvveiieeeeieeiiiiieeeeeeeeeeeieitrereeeeeeeeeesisrrreeseseeeesnsssssseesseseeesnsssssnses 595
17.1. Accessing libraries using OO0 BaSIC.........ccoovvviureriiiiiieiiiiiiieieeieeeeeeeerveeeeeeeeeeeennnns 595
17.2. Libraries contained in @ dOCUIMENT.............vvveiieeieiiiiiiiieiieeeeeeeieiirreeeeeeeeeeeeeeeeeeennnnns 599
17.3. Writing an INSEALLET..........eeiiiiiiiiiiiiiieeie et eeeeree et e e e e eerrreeeeeeeeeennrannaes 599
174, CONCIUSION.uuvvvreiieeeeiieiiiireeeeeeeeeeeeeree et e e eeeeeeetarreeeeeeeeeesssaseeeseseeeessssarrreseeeeeesnnnnes 601
18. DIalogs and COMIIOLS.eiieiiieieiirieeiieeeeeeeireeee e eeeerree e e e e e eeetrrreeeeeeeeeeeaarrrreeeaeeeenns 602
18.1. MY fIrSt dIaAlOZ. ...uuvvrvreiiieiieieiiieiee ettt eeee et e e e eeeesatbreeeeeeeeeeenssnesssessanes 602
18.1.1. The Properties dialo@..........ccoovvurrreiiieeeeiiiirieeeeee e eeeeeirreee e e e e eeeetrrreeeeeeeeeeees 605
18.1.2. Starting a dialog from 8 MACTO..........cocvvrveeeeeeeeeeiiirreeeeeeeeeeeetrreeeererearaenaannaes 607
18.1.3. Assign an event RAndIET............cooovvvvveiiiiieiiiiiieeeeee et 608
18.2. Dialog and control paradigi.............eeeeeeeiieiiiveeeeeeeeeeeiiiirreeeeeeeeeeeirreeeeeeeeeeeeensannnns 611
18.2.1. Dialog and control SImilariti€sS............ccoevvvrvrreeieeeeeeiriiirreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 611
18.2.2. Dialog-specific MEthOAS.ccoovviurrriiiiieeeieiiieeeee e eeee e 613
18.2.3. The dialog MOEL........ccccuvvreeeieiieeeiieeeeee e e e ee s 614
18.3. COMLIOLS. ...uvvvrreieieeeeieeitreeeee e e e eeeeetr et e e e eeeeera e e e e e eeeessatraeeeeeeeeeesssassreeeeessseseeeserrnnes 616
18.3.1. CONIOl DULLOM.....cooouuvrreeiieeeeieeiiiieeeeeeeeeeeeetree e eeeeeetrrreeeeeeeeeeesabrrreeeeeeeenaees 617
18.3.2. CRECK DOX....uvvviiiieeieeie ettt e e et eaa e e e et e e e eeaaeaeeeeaaaaeeeeeeas 620
18.3.3. RAIO DULLOM.ccoiiiiiieiiiie ettt eeeeeare et e e e e e eeeeeeeeeeeeeeeeeeneees 621
18.3.4. GIOUD DOX...eieiieiiieiieiiieeieeitee et e site e vt et e e ve e bt e staeebeesabeenbeessbeensaensseenseaesnnseeas 622
18.3.5. Fixed 1iNe CONIIOL.......vvviiiiieiiieiiiieeeeiee ettt eeeerre e e e eeetreree e e e e e e 623
18.3.6. COIMIDO DOX..oiiiiiiiieiiiiiiiiiiee ettt eeeeree e e e e eee ettt e e e e e eeeeeeeeaaaaeeeeeeeeerenees 623
18.3.7. TeXt €dit CONLIOLS......ccoiiuirreriieeeeeeeictireeeee e e eeeeetree e e e e eeee e e e e eeeeeaaanes 624
CUITENCY CONIOL......uvvvrieiieeeeiieiiiiieeee e e e eeeecirreeeeeeeeeeesetarereeeeeeeeeessassreeeeeesrrsssraraannnns 626
JAENR 0TS W e oT) 111 o) PO SR RR 627
DaAte COMITOL...uvvviiiiiiiiieiieieeee et eeeeet e e et ee e eeeeeeeeeeeeeeeeeeresesraraaanaas 627
TN COMLIOL......ciiiiiriieiiee e ettt eeeec e e e eeeer e e e e e eeeesasareeeeeeeeensntrnaeeeaaeens 630
Formatted CONIIOL........oeiiiiiiiieiiiieiiec et eeee e e e e e e eetrreeeeee e 632
PAttern CONIIOL.....uvvveiiieiiiiiiieeiee et eeee et e e e e e e e eenatrrereeaeeeaeeas 635
Fixed teXt COMIIOL.....uuvviiiiiiiiieieiieeeeee ettt eeeeare e e e ee et eeeeeeeeeeeeeeaaaeas 637

| (S T0) 011 (o) FO PR TP 637

xi

18.3.8. IMAZE COMLIOL....ceeuiieeiiieeiieeeiiee ettt ettt e et e st e e st eessbeeesabeeenanbaeeees 639

18.3.9. Progress COMIIOL........uuvvviiiieiiiieiiiiieeieeeeeeeecctreeee e e eeeeetrreeeeeeeeeeeeaanreessssasaannnes 639
18.3.10. LiSt DOX CONLIOL......cciiuurrieiieeeeiieiireeeeee e e eeeeree e e eeeeettrreeeeeeeeeeenarrneeeeeeeeenns 640
18.3.11. Scroll Bar CONLIOL.........ccoovvurrreiiieeeeeeeiiiireeee e eeeeerree e e e e e eeeetvreeeeeeasaaaanaaannns 641
18.4. Using the Step property for multi-page AutoPilot dialogs............ccovevuvveerieeeeeinnnnns 644
18.5. The object iNSPECtOr EXAMPLE.......ccovurrriiieeeeeieiiirereeeeeeeeeeerreeeeeeeeeerrrrreeeeeeeeennnns 644
18.5.1. Utility subroutines and fUNCHIONS.ccoevvvirvrreereeeeiiniirreeeeeeeeeeerrrreeeeeeeeenns 644
Identifying and removing white space from a String...........ccocveeeeeeeeeeeiivveeenneeeennn. 645
Convert a Simple 0bJECt t0 & SIIME........uvvvveeeeeeeiiiiiiereeeeeeeeeeeiirreeereeeeeeeeeeeeerererrranan. 646
Object inspection using Basic Methods..............eevviiiviiieeiiiiieiiiiieeeeeeeeeeeeeeeeeeraaans 649

SOTT AN AITAY . .vveeeuereeeiieeeiteeeteeeeieeesteeeiteeeateeeateesbeeesbeeesaseesssseeessseessseessseesnnsnnes 650
18.5.2. Creating a dialog at TUN tIE........ccccuvrveeeeeeeeieiiiiireeeeeeeeeeesinrreeeeeeeeereeeeraaraannaes 651
18.5.3. LASLEIIEIS.cceeieierrieeeee e eeeeectite et e e eeeeett e e e e e eeeetar e eeeeeeeeeeeeeeeeesaaaeseeeeeeeneanees 655
6 LTo N 010141) 1 TSR 655
INSPECE SELECIEM.vvvvireeeeiee ettt e e e e e e e e e e e e e eeeeaaaeas 656

J FT) oTo M) Kok A 10 10 RO 657
18.5.4. Obtaining the debug INfOrmMAatioN.coovrrvrrrreiieeeiiiirieeeeeeeeeeerreeeee e e 657
18.5.5. Getting Property VAIUES........ccocvuvveeiieeeeeieiiiireeeeeeeeeeeetnreeeeeeeeeeeeeeeaaaseeeeeeeeeeeens 662
18.6. CONCIUSION.uvvvvreireeeeiieiiiiieeeeeeeeeeeietreeeeeeeeeeeeesreeeeeeeeeeesssssrseeseeeeesnsssrrreseeeeeesnninnes 664
19. Sources Of INFOIMAtION.cceiiiriiiieeeie e et eeeeerre e eeee et eeeeeeeeeens 665
19.1. Help pages included with OpenOffiCe.0rg.........cccovvvvreiiiiiieiiiiirieieeeeeeeeeeivreeeeeeeeenns 665
19.2. Macros included with OpenOffiCe.Org......ccuvvveiiieiiiiiiiriieiiee et eeeeeireeeeaens 665
19.3. WED SILES...eeeieieiieiurireeeieeeeeeeeiitteeeeeeeeeeeeittrereeeeeeeeeesatareeeeeeeeeesessasseeeeeeseeeseeessnnerraees 666
19.3.1. Reference material...........cooovuvveeiiiiiiiiiiiiieeieec et 666
19.3.2. MACIO €XAMIPLES......cceevurrreieieeeeeieiiirreeeeeeeeeeeeeitrreeeeeeeeeeesaaareeeeeeeeeesssrrrreeseeeens 666
19.3.3. MISCEILANEOUS.......ccouuvrrereeeeeeeeeeirrreeeeeeeeeeeeetrreeeeeeeeeeesisraeeeeeeeeeeesssssseesssssssnnnnes 666
19.4. http://www.openoffice.org/api/ or http://api.libreoffice.org.............ccoovvvvvvvvvnnnnnn, 667
19.5. Mailing listS and NEWSZIOUPS.eeeeeeeerrirrrrreeeeeeeeieiirrreeeeeeeeiesirrreeeseeeeeemssisnsessssssnes 668
19.6. HOW tO fiNd QNSWETS.....cuvvrvrieiieeieeiiirireeeeeeeeeeettreeeeeeeeeeeeettrareeeeeeeeeesnsrreeeeeseeeennnnns 669
19.7. CONCIUSION.uvvvvieiieeeeiieiiitreeeeeeeeeeeeireee et e eeeeeeearreeeeeeeeeessssreseeeseeeesnssarrreseeeeeeennnnes 669

Xii

1. Introduction and housekeeping

First, there was the first edition of OpenOffice.org Macros Explained (OOME). A few years later I produced
the second edition, updated to match OpenOffice.org (OO0) version 2.x, but the second edition was never
released. Now, I feel that it is time for a third edition.

Most of the content from previous editions is still here. The initial chapters dealing with language syntax are
mostly unchanged except for new features added to the language.

The number of services supported by OOo has more than doubled since I last published, and there is
significant new capability. There is, unfortunately, more capability than I have time or room to document.
Unfortunately, as extensive as this book is, much is missing. You should use this book, therefore, as a
reference with numerous examples, but, always remember that OOo is constantly changing and supporting
more features.

The document contains buttons that trigger the macros in the text. This is fabulous while reading the original
source, but it provides for undesirable artifacts in printed form; sorry about that.

1.1. Comments from the author

I am the primary author of this document. I do not make a living working with OOo, and nothing in here is
related to my primary day job. In other words, I am simply another member of the OO0 community who
does this without remuneration.

I receive numerous requests for help because I am highly visible in the OOo community. Unfortunately, I am
over-time-committed, and it is difficult to provide personal help to all. I enjoy helping people in my non-
existent spare time, but, be certain to use existing material, mailing lists, and forums if possible. I
occasionally provide solutions on a commission basis, but I lack the time for large tasks.

I appreciate comments and bug reports. If you have something interesting that you think should be included,
let me know. If you want to write an entire section or chapter, do so. I will likely highly edit what you
produce. Please, provide feedback and suggestions by sending an email to andrew(@pitonyak.org.

1.2. Environment and comments

My primary work is performed using 64-bit Fedora Linux with the en-US locale. Gnome is my desktop
environment, which affects screen shots. Little to no testing has been done by me in other environments. |
use both LibreOffice (LO) and Apache OpenOftice (AOO) and I use the term OpenOftice, OO, or OOo to
generically refer to either product.

AOO and LO are changing independently, and as time passes, the APIs, features, and user interfaces become
less similar. The result is a macro that works in LO may fail in AOO, and vice versa. Also, rapid
development means that changes occur faster than time permits me to produce documentation; I receive no
renumeration for my time spent on this document.

The best way to find out what works on your chosen platform is testing and inspection. By inspection, |
mean that you should inspect object instances to determine the supported properties, methods, constants,
enumerations, structures, services, and interfaces.

13

mailto:andrew@pitonyak.org

2. Getting Started

In OpenOffice.org (OOo0), macros and dialogs are stored in documents and libraries. The included integrated
development environment (IDE) is used to create and debug macros and dialogs. This chapter introduces the
basic concepts of starting the IDE and creating macros by showing the steps to produce a simple macro,
which displays the text “Hello World” on the screen.

A macro is a saved sequence of commands or keystrokes stored for later use. An example of a simple macro
is one that “types” your address. Macros support commands that allow a variety of advanced functions, such
as making decisions (for example, if the balance is less than zero, color it red; if not, color it black), looping
(while the balance is greater than zero, subtract 10), and even interacting with a person (asking the user for a
number). Some of these commands are based on the BASIC programming language. (BASIC is an acronym
for Beginner’s All-purpose Symbolic Instruction Code.) It is common to assign a macro to a keystroke or
toolbar icon so that it can be quickly started.

A dialog — or dialog box — is a type of window used to have a “dialog” with a user. The dialog may present
information to the user, or obtain input from the user. You can create your own dialogs and store them in a
module with your macros.

The OpenOffice.org macro language is very flexible, allowing automation of both simple and complex tasks.
Although writing macros and learning about the inner workings of OpenOffice.org can be a lot of fun, it is
not always the best approach. Macros are especially useful when you have to do a task the same way over
and over again, or when you want to press a single button to do something that normally takes several steps.
Once in a while, you might write a macro to do something you can’t otherwise do in OpenOffice.org, but in
that case you should investigate thoroughly to be sure OOo cannot do it. For instance, a common request on
some of the OpenOffice.org mailing lists is for a macro that removes empty paragraphs. This functionality is
provided with AutoFormat (select Tools > AutoCorrect Options > Options tab and check Remove blank
paragraphs). It is also possible to use regular expressions to search for and replace empty space. There is a
time and a purpose for macros, and a time for other solutions. This chapter will prepare you for the times
when a macro is the solution of choice.

2.1. Macro storage

In OpenOffice.org, routines that are logically related are stored in a module. For example, a module might
contain routines for finding common mistakes that require editing. Logically related modules are stored in a
library, and libraries are stored in library containers. The OpenOffice.org application can act as a library
container, as can any OOo document. Simply stated, the OpenOffice.org application and every
OpenOffice.org document can contain libraries, modules, and macros.

Container A library container contains zero or more libraries.
Library A library contains zero or more modules and dialogs.
Module A module contains zero or more subroutines or functions.

2.1.1. Library container

An OOo document is a library container, as is the application itself. If a specific document requires a macro,
it is useful to store that macro in the document. The advantage is that the macro stays with the document.
This is also an easy way to send macros to others.

If several documents use the same macros, however, then every document will have a copy, and, if you
change the macro, then you must change it in every document that contains the macro. Macros contained in

14

a document are visible only to that document. It is not easy, therefore, to call a macro in a document from
outside of that document.

TIP Do not (except in rare exceptions) store macros that will be called from outside a document in a document;
because macros contained in a document are visible only to that document.

The application library container has two primary components, macros distributed with OOo, and macros
that you create. The OOo macro dialog shows your macros in a container named “My Macros”, and those
distributed as “OpenOftice.org Macros” (see Figure 1). OpenOffice.org Macros are stored in a directory with
the application, and My Macros are stored in your user directories.

Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open the OOo Basic Macros dialog
(see Figure 1). The library containers are the highest level objects shown in the “Macro from” area.

Macro name

Macro from Existing macros in: Modulel Elase
gy Mac
P = OpenOffice.org Macros
[Z] OOME_3.0.o0dt T
5| Untitled 1 et
Ed
New
QOrganizer...
Help

Figure 1. Use the OOo Macros dialog to create new macros and organize libraries.

2.1.2. Libraries

A library container contains one or more libraries, and a /ibrary contains one or more modules and dialogs.
Double-click on a library container in Figure 1 to see the contained libraries. Double-click on a library to
load the library and see the contained modules and dialogs.

The OOo Macros dialog uses a different icon to distinguish loaded libraries; in Figure 2, Standard and
XrayDyn are loaded, the other libraries are not.

TIP The icons and colors that you see on your computer may be different than those shown in the screen shots.
Different versions of OOo may use different icons and colors. and more than one icon set is supported. Use
Tools > Options > OpenOffice.org > View to change the icon size and style.

15

Macro name

[|

Macro from Existing macros in:

RLun

| Close

P (&) MacroFormatterADP ~
P (&) OOoAuthorFormat
P (5l Pitonyak

P (& PitonyakDatabase
P (&) PitonyakDialogs
P (&) PitonyakUtil

P (&) RemoveFormatting |
P [@] l Standard

Assign

|=
0
=

4 XrayDyn .

[# XXXray | Organizer... |

P (& XrayTool

P = Gpenﬂfﬂc urg Macros m | Help |

Figure 2. Loaded libraries are shown differently.

2.1.3. Modules and dialogs
A module is typically used to group similar functionality at a lower level than a library. The macros are
stored in the modules. To create a new module, select a library and click New.
2.1.4. Key points
Things to consider:
« You can import libraries from one library container to another.

« Import a module by importing the library that contains the module. It is not possible to simply import
a single module using the GUI.

« Use descriptive names for libraries, modules, and macros. Descriptive names reduce the likelihood
of a name collision, which hampers library import.

- The Standard library is special; it is automatically loaded so the contained macros are always
available.

« The Standard library is automatically created by OOo and cannot be imported.
« Macros contained in a library are not available until after the library is loaded.
« The Macro organizer dialog allows you to create new modules, but not new libraries.

The key points listed above have certain consequences; for example, I rarely store macros in the Standard
library because I cannot import the library to another location. My usual usage for the standard library is for
macros called from buttons in a document. The macros in the standard library then load the actual work
macros in other libraries, and call them.

2.2. Creating new modules and libraries

The New button on the Macros dialog always creates a new subroutine in the selected library (see Figure 1
and Figure 2). A new module is created if the library does not yet contain a module.

16

From the Macros dialog, click the Organizer button to open the OO0 Macro Organizer dialog (see Figure 3).
The Modules and Dialogs tabs are almost identical. Use the Modules or Dialogs tab to create, delete, and

rename modules or dialogs.

Modules | Dialogs | Libraries |

Module

P = My Macros
= = OpenOffice.org Macros
P (& Depot
P [z Euro
P (& FormWizard
P (& Gimmicks
P [El ImportWizard
I* (5] Schedule
I (g ScriptBindingLibrary
P (5] Template
< |¢ Tools

Listbox

s BAL——

Edit

Close

MNew...

Delete

Figure 3. Modules tab of the OOo Macro Organizer dialog.
Use the Libraries tab (see Figure 4) to create, delete, rename, import, and export libraries.

| Modules | Dialogs |Libraries

Location

[M',r Macros & Dialogs

Library

AndrewBase
ChangeStyles
DBuUtil

Glover
MacroFormatters
OColAuthorForme
Pitonyak
PitonyakDatabas

file:///andrew0/home/andy/.c

Password...

MNew...

Import...

PitonyakDialogs
Bitrnsve ol Ll l
[<

Export...

Delete

Figure 4. Libraries tab of the OOo Macro Organizer dialog.

The first step is to select the desired library container from the Location drop-down. To rename a library,

double click on the library and then edit the name in place.

17

TIP I find renaming modules and libraries in the Macro Organizer dialogs to be frustrating. For renaming
libraries, double or triple click on the library name then wait a few seconds. Try again. Try one more time.
Click on another library. Double or triple click on the library name; you get the idea.

The easiest method to change a module name is to right click on the module name in the tabs at the bottom
of the IDE and choose rename (see Figure 11).

2.3. Macro language

The OpenOffice.org macro language is based on the BASIC programming language. The standard macro
language is officially titled StarBasic, but, it is also referred to as OOo Basic, or Basic. Many different
programming languages can be used to automate OOo. OOo provides easy support for macros written in
Basic, JavaScript, Python, and BeanShell. In this document, my primary concern is Basic.

2.4. Create a module in a document

Each OOo document is a library container able to contain macros and dialogs. When a document contains
the macros that it uses, possession of the document implies possession of the macros. This is a convenient
distribution and storage method. Send the document to another person or location, and the macros are still
available and usable.

1) To add a macro to any OOo document, the document must be open for editing. Start by opening a
new text document, which will be named “Untitled 1” — assuming that no other untitled document
is currently open.

2) Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open the OOo Basic Macros
dialog (see Figure 1).

3) Click the Organizer button to open the OOo Macro Organizer dialog, then click on the Libraries tab
(see Figure 4).

4) Select “Untitled 1” from the location drop-down.

Modules | Dialogs |Libraries

Location Edit
Untitled 1 o | ——
Close
Library
Password
New
Import

Figure 5. Libraries tab of the OOo Macro Organizer dialog.
5) Click New to open the New Library dialog.

18

Mame: [oK l

[Gbrary] l

Cancel l

Figure 6. New library dialog.
6) The default name is Library1, which is not very descriptive. Choose a descriptive name and click
OK. The new library is shown in the list. For this example, I named the library “HelloWorld”.

]' Modules | Dialogs |Libraries

Location [Edit l
|Untitled 1) | - |
Library

standard [Password... l

Hellowaorld

Export...

Delete

Figure 7. The new library is shown in the list.
7) Inthe Modules tab, select the HelloWorld library. OOo created the module named “Modulel” when
the library was created.

Tip Although Modulel is created when the library is created, a bug in OOo 3.2 may prevent the module from
displaying without closing and re-opening the dialog.

19

Modules | Dialogs | Libraries |

Module Edit

P = My Macros

P = OpenOffice.org Macros Close

P[] OOME_3.0.odt

P |[%) OOME16_O7AP.sxw

< |%] Untitled 1

Standard

MNew...
Delete

Figure 8. The new library is shown in the list.

8) Click New to open the New Module dialog. The default name is Module2, because Modulel already
exists.

MName: [0K l

HelloModule]

] [Cancel l

Figure 9. New module dialog.

9) Use a descriptive name and click OK. Modulel is finally displayed (bug in 3.2.0), as is the newly
created module.

20

Modules | Dialogs | Libraries

Module |

Edit |

P = My Macros
P = OpenOffice.org Macros | Close |
b [Z OOME_3.0.0dt
b [Z| OOME16_O7AP.sxw
< |%] Untitled 1
~ [#] Helloworld
Modulel
Standard

| Delete |

Figure 10. The new module is shown in the list.
10) Select HelloModule and click Edit.

11) At this point, I saved the document and named it “DelMeDoc” because I intended to delete the
document when I was finished with the example. Select a name that works well for you. If you
reopen the dialog shown in Figure 10, the document name will be shown rather than “Untitled 1.

At this point, the Integrated Debugging Environment (IDE) is opened to edit the macro.

2.5. Integrated Debugging Environment

Use the Basic Integrated Debugging Environment (IDE) to create and run macros (see Figure 11). The IDE
places significant functionality in a little space. The toolbar icons are described in Table 1. The top left
|[DelMeDoc.odt].HelloWorld

corner just above the editing window <) contains a drop-down list that
shows the current library. The portion in the square brackets identifies the library container, and the portion
following identifies the library. This provides a quick method to choose a library.

21

File Edit View Tools Window Help

O-BH & 6 B B E @,
[DelMeDoc.odtl.HelloWorld ~ & M PR FEPn EH
[[REM BASIC ~
Sub Main
End Sub
Watch:| | Calls:
[Variable [Value [Type ||~
“_HelloModule % Modulel / 1]« i y
DelMeDoc.odt. HelloWorld. Modulel * |Ln 3, Col 9 INSRT

Figure 11. Basic Integrated Debugging Environment.

Rest your mouse cursor on a toolbar icon for a few seconds to read the text that appears; this provides a hint

at what that icon does.

Table 1. Toolbar icons in the Basic IDE.

Icon

L

S g R B 0 O WK

(f

Key
Ctrl+N

Ctrl+O
Ctrl+S
Ctrl+P
Ctrl+V
Ctrl+Z

Ctrl+Y

Description

Create a new OOo document.

Open an existing OOo document.

Save the current library. If the library is in a document, then the document is saved.
Print the macro to the printer.

Paste the clipboard.

Undo the last operation.

Redo the last operation that was undone.
Open the Object catalog (see Figure 12). Select the macro and double-click on the macro.

Open the OO0 Macros dialog (see Figure 2). Select a macro and click edit or run. This is a short-
cut for Tools > Macros > Organize Macros > OpenOffice.org Basic.

Select a module. This opens the OO0 Macro Organizer dialog with the Modules tab selected (see
Figure 3). Select a module and click Edit.

22

Icon

=

A [@ PO

(=

L

Key

F5

Shift+F5

Shift+F8

F8

Shift+F9

F7

Description

Open the OOo help, which contains numerous useful examples for Basic.

Click the Compile icon to check the macro for syntax errors. No message is displayed unless an
error is found. The Compile icon compiles only the current module.

Run the first macro in the current module. While stopped (from a breakpoint, or single stepping,

£93

this continues the execution). To run a specific macro, use
dialog, select the desired macro, and click Run.

to open the OOo Basic Macros

Stop the currently running macro.
Step over the current statement. When a macro stops at a breakpoint, this executes the current
statement. Can also be used to start a macro running in single step mode.

Step into. This is the same as Step over except if the current statement calls another macro, it
single steps into that macro so that you can watch that macro execute.

Step out runs the macro to the end of the current subroutine or function.

Toggles a breakpoint on / off at the current cursor position in the IDE. An icon (|ﬁ) is displayed to
the left of the line to show that a breakpoint is set for that line. You can also double-click in the
breakpoint area to toggle a breakpoint on / off.

Open the manage breakpoints dialog (see Figure 17), which allows you to selectively turn
breakpoints on or off, and also, to prevent a breakpoint from triggering until it has been reached a
certain number of times.

Select a variable and click the Watch icon to add the variable to the watch window. You can also
enter the variable name into the Watch input line and press enter.

Find parentheses.
Insert Basic source. Open a dialog to select a previously saved basic file and insert it.

Save the current module as a text file on disk. OOo stores modules on disk in a special encoded
format. Files saved using this method are standard text files. This is an excellent way to create a
backup of a macro or to create a text file that can be easily sent to another person. This is different
from the Disk icon, which is used to save the entire library or document that contains the module.

Import a dialog from another module.

Module names are listed along the bottom of the IDE. Module navigation buttons /[+/[*/I*! are to the left of
the module names. The buttons display the first, previous, next, and last module in the current library. Right
click on a module name to:

Insert a new module or dialog.

Delete a module or dialog.

Rename a module; this is the easiest way that I know to rename a module or dialog.

Hide a module or dialog.

Open the OO0 Basic Organization dialog.

Use o to open the Objects catalog (see Figure 12), select a macro and double-click on the macro to edit
that macro.

23

i3

~ (& Standard
= &) Modulel

JPE—— .

= LatexBoldCode
» & Recorded
P (& XrayDyn
P (& XrayTool
7 OpenOffice.org Macros & Dialogs
2] DelMeDoc.odt
~ [&] Helloworld
+~ & HelloModule
= Main
I Modulel
P (& standard

>
-

. §2 OOME_3.0.odt

Figure 12. Objects catalog.

2.6. Enter the macro

Change the text in the IDE to read as shown in Listing 1. Click the run icon.

Listing 1. Hello World macro

REM * %k Kk %

BASIC * Kk k Kk %

Option Explicit

Sub Main

Print "Hello World"

End Sub

Table 2. Line by line description of Listing 1.

REM * ok Kk kK

Option Explicit

Description

character.

Sub Main
Print "Hello World" The Print command.
End Sub End the Main subroutine.

BASIC *<x**xx* Basic comment, this line is ignored. A comment may also begin with a single quote

Tells the basic interpreter that it is an error to use a variable that is not explicitly
defined. Misspelled variables are likely to be caught as an error at compile time.

Indicates that this is the beginning of the definition of a subroutine named Main.

The macro in Listing 1 is text that a human can read. The computer must translate macro text into something
that the computer can use. The process of converting the human readable macro into something that the
computer can read is called compiling. In other words, a macro is written as lines of text that are compiled to

prepare a runnable program.

24

2.7. Run a macro

The Run icon always runs the first macro in the current module. As a result, a different approach is required
if more than one macro is in a module. The following options can be used:

Place the macro first in the module, and click the Run icon.

Use the first macro to call the desired macro. I like this method during development. I keep a main
macro as the first thing that does nothing. During development, I change the main macro to call the
macro of interest. For general use, I let the main macro at the top call the most frequently run macro.

Use the Macro dialog (see Figure 2) to run any routine in the module.
Add a button to your a document or toolbar that calls the macro.

Assign the macro to a keystroke. Use Tools > Customize to open the Customize dialog. Select the
Keyboard tab. Macro libraries are at the bottom of the Category list. This is also available with Tools
> Macros > Organize Macros > OpenOffice.org Basic, select the macro, and click the Assign
button to launch the Customize dialog. Various tabs in this dialog allow you to assign the macro to
execute as a menu item, from a toolbar icon, or a system event.

To use the Macro dialog to run any subroutine in a module, follow these steps:

1.

5.
6.

Select Tools > Macros > Organize Macros > OpenOffice.org Basic to open the Macro dialog (see
Figure 2).

Find the document that contains the module in the “Macro from” list.
Double-click a library to toggle the display of the contained modules.

Select the module to display the contained subroutines and functions in the “Existing macros in:
<selected module name>" list.

Select the desired subroutine or function to run — for example, HelloWorld.

Click the Run button to run the subroutine or function.

2.8. Macro security

Depending on how OOo is configured, you may not be able to run macros in a document. When I open a
document containing a macro, the warning in Figure 13 is displayed. If you do not expect a macro or do not
trust the source, then choose to disable macros. Remember, I am able to write a macro that destroys your
computer.

25

fandrewO/home/andy/DelMeDoc.odt

The document contains document macros.

Macros may contain viruses. Disabling macros for a document is
always safe. If you disable macros you may lose functionality
provided by the document macros.

Help

Figure 13. The opened document contains a macro.

Use Tools > Options > OpenOffice.org > Security to open the Security tab of the Options dialog.

<~ OpenOffice.org
User Data
General
Memory
View
Print
Paths
Colors
Fonts

Appearance

Accessibility

Java

Online Update

Improvement Program
Load/Save
Language Settings
OpenOffice.org Writer
OpenOffice.org Writer/Web
OpenOffice.org Base
Charts
Internet

VIV

Security options and warnings

Adjust security related options and define warnings for hidden
information in documents.

Passwords for web connections
[Persistently save passwords for web connections

/| Protected by a master password (recommended)

Passwords are protected by a master password. You will be
asked to enter it once per session, if OpenOffice.org retrieves a
password from the protected password list.

Macro security

Adjust the security level for executing macros and specify trusted
macro developers.

File sharing options for this document
[_] Open this document in read-only mode

w| Record changes

Options...;

Connections...

Master Password...

Macro Security...

Protect...

| OK | | Cancel | | Help

| | Back

Figure 14. Options dialog, security tab.

Click the Macro Security button to open the Macro Security dialog. Choose a level that fits your comfort
level. Medium security uses the confirmation dialog in Figure 13, which is relatively quick and unobtrusive.

26

Security Level| Trusted Sources

Wery high.
(2 Only macros from trusted file locations are allowed to run. All other macros,
regardless whether signed or not, are disabled.

High.
2 Only signed macros from trusted sources are allowed to run. Unsigned macros
are disabled.

Medium.
Confirmation required before executing macros from untrusted sources.;

~ Low (not recommended).
) All macros will be executed without confirmation. Use this setting only if you
are certain that all documents that will be opened are safe.

| oK || Cancel || Help || Reset |

Figure 15. Macro Security dialog, Security Level tab.
You can set trusted locations and certificates that allow documents to load without confirmation based on
either where they are stored, or the certificate used to sign a document.

Security Level |Trusted Sources |

Trusted certificates

Issued to |I55ued by Expiration date

Trusted file locations

Document macros are always executed if they have been opened from one of the
following locations.

| Add... | Remove

| ok || cancel || Help |

Figure 16. Macro Security dialog, Trusted Sources tab.

27

2.9. Using breakpoints

If you set a breakpoint in the code, the macro stops running at that point. You can then inspect variables,
continue running the macro, or single-step the macro. If a macro fails and you don’t know why, single-
stepping (running one statement at a time) allows you to watch a macro in action. When the macro fails,
you’ll know how it got there. If a large number of statements run before the problem occurs, it may not be
feasible to run one statement at a time, so you can set a breakpoint at or near the line that causes the
problem. The program stops running at that point, and you can single-step the macro and watch the behavior.

The breakpoint On/Off icon sets a breakpoint at the statement containing the cursor. A red stop sign marks
the line in the breakpoint column. Double-click in the breakpoint column to toggle a breakpoint at that
statement. Right-click a breakpoint in the Break-point column to activate or deactivate it.

Use the Manage Breakpoints icon g to load the Manage Breakpoints dialog. All of the active breakpoints
in the current module are listed by line number. To add a breakpoint, enter a line number in the entry field
and click New. To delete a breakpoint, select a breakpoint in the list and click the Delete button. Clear the
Active check box to disable the highlighted breakpoint without deleting it. The Pass Count input box
indicates the number of times a breakpoint must be reached before it is considered active. If the pass count is
four (4), then the fourth time that the statement containing the breakpoint is to be run, it will stop rather than
run. This is extremely useful when a portion of the macro does not fail until it has been called multiple
times.

Breakpoints

. Ok
b 29

Cancel
32

Delete
Active
Pass Count: o |

Figure 17. Manage Breakpoints dialog.
There are two things that cause a breakpoint to be ignored: a pass count that is not zero, and explicitly
marking the breakpoint as “not active” in the Manage breakpoints dialog. Every breakpoint has a pass count
that is decremented toward zero when it is reached. If the result of decrementing is zero, the breakpoint
becomes active and stays active because the pass count stays at zero thereafter. The pass count is not
restored to its original value when the macro is finished or restarted.

2.10. How libraries are stored

Macro libraries are stored as XML files that are easily editable using any text editor. In other words, it is

easy for you to poke around and damage your files. This is advanced material that you may want to ignore. If
you do not understand XML and why the file contains > rather than >, perhaps you should not edit the
files. Although manually editing your external libraries is generally considered foolish, I have had at least
one instance where this was required, because OOo was unable to load a module that contained a syntax
error.

28

Each library is stored in a single directory, and each module and dialog is contained in a single file. The
global libraries that are included with OpenOffice.org are stored in a shared basic directory under the
directory in which OQo is installed. Examples:

C:\Program Files\OpenOffice3.2\share\basic 'A Windows installation
/opt/openoffice.org/basis3.2/share/basic 'A Linux installation

OpenOffice.org stores user-specific data in a directory under the user’s home directory. The location is
operating system specific. Use Tools > Options > OpenOffice.org > Paths to view where other
configuration data is stored. Here are some examples where my basic macros are stored:

C:\Documents and Settings\andy\Application Data\OpenOffice.org\3\user\basic 'Windows XP
C:\Users\pitonyaka\AppData\Roaming\OpenOffice.org\3\user\basic 'Windows 7
/home/andy/OpenOffice.org/3/user/basic 'Linux

User macros are stored in OpenOffice.org\3\user\basic. Each library is stored in its own directory off the
basic directory. The user directory contains two files and one directory for each library (see Table 3).

Table 3. Files and some directories in my user/basic directory.
Entry Description

dialog.xlc XML file that references every dialog file known to this user in OpenOffice.org.
script.xlc XML file that references every library file known to this user in OpenOffice.org.
Standard Directory containing the Standard library.

Pitonyak Directory containing a the library named Pitonyak.

PitonyakDialogs Directory containing the library named PitonyakDialogs.

The files dialog.xlc and script.xlc contain a reference to all of the dialogs and libraries known to OOo. If
these two files are overwritten, OOo will not know about your personal libraries even if they exist. You can,
however, either manually edit the files, or, even easier, use the OOo Macro Organizer dialog to import the
libraries (because you can import a library based on the directory).

The directory containing a library contains a single file for each module and dialog in the library. The
directory also contains the files dialog.xlb and script.xlb, which references the modules.

2.11. How documents are stored

The standard OOo formats use a standard ZIP file to store all of the components. Any program that can view
and extract ZIP files can be used to inspect an OOo document — however, some programs will require you
to change the file extension to end with ZIP.

After unzipping an OOo document, you will find files that contain the primary content, styles, and settings.
The extracted document also contains three directories. The META-INF directory references all of the other
files, embedded pictures, code libraries, and dialogs. The Dialogs directory contains all of the embedded
dialogs, and the Basic directory contains all of the embedded libraries.

The point to all this is that in an emergency, you can manually inspect a document’s XML and potentially fix
problems.

29

2.12. Conclusion

Macros and dialogs are stored in modules, modules are stored in libraries, and libraries are stored in library
containers. The application is a library container, as is every document. The IDE is used to create and debug
macros and dialogs.

You have just completed one of the most difficult steps in writing macros for OpenOffice.org: writing your
first macro! You are now ready to explore, try other macro examples, and create a few of your own.

30

3. Language Constructs

The OpenOffice.org macro language is similar to the one in Microsoft Office because they are both based on
BASIC. Both macro languages access the underlying implementation structures, which differ significantly
and are therefore incompatible. This chapter emphasizes the portions of the language that do not access the
underlying implementation.

This chapter shows how to assemble different components to produce an OOo macro that will compile and
run. In a word: syntax. Correct syntax does not imply that the macro does what you want, only that the
pieces are put together in a correct way. The phrases “Can I drive?” and “May I drive?” are both
syntactically correct. The first phrase is about ability, and the second phrase is about permission. In speech,
these two questions may be understood to have the same meaning. The computer, on the other hand, does
exactly what you ask, rather than what you mean.

The primary components that syntactically constitute an OpenOffice.org macro are statements, variables,
subroutines, and functions, and flow-control constructs. A statement is a small, runnable portion of code that
is usually written as a single line of text. Variables are containers that hold values that can change during
macro execution. Subroutines and functions separate a macro into functional named groups of statements,
allowing for better organization. Flow control directs which statements run and how many times.

OOo runs one line of a macro at a time. Each line of a macro is delimited exactly the way it sounds; by a
new line (see Listing 2).

Listing 2. Two line macro
Print "This is line one"

Print "This is line two"

Lines that are too long may use more than one line by appending an underscore (_) to the end of the line (see
Listing 3). The underscore must be the last character on the line for it to act as a line-continuation character.
The underscore has no special meaning when it isn’t the last character of a line, allowing it to be used inside
strings and in variable names. When used as a continuation character, spaces may precede the underscore
and are in some cases required to separate the underscore from what precedes it. For example, splitting the
line “atb+c” after the b requires a space between the b and the underscore, or the underscore is considered
part of the variable name. Spaces that inadvertently follow a continuation character may cause a compile-
time error. Unfortunately, the error does not state that something follows the underscore, but that the next
line is invalid.

Listing 3. Append an underscore to the end of a line to continue on the next line.
Print "Strings are concatenated together " &

"with the ampersand character"

TIP When anything follows a line-continuation character, the next line is not taken as its continuation.
Sometimes, when I copy code listings from web sites and paste them into the IDE, an extra space is added
at the end of a line, which breaks line continuation.

You can place multiple statements on a single line by separating them with colons. This is usually done for
improved code readability. Each of the combined statements act as a single line of code while debugging the
macro in the Integrated Development Environment (IDE). Listing 4, therefore, acts like three separate
statements while using the IDE to single-step through the macro.

Listing 4. Set the variables x, y, and z to zero.
x=0:y=01:2=20

31

You should liberally add remarks, which are also called comments, to all of the macros that you write. While
writing a macro, remember that what is clear today may not be clear tomorrow, as time passes and new
projects arise and memory fades all too quickly. You can start a comment with either the single quotation
character, or the keyword REM. All text on the same line following a comment indicator is ignored.
Comments are not considered runnable statements; they are ignored while single-stepping a macro.

Listing 5. Add comments to all of the macros that you write.
REM Comments may start with the keyword REM.
ReM It is not case-sensitive so this is also a comment.

' All text following the start of the comment is ignored
X =0 ' A comment may also start with a
' single quote

z = 0 REM All text following the start of the comment is ignored

TIP Keywords, variables, and routine names in OOo Basic are not case-sensitive.
Therefore, REM, Rem, and rEm all start a comment.

Nothing can follow a line-continuation character, and this includes comments. All text following a comment
indicator is ignored — even the continuation character. The logical result from these two rules is that a line-
continuation character can never occur on the same line as a comment.

3.1. Compatibility with Visual Basic

With respect to syntax and BASIC functionality, OOo Basic is very similar to Visual Basic. The two Basic
dialects are nothing alike when it comes to manipulating documents, but the general command set is very
similar. Steps were taken to improve the general compatibility between the two dialects. Many
enhancements were released with OOo 2.0. Many of the changes are not backward compatible with existing
behavior. To help resolve these conflicts, a new compiler option and a new run-time mode were introduced
to specify the new compatible behavior.

The compiler option “Option Compatible” directs some features. This option affects only the module in
which it is contained. Because a macro calls different modules during its execution, both the old and new
behavior may be used, depending upon the existence of “Option Compatible” in each called module. Setting
the option in one module and then calling another module has no effect in the called module.

A run-time function, CompatibilityMode(True/False), allows the behavior of run-time functions to be
modified during the execution of a macro. This provides the flexibility to enable the new run-time behavior,
perform some operations, and then disable the new run-time behavior. CompatibilityMode(False) overrides
Option Compatible for the new runtime behavior. Hopefully, some method of probing the current mode will
be provided.

Visual basic allows any Latin-1 (ISO 8859-1) character as a valid variable name, OOo does not. Setting
“Option Compatible” allows “4” to be considered a valid variable name. This is just one of many changes
that use “Option Compatible.” The CompatibilityMode() function neither enables nor disables the new
extended identifier names because CompatibilityMode() is not called until run time and variable names are
recognized at compile time.

Both Visual Basic and OOo Basic support the rmdir() command to remove a directory. VBA can remove
only empty directories, but OOo Basic can recursively remove an entire directory tree. If
CompatibilityMode(True) is called prior to calling rmdir(), OOo Basic will act like VBA and generate an
error if the specified directory is not empty. This is just one of many changes that use CompatibilityMode().

32

StarBasic is much more forgiving than VBA. It is easier, therefore, to convert simple macros from VBA to
0OOo Basic. A few examples, in OOo Basic, “set” is optional during assignment. Therefore, “set x = 5”
works in both VBA and OOo Basic, but “x = 5” fails in VBA and works with OOo Basic.

Another example is that array methods are far more stable and forgiving in OOo than in VBA; for example,
the functions to determine array bounds (LBound and UBound) work fine with empty arrays, whereas VBA
crashes.

3.2. Compiler options and directives

A compiler converts a macro into something that the computer is able to run. Compiler behavior can be
controlled through commands such as “Option Explicit” at the top of a module before all variables,
subroutines, and functions. A compiler option controls the compilers behavior for the module containing the
option.

Table 4. Compiler options and directives.
Option Description

Def Give a default type to undeclared variables based on the variables name.

Option Base Control whether the first array index is 0 or 1; assuming it is not specified.

Option Compatible Cause Star Basic to act more like VB.

Option Explicit Force all variables to be defined. While the macro runs, if a variable that has not yet been
defined is used, an error occurs.

3.3. Variables

Variables are containers that hold values. OpenOffice.org supports different types of variables designed to
hold different types of values. This section shows how to create, name, and use variables. Although OOo
Basic does not force you to declare variables, you should declare every variable that you use. The reasons for
this are developed throughout this section.

3.3.1. Constant, subroutine, function, label, and variable names

Always choose meaningful names for your variables. Although the variable name “varl” requires little
thought during creation, “FirstName” is more meaningful. Some variable names are not particularly
descriptive but are commonly used by programmers anyway. For example, “i”” is commonly used as a
shortened version of “index,” for a variable that is used to count the number of times a repetitive task is
executed in a loop. OOo Basic imposes restrictions on variable names, including the following:

« A variable name cannot exceed 255 characters in length. Well, officially a variable name cannot
exceed 255 characters. I tested names with more than 300 characters with no problems, but I don’t
recommend this!

« The first character of a variable name must be a letter: A-Z or a-z. If Option Compatibleis
used, then all characters defined as letters in the Latin-1 (ISO 8859-1) character set are accepted as
part of an identifier name.

« The numbers 0-9 and the underscore character (_) may be used in a variable name, but not as the
first character. If a variable name ends with an underscore, it won’t be mistaken for a line-
continuation character.

33

- Variable names are not case sensitive, so “FirstName” and “firstNAME” both refer to the same
variable.

+ Variable names may contain spaces but must be enclosed in square brackets if they do. For example,
[First Name]. Although this is allowed, it is considered poor programming practice.

TIP These restrictions also apply to constant, subroutine, function, and label names.

3.3.2. Declaring variables

Some programming languages require that you explicitly list all variables used. This process is called
“declaring variables.” OOo Basic does not require this. You are free to use variables without declaring them.

Although it is convenient to use variables without declaring them, it is error-prone. If you mistype a variable
name, it becomes a new variable rather than raising an error. Place the keywords “Option Explicit” before
any runnable code in every module to cause OOo Basic to treat undeclared variables as run-time errors.
Comments may precede Option Explicit because they are not runnable. Although it would be even better if
this became a compile-time error, OO0 Basic does not resolve all variables and routines until run time.

Listing 6. Use Option Explicit before the first runnable line in a module.
REM * Kk ok kK BASIC Kk Kk K

Option Explicit

TIP Use “Option Explicit” at the top of every module that you write; it will save you a lot of time searching for
errors in your code. When I am asked to debug a macro, the first thing I do is add “Option Explicit” at the
top of each module.

The scope for options is the module which contains the option. In other words, setting option explicit in one
module, then calling another module, will not cause undeclared variables in the called module to cause a
runtime error; unless the called module also has “option explicit”.

You can declare a variable with or without a type. A variable without an explicit type becomes a Variant,
which is able to take on any type. This means that you can use a Variant to hold a numeric value and then, in
the next line of code, overwrite the number with text. Table 5 shows the variable types supported by OOo
Basic, the value that each type of variable contains immediately after declaration (“initial value”), and the
number of bytes that each type uses. In OOo Basic, a variable's type can be declared by appending a special
character to the end of the name when it is declared. The Post column in Table 5 contains the supported
characters that can be post-fixed to a variable's name when the variable is declared.

Table 5. Supported variable types and their initial values.
Type Post Initial Bytes Convert Description

Boolean False 1 CBool True or False

Currency @ 0.0000 8 CCur Currency with 4 decimal places

Date 00:00:00 8 CDate Dates and times

Double # 0.0 8 CDbl Decimal numbers in the range of
+/-1.79769313486232 x 10E308

Integer % 0 2 Clnt Integer from -32,768 through 32,767

Long & 0 4 CLng Integer from -2147483648 through
2147483647

34

Type Post Initial Bytes Convert Description

Object Null varies Object

Single ! 0.0 4 CSng Decimal numbers in the range of
+/-3.402823 x 10E38

String $ " varies CStr Text with up to 65536 characters

Variant Empty varies CVar May contain any data type

Although OOo Basic supports a Byte variable type, you can’t directly declare and use one. The function
CByte, as discussed later, returns a Byte value that may be assigned to a variable of type Variant. With OOo
version 2.0, you can declare a variable of type Byte, but the variable is assumed to be an externally defined
object of type Byte rather than an internally defined Byte variable.

Use the DIM keyword to explicitly declare a variable before use (see Table 6). You can declare multiple
variables on a single line, and you can give each variable a type when it is declared. Variables with no
declared type default to type Variant.

Table 6. Declaring simple variables.
Declaration Description

Dim Name Name is type Variant because no type is stated.
Dim Name As String Name is type String because the type is explicitly stated.
Dim Name$ Name$ is type String because Name$ ends with a $.
Dim Name As String, Weight As Single Name is type String and Weight is type Single.
Dim Width, Length Width and Length are type Variant.
Dim Weight, Height As Single Weight is type Variant and Height is type Single.

TIP When multiple variables are declared in a single line, the type for each variable must be

listed separately. In the last line of Table 5, Weight is a Variant, even though it looks like it may be of type
Single.

Much of the available literature on OOo macro programming uses a variable naming scheme based on
Hungarian notation. With Hungarian notation, you can determine a variable’s type from its name. In
practice, everyone does this differently and with differing levels of adherence. This is a stylistic decision that
some people love and some people hate.

OO0 Basic uses Def<type> statements to facilitate the use of Hungarian notion. The Def statements, which
are local to each module that uses them, provide a default type for an undeclared variable based on its name.
Normally, all undeclared variables are of type Variant.

The Def statement is followed by a comma-separated list of character ranges that specify the starting
characters (see Listing 7).

Listing 7. Declare untyped variables starting with i, j, k, or n to be of type Integer.
DefInt i-k,n

Table 7 contains an example of each supported Def statement. Def statements, like Option statements, are
placed in the module before any runnable line or variable declaration. The Def statement does not force a
variable with a specific first letter to be of a certain type, but rather provides a default type other than Variant

35

for variables that are used but not declared. I have never seen the Def statement used and I recommend that
you do not use the Def statement.

TIP If you use “Option Explicit,” and you should, you must declare all variables. This renders the Def<type>
statements useless because they affect only undeclared variables.

Table 7. Examples of supported Def statements in OpenOlffice.org.
Def Statement Type

DefBool b Boolean
DefDate t Date
DebDbl d Double
DeflInt i Integer
DefLng 1 Long
DefObj o Object
DefVar v Variant

3.3.3. Assigning values to variables

The purpose of a variable is to hold values. To assign a value to a variable, type the name of the variable,
optional spaces, an equals sign, optional spaces, and the value to assign to the variable, like so:

X 3.141592654
y = 6

The optional keyword Let may precede the variable name but serves no purpose other than readability. A
similar optional keyword, Set, meant for Object variables, serves no purpose other than readability. These
keywords are rarely used.

3.3.4. Boolean variables are True or False

Boolean variables have two valid values: True or False. They are internally represented by the Integer values
-1 and 0, respectively. Any numeric value assigned to a Boolean that does not precisely evaluate to 0 is
converted to True. The macro in Listing 8 introduces a few new concepts. A string variable, s, accumulates
the results of the calculations, which are displayed in a dialog (see Figure 18). Adding CHR$(10) to the
string causes a new line to be printed in the dialog. Unfortunately, accumulating the results in a string
provides a more complicated macro than using simple statements such as “Print CBool (5=3)”, but the
results are easier to understand (see Figure 18). In the OOo version of the document, a button is frequently
available that allows you to run the macro immediately.

Listing 8. Demonstrate conversion to type boolean.
Sub ExampleBooleanType

Dim b as Boolean
Dim s as String

b = True

b = False

b = (5 = 3) REM Set to False
s ="(5=3) =" &b

b = (5 < 7) REM Set to True

36

S s & CHR$(10) & "(5 < 7) => " & Db

b =17 REM Set to True because 7 is not 0
s = s & CHR$(10) & "(7) => " & b
MsgBox s
End Sub
—)
= |soffice 3%

(5 = 3) == False
(5 = 7)== True
{7) == True

...........

Figure 18. The dialog displayed by Listing 8.
The internal binary representation of True as -1 has all of the bits set to 1. The internal binary representation
of False as 0 has all of the bits set to 0.

3.3.5. Numeric variables

Numeric variables contain numbers. OOo Basic supports integers, floating-point, and currency numbers.
Integers may be expressed as hexadecimal (base 16), octal (base 8), or the default decimal numbers (base
10). In common practice, OOo users almost always use decimal numbers, but the other types are presented
here as well, for completeness.

A discussion of other number bases is important because internally, computers represent their data in binary
format. It is easy to convert between the binary, hexadecimal, and octal number bases; and for humans it
may be easier to visualize binary numbers when represented in other number bases.

Decimal numbers, base 10, are composed of the 10 digits 0, 1, 2, 3,4, 5,6, 7, 8, and 9. Add 1 to 9 in decimal
and the result is 10. Binary (base 2), octal (base 8), and hexadecimal (base 16) numbers are also commonly
used in computing. Octal numbers are composed of the numbers 0, 1, 2, 3,4, 5, 6, and 7. In octal, add 1 to 7
and the result is 10 (base 8). Hexadecimal numbers are composed of the 16 digits 0, 1, 2, 3,4, 5,6, 7,8, 9,
A, B, C, D, E, and F. Binary numbers are composed of the two digits 0 and 1. Table 8 contains the numbers
from O through 18 in decimal, and their corresponding values in binary, octal, and hexadecimal bases.

Table 8. Numbers in different bases.

Decimal Binary Octal Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9

37

Decimal Binary Octal Hexadecimal

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12

Integers are assumed to be expressed as decimal numbers. Commas are not allowed. Hexadecimal numbers
are preceded by “&H” and octal numbers are preceded by “&0O” (letter O, not a zero). Unfortunately, there is
no easy method to enter binary numbers. Table 9 presents a few simple guidelines for entering numbers.

Table 9. A few guidelines for entering numbers in OQo Basic.

Example Description
Use 1000 not 1,000 Write numbers without a thousands separator; do not use commas.
+ 1000 A space is permitted between a leading plus or minus sign and the number.

&HFE is the same as 254 Precede a hexadecimal number with &H.

&O11 is the same as 9 Precede an octal number with &O.
Use 3.1415 not 3,1415 Do not use commas for the decimal.
6.022E23 In scientific notation, the “e” can be uppercase or lowercase.

Use 6.6e-34 not 6.6¢ -34 Spaces are not allowed in a number. With the space, this evaluates as 6.6 - 34 = -27.4.

6.022e+23 The exponent may contain a leading plus or minus sign.

1.1e2.2 evaluates as 1.1e2 The exponent must be an integer. The fractional portion is ignored.

In general, assigning a String to a numeric variable sets the variable to zero and does not generate an error. If
the first characters in the string represent a number, however, then the string is converted to a number and
the non-numeric portion of the string is ignored — numeric overflow is possible.

Integer variables

An integer is a whole number that may be positive, negative, or equal to zero. Integer variables are a good
choice for numbers representing non-fractional quantities, such as age or number of children. In OOo Basic,
Integer variables are 16-bit numbers supporting a range from -32768 through 32767. Floating-point numbers
assigned to an integer are rounded to the nearest Integer value. Appending a variable name with “%” when it
is declared is a shortcut to declaring it as type Integer.

Listing 9. Demonstrate integer variables.
Sub ExampleIntegerType

Dim il As Integer, 12% REM 1l and i2 are both Integer variables
Dim f2 As Double

Dim s$

f2= 3.5

38

il= f2 REM i1 is rounded to 4

s = "3.50 => " & il

f2= 3.49

i2= f2 REM i2 is rounded to 3

s = s & CHR$S(10) & "3.49 => " & i2

MsgBox s

End Sub

=lsoffice 3
3.50==4
349 => 3

| A ..

Figure 19. Demonstrating integer variables in Listing 9.

Long Integer variables

“Long” is an integer type that has a greater range than type Integer. Long variables are 32-bit numbers
supporting a range from -2,147,483,648 through 2,147,483,647. Long variables use twice as much memory
as Integer variables but they can hold numbers that are much larger in magnitude. Floating-point numbers
assigned to type Long are rounded to the nearest Long value. Appending a variable name with “&” when it
is declared is a shortcut to declaring it as type Long. The output from Listing 10 is the same as Listing 9 (see
Figure 19).

Listing 10. Demonstrate long variables.
Sub ExampleLongType

Dim NumberOfDogsé&, NumberOfCats As Long ' Both variables are Long
Dim f2 As Double

Dim s$

f2= 3.5

NumberOfDogs = f2 REM round to 4

s = "3.50 => " & NumberOfDogs

f2= 3.49

NumberOfCats = £f2 REM round to 3
s = s & CHRS$S(10) & "3.49 => " & NumberOfCats
MsgBox s

End Sub

Currency variables

Currency variables, as the name implies, are designed to hold financial information. The Currency type was
originally introduced to avoid the rounding behavior of the floating-point types Single and Double. Visual
Basic .NET removed the Currency type in favor of the Decimal type.

Currency variables are 64-bit, fixed-precision numbers. Calculations are performed to four decimal places
and 15 non-decimal digits accuracy. This yields a range from -922,337,203,658,477.5808 through
+922,337,203,658,477.5807. Appending a variable name with “@” when it is declared is a shortcut to
declaring it as type Currency.

Listing 11. Demonstrate currency variables.
Sub ExampleCurrencyType

Dim Income@, CostPerDog As Currency

39

Income@ = 22134.37
CostPerDog = 100.0 / 3.0
REM Prints as 22134.3700

Print "Income = " & Income(@

REM Prints as 33.3333

Print "Cost Per dog = " & CostPerDog
End Sub

Single variables

Single variables, unlike Integer variables, can have a fractional portion. They are called “floating-point
numbers” because, unlike Currency variables, the number of decimals allowed is not fixed. Single variables
are 32-bit numbers that are accurate to about seven displayed digits, making them suitable for mathematical
operations of average precision. They support positive or negative values from 3.402823 x 10E38 to
1.401298 x 10E-45. Any number smaller in magnitude than 1.401298 x 10E-45 becomes zero. Appending a
variable name with “!” when it is declared is a shortcut to declaring it as type Single.

Listing 12. Demonstrate single variables.
Sub ExampleSingleType

Dim GallonsUsed As Single, Miles As Single, mpg! EPEHWEE.ETE 83-1

GallonsUsed = 17.3 =
Miles = 542.9 Fuel efficiency = 31.38151

mpg! = Miles / GallonsUsed | DK]I CaﬂCE||
Print "Fuel efficiency = " & mpg! s
End Sub

Double variables

Double variables are similar to Single variables except that they use 64 bits and have about 15 significant
digits. They are suitable for high-precision mathematical operations. Double variables support positive or
negative values from 1.79769313486232 x 10E308 to 4.94065645841247 x 10E-324. Any number smaller
in magnitude than 4.94065645841247 x 10E-324 becomes zero. Appending a variable with “#” when it is
declared is a shortcut to declaring it as type Double.

Listing 13. Demonstrate double variables.
Sub ExampleDoubleType
Dim GallonsUsed As Double, Miles As Double, mpg#

GallonsUsed = 17.3 — El @
Miles = 542.9 ol -01. 331
Fuel efficiency = 31.3815028901734

mpg# = Miles / GallonsUsed |
Print "Fuel efficiency = " & mpg#
End Sub

|| cancel |

3.3.6. String variables contain text

String variables are used to hold text. In OOo, text is stored as Unicode version 2.0 values, which provides
good support for multiple languages. Each String variable can hold up to 65,535 characters. Appending a
variable with “$” when it is declared is a shortcut to declaring it as type String.

Listing 14. Demonstrate string variables.
Sub ExampleStringType

Dim FirstName As String, LastName$
FirstName = "Andrew"

40

LastName$ = "Pitonyak"
Print "Hello " & FirstName & " " & LastName$
End Sub

=) OpenoOffice:o. %)

Hello Andrew Pitonyak

| fesiassisase
fanne H

| .Cancelﬁ

Figure 20. Demonstrating string variables in Listing 14.
Always remember that strings are limited to 65,535 characters. A macro counted the number of characters in
a text document by converting the document to a string and then taking the length. The macro worked until
the document contained more than 65,535 characters. In Visual Basic .NET, String variables may contain
approximately 2 billion Unicode characters.

Place two double quote characters in a row to insert a double quotation character into a string.

S = "She said ""Hello""" REM She said "Hello"

Visual Basic string constants are available when using “Option Compatible” (see Table 10). You must use
Option Compatible for the module rather than using CompatibilityMode(True) because the string constant is
recognized at compile time rather than run time.

Table 10. Visual Basic-compatible string constants.
Constant Value Description

vbCr CHRS$(13) Carriage return
vbCrLf CHR$(13) & Carriage return/linefeed combination
CHRS$(10)
vbFormFeed CHRS$(12) Form feed
vbLf CHRS$(10) Line feed
vbNewLine CHRS$(13) & Platform-specific newline character — whatever is
CHR$(10) or appropriate
CHRS$(10)
vbNullChar CHRS$(0) Character with ASCII value 0
vbNullString " Empty string. This is a string with a terminating null.
vbTab CHRS$(9) Horizontal tab
vbVerticalTab | CHR$(11) Vertical tab

The string constants in Table 10 allow you to define constant strings with special characters. Previously, you
had to define the string by using code that called the CHR$() function.

Option Compatible
Const sGreeting As String = "Hello" & vbCr & "Johnny" ' This contains a CR.

3.3.7. Date variables

Date variables contain date and time values. OOo Basic stores dates internally as a Double. Dates, like all
numerical types, are initialized to zero, which corresponds to December 30, 1899 at 00:00:00. Adding or
subtracting 1 to/from a date corresponds to adding or subtracting a day. One hour, one minute, and one

41

second correspond to the numbers 1/24, 1/(24 * 60), and 1/(24 * 60 * 60), respectively. The date functions
supported by OOo Basic are introduced in Table 11 and fully discussed later.

Listing 15. Demonstrate date variables.
Sub ExampleDateType

Dim tNow As Date, tToday As Date
Dim tBirthDay As Date
tNow = Now ()
tToday = Date()
tBirthDay = DateSerial (1776, 7, 4)
Print "Today = " & tToday
Print "Now = " & tNow
Print "A total of " & (tToday - tBirthDay) &_
" days have passed since " & tBirthDay
End Sub

Negative numbers are valid and correspond to dates before December 30, 1899. January 1, 0001,
corresponds to the floating-point number -693,595. Continuing backward produces dates that are B.C.
(Before Christ, sometimes also referred to as B.C.E., meaning Before the Christian Era, or Before the
Common Era) rather than A.D. (Anno Domini). A thorough discussion of date handling is presented later.

Table 11. Functions and subroutines related to dates and times.

Function Type Description

CDate(expression) Date Convert a number or string to a date.

CDateFromlso(string) Date Convert to a date from an ISO 8601 date representation.

CDateTolso(date) String Convert a date to an ISO 8601 date representation.

Date() String Return the current date as a String.

DateSerial(yr, mnth, day) Date Create a date from component pieces: Year, Month, Day.

DateValue(date) Date Extract the date from a date/time value by truncating the decimal portion.
Day(date) Integer Return the day of the month as an Integer from a Date value.
GetSystemTicks() Long Return the number of system ticks as a Long.

Hour(date) Integer Return the hour as an Integer from a Date value.

IsDate(value) Boolean | Is this a date?

Minute(date) Integer Return the minute as an Integer from a Date value.

Month(date) Integer Return the month as an Integer from a Date value.

Now() Date Return the current date and time as a Date object.

Second(date) Integer Return the seconds as an Integer from a Date value.

Time() String Return the time as a String.

Timer() Date Return the number of seconds since midnight as a Date. Convert to a Long.
TimeSerial(hour, min, sec) Date Create a date from component pieces: Hours, Minutes, Seconds.
WeekDay(date) Integer Return the integer 1 through 7, corresponding to Sunday through Saturday.
Year(date) Integer Return the year as an Integer from a Date value.

3.3.8. Create your own data types

In most implementations of the BASIC programming language, you can create your own data types. OOo
Basic allows you to define and use your own data types.

42

Listing 16. Demonstrate user defined types.
Type PersonType

FirstName As String
LastName As String
End Type

Sub ExampleCreateNewType
Dim Person As PersonType
Person.FirstName = "Andrew"
Person.LastName = "Pitonyak"
PrintPerson (Person)

End Sub

Sub PrintPerson (x)

Print "Person = " & x.FirstName & " " & x.LastName
End Sub
TIP Although user-defined types cannot directly contain an array, you can manage them in a variant type.

In OOo version 3.2, there are three ways that you can instantiate an instance of a user defined type. In the
following example, the colon (:) is used to place two statements on the same line.

Dim x As New PersonType ' The original way to do it.
Dim y As PersonType ' New is no longer required.
Dim z : z = CreateObject ("PersonType") ' Create the object when desired.

When you create your own type, you create a structure (frequently called a struct). OOo has many predefined
internal structures. A commonly used structure is “com.sun.star.beans.PropertyValue”. The internal OOo
structures can be created in the same way as user defined types, and also using CreateUnoStruct (see
10Universal Network Objects on page 228).

Dim a As New com.sun.star.beans.PropertyValue
Dim b As New com.sun.star.beans.PropertyValue
Dim ¢ : ¢ = CreateObject ("com.sun.star.beans.PropertyValue")

Dim d : d = CreateUnoStruct ("com.sun.star.beans.PropertyValue")

Although the structure's type is “com.sun.star.beans.PropertyValue”, it is common to abbreviate the type
name as the last portion of the name — in this case, “PropertyValue”. Many of the objects in OOo have
similar, long, cumbersome names, which are similarly abbreviated in this book.

Most variables copy by value. This means that when I assign one variable to another, the value from one is
placed into the other. They do not reference the same data; they contain their own copy of the data. This is
also true of user-defined types and internal OOo structures. Variables that can be defined in this way are
copied by value. Other types used internally by OOo, called Universal Network Objects, are copied by
reference. Although these are discussed later, it is important to start thinking about what happens when one
variable is assigned to another. If I assign one variable to another and it is copied by reference, then both
variables refer to the same data. If two variables refer to the same data, and if | change one variable, then I
change both.

3.3.9. Declare variables with special types

You can use the keywords “As New” to define a variable as a known UNO struct. The word “struct” is an
abbreviated form of the word “structure” that is frequently used by computer programmers. A struct has one

43

or more data members, each of which may have different types. Structs are used to group associated data
together.

Option Compatible provides a new syntax to define variables of known and unknown types. A simple
example is declaring a variable of a specific type even if the type is not known to OOo Basic.

Option Compatible 'Supported in 0Oo 2.0
Sub Main
Dim oVarl As Object
Dim oVar2 As MyType
Set oVarl = New MyType 'Supported in 00o 2.0
Set oVar2 = New MyType 'Supported in 00Oo 2.0
Set oVar2 = New YourType 'Error, declared as MyType not YourType.

A new OLE object factory was introduced with OOo 2.0, which allows new types to be created. The new
functionality allows OOo Basic to manipulate Microsoft Word documents on Microsoft Windows operating
systems if Microsoft Office is also installed on the computer.

Sub Main
Dim W As Word.Application
Set W = New Word.Application

REM Dim W As New Word.Application 'This works in 00Oo 2.0
REM W = CreateObject ("Word.Application") 'This works in 0Oo 2.0
W.Visible = True

End Sub

The use of CreateObject() does not rely on “Option Compatible” because this functionality is provided by
the new OLE object factory released with OOo 2.0.

3.3.10. Object variables

An Object is a complex data type that can contain more than a single piece of data. The code in Listing 16
shows an example of a complex data type. In OpenOffice.org, Object variables are intended to hold complex
data types created and defined by OOo Basic. When a variable of type Object is first declared, it contains the
special value Null, which indicates that no valid value is present.

Use the Variant type, not Object, to refer to OpenOffice.org internals. This is discussed later.

3.3.11. Variant variables

Variant variables are able to hold any data type. They take on the type of whatever is assigned to them. When
a variable of type Variant is first declared, it contains the special value Empty, which indicates that no value
has been assigned to the variable. A Variant may be assigned an integer in one statement and then assigned
text in the next. No typecasting occurs when assigning data to a Variant; it simply becomes the appropriate

type.

The chameleon-like behavior of Variant variables allows them to be used as any other variable type.
However, this flexibility comes with a cost: time. One final problem is that it isn’t always obvious what type
a Variant will become after making some assignments.

Listing 17. Demonstrate variant types.
Sub ExampleTestVariants

DIM s As String
DIM v As Variant
REM v starts Empty

44

s =s & "l : TypeName = " & TypeName(v) & " Value = " & v & CHRS$S(10)
v = "ab217" : REM v becomes a String
s =s & "2 : TypeName = " & TypeName(v) & " Value = " & v & CHRS$(10)
v = True : REM v becomes a Boolean
s = s & "3 : TypeName = " & TypeName (v) & " Value = " & v & CHRS$(10)
v = (5=5) : REM v becomes an Integer rather than a Boolean
s =s & "4 : TypeName = " & TypeName (v) & " Value = " & v & CHRS$(10)
v = 123.456 : REM Double
s =s & "5 : TypeName = " & TypeName(v) & " Value = " & v & CHR$ (10)
v =123 : REM Integer
s =s & "6 : TypeName = " & TypeName(v) & " Value = " & v & CHRS$(10)
v = 1217568942 : REM This could be a Long but it turns into a Double
s = s & "7 : TypeName = " & TypeName(v) & " Value = " & v & CHRS$(10)
MsgBox s, 0, "The Variant Takes Many Types"

End Sub

Visual Basic .NET does not support type Variant. Undeclared variables are of type Object.
[=lTihelVariantiTakes|Many Types. £3)

1 : TypeMame = Empty Value =

2 : TypeName = String Value = ab217

3 : TypeName = Boolean Value = True

4 : TypeMName = Integer Value = -1

5 : TypeMame = Double Value = 123.456

6 : TypeMame = Integer Value = 123

7 = 1217568942

: TypeMame = Double Value

| iy |

Figure 21. Variant takes the assigned type.
When data is assigned to a Variant, the data is not converted to an appropriate type, but rather the Variant
becomes the type of the data. In line 6 of Figure 21, the Variant is an Integer. In line 7, the number is too
large to be an Integer, but it is small enough to be a Long. OOo Basic chooses to convert whole numbers
larger than an integer and all floating-point numbers into a Double, even if they can be expressed as a Single
or a Long.

3.3.12. Constants

A constant is a variable with no type, and that cannot change value. The variable is defined to be a
placeholder that is substituted by the expression that defines the constant. Constants are defined with the
keyword Const. The constant name can be any valid variable name.

Const ConstName=Expression

Constants improve macros in many ways. Consider a Gravity constant frequently used in physics. Physics
scholars will recognize this as the acceleration due to gravity in meters per second squared.

Const Gravity = 9.81
Here are some specific benefits of using constants:

- Constants improve the readability of a macro. The word Gravity is easier to recognize than the value
9.81.

45

- Constants are easy to manage. If I require greater precision or if the gravitational pull changes, I
have to change the value in only one location.

- Constants help prevent difficult-to-find errors by changing run-time errors into compile-time errors.
Typing “Grevity” rather than “Gravity” is a compile-time error, while mistyping “9.81” as “9.18” is
not.

« While a value like 9.81 may be obvious to you, it may not be as obvious to others reading your code
later. It becomes what programmers call a “magic number,” and experienced programmers try to
avoid magic numbers at all costs. Their unexplained meanings make for difficulties in maintaining
code later, when the original programmer is not available to explain — or has forgotten the details
entirely.

TIP

OpenOffice.org defines the constant Pi. This is a mathematical constant with a value of approximately
3.1415926535897932385.

3.4. The With statement

The With statement is used to simplify accessing complex data types. Listing 16 defines a data type that
contains two different variables: FirstName and LastName. You can access these variables by placing a
period between the variable name and the data item.

Sub ExampleCreateNewType
Dim Person As PersonType

Person.FirstName "Andrew"

Person.LastName "Pitonyak"

End Sub
Or... the With statement provides a shortcut for accessing multiple data elements from the same variable.

Sub ExampleCreateNewType
Dim Person As PersonType
With Person

.FirstName = "Andrew"
.LastName = "Pitonyak"
End With
End Sub
Similarly:

Dim oProp As New com.sun.

oProp.Name "Person"

oProp.Value = "Boy Bill"
Using With:

Dim oProp As New com.sun.
With oProp

.Name = "Person"
.Value = "Boy Bill"
End With

star.beans.PropertyValue
'Set Name Property
'Set Value Property

star.beans.PropertyValue

'Set Name Property
'Set Value Property

46

3.5. Arrays

An array is a data structure in which similar elements of data are arranged in an indexed structure — for
example, a column of names or a table of numbers. See Table 12. An array allows you to store many
different values in a single variable, and uses parentheses to define and access array elements. OOo Basic
does not support the use of square brackets as used by other languages such as C and Java.

Array variables are declared using the Dim statement. Think of a one-dimensional array as a column of
values and a two-dimensional array as a table of values. Higher dimensions are supported but difficult to
visualize. An array index may be any Integer value from -32,768 through 32,767.

Table 12. Declaring an array is easy!
Definition Elements Description

Dima (5) As Integer 6 From 0 through 5 inclusive.

Dimb (5 To 10) As String 6 From 5 through 10 inclusive.

Dimc (-5 To 5) As String 11 From -5 through 5 inclusive.

Dimd (5, 1 To 6) As Integer 36 Six rows with six columns from 0 through 5 and 1
through 6.

Dime (5To 10, 20 To 25) As Long 36 Six rows with six columns from 5 through 10 and 20
through 25.

TIP You must declare array variables before using them, even if you don’t use “Option Explicit.”

If the lower dimension of an array is not specified, the default lower bound of an array is zero.
(Programmers call these arrays “zero-based.”) Thus, an array with five elements will have elements
numbered a(0) through a(4). Use the keywords “Option Base 1" to change the default lower bound of an
array to start at 1 rather than 0. This must be done before any other executable statement in the program.

Option Base { O | 1 }

TIP Specify the lower bound of an array rather than relying on the default behavior. This is more portable and it
will not change when the Option Base statement is used.

Dim a(3) allows for four elements: a(0), a(1), a(2), and a(3). Option Base does not change the number of
elements that an array can store; it changes only how they are indexed. Using Option Base 1, the same
statement still allows for four elements: a(1), a(2), a(3), and a(4). I consider this behavior unintuitive and
recommend against using Option Base. If you want specific array bounds, the preferred option is to
explicitly declare the array bounds. For example, Dim a(1 To 4). Option Base has risks in terms of
communicating clear documentation and ensuring portability.

Visual Basic handles Option Base 1 differently from OOo Basic; VB changes the lower bound to 1 but does
not change the upper bound. Visual Basic .NET no longer supports Option Base. With “Option Compatible,’
“Option Base 17 does not increase the upper bound by 1. In other words, OOo Basic acts like VB.

b

Accessing and changing the values in an array is easy. Initializing an array this way is tedious.

Listing 18. Demonstrate simple array.
Sub ExampleSimpleArrayl

Dim a(2) As Integer, b(-2 To 1) As Long
Dim m(1 To 2, 3 To 4)

47

REM Did you know that multiple statements can be placed

REM on a single line if separated by a colon?

a(0) =20 ca(l) =1 ca(2) = 2

b(-2) = -2 : D -1 : b(0) =0 : b(l) =1

m(l, 3) =3 :m

m(2, 3) 6 :m
Print "m(2,3) =" & m(2,3)
Print "b(-2) =" & b(-2)

End Sub

To quickly fill a Variant array, use the Array function (see Listing 19), which returns a Variant array with the
included data. The functions LBound and Ubound return the lower bound and upper bound of an array.
Routines supported by OOo Basic are summarized in Table 13, and discussed thoroughly later.

Listing 19. Use Array() to quickly fill an array.

Sub ExampleArrayFunction
Dim a, 1%, s$
a = Array("Zero", 1, Pi, Now)
Rem String, Integer, Double, Date

For 1 = LBound(a) To UBound(a)
s$ =s$ &1 & " " & TypeName(a(i)) & " : " & a(i) & CHRS$(10)
Next
MsgBox s$, 0, "Example of the Array Function"
End Sub

= |Examplejofithel Array/Func:i 3¢
: String : Zero

tinteger: 1

: Double : 3.14159265358979

: Date : 06/07/2010 17:24:40

WK = O

Figure 22. Different variable types in the same array.
A variable defined as an array but not dimensioned, such as Dim a(), is called an empty array. Test for an
empty array by comparing the upper bound of the array to the lower bound. If the upper bound is less than
the lower bound, the array is empty and no dimensions have been set. An array that has been dimensioned,
such as Dim a(5), is not empty.

The behavior for LBound and UBound has changed over time. Some releases of OOo produce an error for
UBound(b) and some do not. All versions should work correctly with UBound(b()). At the time of this
writing, the upper and lower array bounds for ¢ (in Listing 20) fails because c is an empty object.

Listing 20. Parentheses are not always required but are always allowed.
Sub ArrayDimensionError

On Error Goto ErrorHandler
Dim a(), b(l To 2), c
Dim iLine As Integer

Dim s$

REM Valid constructs

iLine =1 : s = "a = (" & LBound(a()) & ", "
iline = 2 : s = s & UBound(a) & ")"d

48

ilLine = 3 s = s & CHR$(10) & "b = (" & LBound(b()) & ", "
ilLine = 4 s = s & UBound(b) & ")"
iLine = 5 s = s & CHRS$S(10) & "¢ = (" & LBound(c()) & "™, "
iLine = 6 s = s & UBound(c) & ")"

MsgBox s, 0, "LBound and UBound"
Exit Sub
ErrorHandler:
s = s & CHR$(10) & "Error " & Err & ": " & Error$ & " (line : " & iLine & ")"
Resume Next
End Sub

Table 13. Summary of subroutines and functions related to arrays.

Function Description

Array(args) Return a Variant array that contains the arguments.

DimArray(args) Return an empty Variant array. The arguments specify the dimension.

IsArray(var) Return True if this variable is an array, False otherwise.

Join(array) Concatenate the array elements separated by the optional string delimiter and return

Join(array, delimiter) as a String. The default delimiter is a single space.
LBound(array) Return the lower bound of the array argument. The optional dimension specifies

LBound(array, dimension) which dimension to check. The first dimension is 1.

ReDim var(args) As Type Change the dimension of an array using the same syntax as the DIM statement. The

keyword Preserve keeps existing data intact — ReDim Preserve x(1 To 4) As Integer.
Split(str) Split the string argument into an array of strings. The default delimiter is a space. The
Split(str, delimiter) optional argument “n” limits the number of strings returned.

Split(str, delimiter, n)

UBound(array) Return the upper bound of the array argument. The optional dimension specifies
which dimension to check. The first dimension is 1.

UBound(array, dimension)

3.5.1. Changing the dimension of an array

The desired dimension of an array is not always known ahead of time. Sometimes, the dimension is known;
but it changes periodically, and the code must be changed. An array variable can be declared with or without
specifying the dimensions. OOo Basic provides a few different methods to set or change the dimensions of
an array.

The Array function generates a Variant array that contains data. This is a quick way to initialize an array. You
are not required to set the dimension of the array, but, if you do, it will change to become the array returned
by the Array function.

Dim a ()
a = Array(3.141592654, "pPI", 9.81, "Gravity")

The arguments passed to the Array function become data in the returned Variant array. The DimArray
function, on the other hand, interprets the arguments as the dimensions of an array to create (see Listing 21).
The arguments can be expressions, so a variable can be used to set the dimension.

Listing 21. Redimension array.
Sub ExampleDimArray

Dim a(), 1%

49

Dim s$

a = Array (10, 11, 12)

s = """ & LBound(a()) & " " & UBound(a()) Rem 0 2

a() = DimArray(3) REM the same as Dim a(3)
a() = DimArray(2, 1) REM the same as Dim a(2,1)
i =4

a = DimArray (3, 1) Rem the same as Dim a(3,4)
s = s & CHRS$(10) & LBound(a(),1) & " " & UBound(a(),1) Rem 0, 3

s = s & CHR$(10) & LBound(a(),2) & " " & UBound(a(),2) Rem 0, 4

a() = DimArray() REM an empty array

MsgBox s, 0, "Example Dim Array"
End Sub

The Array and DimArray functions both return an array of Variants. The ReDim statement changes the
dimension of an existing array. This can change both individual dimensions and the number of dimensions.
The arguments can be expressions because the ReDim statement is evaluated at run time.

Dim e () As Integer, i1 As Integer

i=4

ReDim e (5) As Integer REM Dimension is 1, a size of 0 To 5 is wvalid.

ReDim e (3 To 10) As Integer REM Dimension is 1, a size of 3 To 10 is wvalid.

ReDim e (3, 1) As Integer REM Dimension is 2, a size of (0 To 3, 0 To 4) is valid.

Some tips regarding arrays:
- LBound and UBound work with empty arrays.
« An empty array has one dimension. The lower bound is zero and the upper bound is -1.
- Use ReDim to cause an existing array to become empty.

The ReDim statement supports the keyword Preserve. This attempts to save the data when the dimensions of
an array are changed. Increasing the dimension of an array preserves all of the data, but decreasing the
dimension causes data to be lost by truncation. Data can be truncated at either end. If an element in the new
array existed in the old array, the value is unchanged. Unlike some variants of BASIC, OOo Basic allows all
dimensions of an array to be changed while still preserving data.

Dim a() As Integer
ReDim a (3, 3, 3) As Integer

a(l,1,1) =1 : a(1, 1, 2) =2 : a2, 1, 1) =3
ReDim preserve a(-1 To 4, 4, 4) As Integer
Print "(" & a(1,1,1) &« ", " & a(l, 1, 2) & ", " & a(2, 1, 1) & ")"

ReDim specifies both the dimensions and an optional type. If the type is included, it must match the type
specified when the variable is declared or OOo generates a compile-time error.

Listing 22 is a utility function that accepts a simple array and returns a string with all of the elements in the
array. The ReDim example code, also in Listing 22, uses ArrayToString.

Listing 22. Utility function array to string.

REM ArrayToString accepts a simple array and places the value
REM of each element in the array into a string.
Function ArrayToString(a() As Variant) As String

Dim 1%, s$

For 1% = LBound(a()) To UBound(a())
s$ = s$ & 1% & " : " & a(i%) & CHRS$(10)
Next

50

ArrayToString = s$
End Function

Sub ExampleReDimPreserve

Dim a(5) As Integer, b(), c() As Integer
a(0) =0 : a(l)y =1 : a(2) =2 : a(3) =3 : a(4) =4 : a(b5) =5
Rem a is dimensioned from 0 to 5 where a(i) = 1i

MsgBox ArrayToString(a()), 0 , "a() at start"

Rem a is re-dimensioned from 1 to 3 where a(i) = 1
ReDim Preserve a(l To 3) As Integer
MsgBox ArrayToString(a()), 0 , "a() after ReDim"

Rem Array () returns a Variant type

Rem b is dimensioned from 0 to 9 where b(i) = i+1

b = Array(l, 2, 3, 4, 5, 6, 7, 8, 9, 10)

MsgBox ArrayToString(b()), 0 , "b() at initial assignment”

Rem b is dimensioned from 1 to 3 where b (i) = i+1

ReDim Preserve b (1l To 3)
MsgBox ArrayToString(b()), 0 , "b() after ReDim"

Rem The following is NOT valid because the array is already dimensioned
Rem to a different size

Rem a = Array(0, 1, 2, 3, 4, 5)

Rem ¢ is dimensioned from 0 to 5 where c(i) = i

Rem If "ReDim" had been done on ¢, then this would NOT work

¢ = Array(0, 1, 2, "three", 4, 5)

MsgBox ArrayToString(c()), 0 , "Integer array c() Assigned to a Variant"

Rem Ironically, this is allowed but c¢ will contain no data!

ReDim Preserve c(l To 3) As Integer

MsgBox ArrayToString(c()), 0 , "ReDim Integer c() after assigned Variant"
End Sub

Visual Basic has different rules for changing the dimensions of an array, and these rules change between
versions of Visual Basic. As a general rule, OOo Basic is more flexible.

3.5.2. The unexpected behavior of arrays

Assigning one Integer variable to another copies the value, and the variables are not related in any other way.
In other words, if you change the first variable’s value, the second variable’s value does not change. This is
not true for array variables. Assigning one array variable to another makes a reference to the first array rather
than copying the data. All changes made to either are automatically seen by the other. It doesn’t matter which
one is changed; they are both affected. This is the difference between “pass by value” (integers) and “pass by
reference” (arrays).

Listing 23. Arrays copy as references.
Sub ExampleArrayCopyIsRef

Dim a(5) As Integer, c(4) As Integer, s$
c(0) =4 : c(l) =3 :c(2) =2 :c(3) =1 1:c(d4) =0
a() =c(

51

) =7

) = 10

= "KxXK g () xxAAKN g CHR$(10) & ArrayToString(a()) & CHR$S(10) &

CHRS (10) & "**** ¢ () *****" & CHRS$(10) & ArrayToString(c())
MsgBox s$, 0 , "Change One, Change Both"

End Sub

To illustrate that arrays are assigned by reference, create three arrays — a(), b(), and c¢() — as shown in
Figure 23. Internally, OOo Basic creates three arrays that are referenced by a(), b(), and c().

a() = Array(1, 3, 1) a() — (1,3, 1)
b() = Array(23, 7, 24) b() ——| (23,7, 24)

() = Array(2.4, 9, 28) ||y —»] (2.4, 9. 28)

Figure 23. Assigning an array assigns a reference.
Assign array a() to array b(), and both a() and b() reference the same data. The variable a() does not
reference the variable b(), it references the same data referenced by b() (see Figure 24). Therefore, changing
a() also changes b(). The original array referenced by a() is no longer referenced.

a() = b() a() (1,3, 1)
b() >> (23,7, 24)
c() — (2.4, 9, 28)

Figure 24. Assigning an array assigns a reference.
Assign array b() to array c(), and both b() and c() reference the same data. The variable a() remains
unchanged, as shown in Figure 25.

b() = c() a((1.3, 1)
b() \i (23,7, 24)

c() (2.4, 9, 28)

Figure 25. Assigning an array assigns a reference.

TIP Type checking is not performed when an array is assigned to another array. Do not assign arrays of
different types to each other.

Because no type checking is performed when an array is assigned to another array, unexpected and obscure
problems can occur. The Array function returns a Variant array, and is the quickest method to assign multiple
values to an array variable. An obvious problem is that an Integer array may contain String values if it

52

references a Variant array. A less obvious problem is that the ReDim statement works based on the declared
type. The statement “ReDim Preserve” on an Integer array assigned to a Variant array fails to preserve the
data.

Dim a() As Integer REM Declare a() as an Integer()
a() = Array(0, 1, 2, 3, 4, 5, 6) REM Assign a Variant () to an Integer()
ReDim Preserve a(l To 3) As Integer REM This wipes the array

To safely assign arrays while maintaining the correct data type, another method is required. Copy each
element in the array individually. This also prevents two array variables from referencing the same array.

Listing 24. More complex array example.
Sub ExampleSetIntArray

Dim iA() As Integer

SetIntArray (iA, Array(9, 8, "7", "six"))

MsgBox ArrayToString(iA), 0, "Assign a Variant to an Integer"
End Sub

REM Dimension the first array to have the same dimensions as the second.
REM Perform an element-by-element copy of the array.
Sub SetIntArray(iArray() As Integer, v () As Variant)

Dim i As Long

ReDim iArray (LBound(v()) To UBound(v())) As Integer
For 1 = LBound(v) To UBound (V)
iArray (i) = v (1)
Next
End Sub

3.6. Subroutines and functions

Subroutines are used to group lines of code into meaningful pieces of work. A function is a subroutine that
returns a value. The use of subroutines and functions facilitates testing, code reuse, and readability. This in
turn reduces errors.

The keyword Sub defines the beginning of a subroutine, and End Sub defines the end of a subroutine.

Sub FirstSub
Print "Running FirstSub"
End Sub

To use a subroutine, place the name of the subroutine that you want to call on a line. The name can
optionally be preceded by the keyword Call.

Sub Main
Call FirstSub ' Call Sub FirstSub
FirstSub ' Call Sub FirstSub again
End Sub

Subroutine and function names must be unique in a module. They are subject to the same naming
conventions as variables, including the use of spaces in their names.

Sub One

[name with space]
End Sub
Sub [name with space]

Print "I am here"

53

End Sub

Visual Basic allows a subroutine to be preceded by optional keywords such as Public or Private. Starting
with OOo 2.0, you can define a routine as public or private, but the routine is always public unless
CompatibilityMode(True) is used first.

Declare a subroutine as private by preceding Sub with the keyword Private.

Private Sub PrivSub
Print "In Private Sub"
bbxx = 4

End Sub

Using Option Compatibile is not sufficient to enable Private scope, CompatibilityMode(True) must be used.

Sub TestPrivateSub
CompatibilityMode (False) 'Required only if CompatibilityMode (True) already used.

Call PrivSub () 'This call works.

CompatibilityMode (True) 'This is required, even if Option Compatible is used

Call PrivSub () 'Runtime error (if PrivSub is in a different module).
End Sub

The keyword Function is used to declare a function which, like a variable, can define the type it returns. If
the type is not declared, the return type defaults to Variant. You can assign the return value at any point and
as many times as you want before the function ends. The last value assigned is returned.

Sub test

Print "The function returns " & TestFunc
End Sub
Function TestFunc As String

TestFunc = "hello"

End Function

3.6.1. Arguments

A variable that is passed to a routine is called an argument. Arguments must be declared. The same rules for
declaring variable types apply to declaring argument types.

A routine name can optionally be followed by parentheses, both when it is defined and when it is called. A
routine that accepts arguments can optionally enclose the argument list in parentheses. The argument list
follows the routine name on the same line. Blank space is allowed between the name of the routine and the
argument list.

Listing 25. Simple argument testing.
Sub ExampleParamTestl ()

Call ParamTestl (2, "Two")

Call ParamTestl 1, "One"
End Sub
Sub ParamTestl (i As Integer, s$)

Print "Integer = " & i & " String = " & s$
End Sub

Pass by reference or by value

By default, arguments are passed by reference rather than by value. In other words, when the called
subroutine modifies an argument, the caller sees the change. You can override this behavior by using the

54

ByVal keyword. This causes a copy of the argument (rather than a reference to the argument) to be sent (see
Listing 26 and Figure 26).

TIP Constants passed as arguments by reference cause unexpected behavior if their value is modified in the
called routine. The value may arbitrarily change back inside the called routine. For example, I had a
subroutine that was supposed to decrement an Integer argument in a loop until it was zero; the argument
never became zero.

Listing 26. Arguments by reference and by value.
Sub ExampleArgumentValAndRef ()

Dim 11%, 12%

il=1:1i2 =1

ArgumentValAndRef (i1, 12)

MsgBox "Argument passed by reference was 1 and is now " & il & CHRS(10) &
"Argument passed by value was 1 and is still " & 12 & CHR$(10)

End Sub
Sub ArgumentValAndRef (iRef%, ByVal ivVal)
iRef = iRef + 1 ' This will affect the caller
ival = ival - 1 ' This will not affect the caller
End Sub

£3)

Argument passed by reference was 1 and is now 2
Argument passed by value was 1 and is still 1

Figure 26. Pass by reference allows changes to be passed back to the caller.
Visual Basic supports the optional keyword ByRef. This keyword was introduced into OOo Basic starting
with OOo 2.0. Note that pass by reference is the default behavior.

A variable cannot be passed by value if the type does not match. The macros in Listing 27 and Listing 28
differ in the type used to declare the argument.

Listing 27. Simple swap with a string argument.
Sub sSwap(sDatum As String)

Dim asDatum(l to 3) As String
Dim sDummy As String

asDatum=Split (sDatum, ".")

sDummy=asDatum (0)

asDatum (0) =asDatum(2)

asDatum (2)=sDummy

sDatum=Join (asDatum, "-")
End Sub

Listing 28. Simple swap with a variant argument.

Sub vSwap (vDatum As Variant)
Dim asDatum(l to 3) As String
Dim sDummy As String

asDatum=Split (vDatum, ".")

55

sDummy=asDatum (0)

asDatum (0) =asDatum(2)

asDatum (2)=sDummy

vDatum=Join (asDatum, "-")
End Sub

The following macro uses a variant and a string to call a macro that accepts a variant, and the macro that
accepts the string. Passing a variant to a method that accepts a string argument basses the value by reference.
The unexpected thing is that passing a string to the method that accepts a variant, passes the value by
reference.

Listing 29. Test reference by argument type.

Sub passByReferenceTester
Dim vVar As Variant
Dim sVar As string
Dim s As String

vVar="01.02.2011"
sVar="01.02.2011"

s = vVar & " sSwap(variant var string param) ==> "
sSwap (vVar)
s = s & vVar & CHRS(10)

s = s & sVar & " sSwap(string var string param) ==> "
sSwap (sVar)
s = s & sVar & CHRS$ (10)

vVar="01.02.2011"

sVar="01.02.2011"

s = s & vVar & " vSwap(variant var variant param) ==> "
vSwap (vvar)

s = s & vVar & CHRS(10)

s = s & sVar & " vSwap(string var variant param) ==> "
vSwap (sVar)
s = s & sVar & CHRS(10)

MsgBox (s)
End Sub

It is important that you understand when a variable is passed to a method as a reference or a value. It is
equally important to understand when the value contained in a variable is copied by value or copied by
reference.

-+ Variables with simple types copy by value; for example, assigning one integer variable to another.

- Arrays always copy by reference. If you assign one array to another, both variables reference and
modify the same array.

- UNO Services copy by reference. This means that you can do things such as oDoc =
ThisComponent, and both variables reference the same object.

Structs copy by value. This frustrates many people when they first encounter the behavior, but there
is a very good reason for it. First, the problem; oBorder.TopLine.OuterLineWidth =2

56

fails because TopLine is a struct and the value is returned as a copy rather than a reference. The code
as shown changes the outer line width on a copy of the struct rather than the struct associated with
the border object. The correct way to change the border is (v = oBorder.TopLine :
v.OuterLineWidth=2 : oBorder.TopLine = v).

A lead developer claimed that one or two services and strutcs do not assign / copy as expected, but he could
not remember which. I have not encountered the objects that violate the guidelines, but, I try to remember
the problem so that [am not taken unaware.

Optional arguments

You can declare arguments as optional by preceding them with the keyword Optional. All of the arguments
following an optional argument must also be optional. Use the IsMissing function to determine if an optional
argument is missing.

Listing 30. Optional arguments.

REM Make test calls with optional arguments.

REM Calls with Integer and Variant arguments should yield the same result.
REM Unfortunately, they do not.

Sub ExampleArgOptional ()

Dim s$

s = "Variant Arguments () => " & TestOpt() & CHRS(10) &
"Integer Arguments () => " & TestOptI() & CHRS (10) &
e " & CHRS (10) &
"Variant Arguments (,,) => " & TestOpt(,,) & CHRS (10) &
"Integer Arguments (,,) => " & TestOptI(,,) & CHRS(10) &_
M " & CHRS$ (10) &
"Variant Arguments (1) => " & TestOpt (1) & CHRS (10) &
"Integer Arguments (1) => " & TestOptI (1) & CHRS (10) &
e " & CHRS(10) &
"Variant Arguments (,2) => " & TestOpt(,2) & CHRS (10) &
"Integer Arguments (,2) => " & TestOptI(,2) & CHRS (10) &
M " & CHRS$ (10) &
"Variant Arguments (1,2) => " & TestOpt(l,2) & CHRS (10) &
"Integer Arguments (1,2) => " & TestOptI(1l,2) & CHRS(10) &
M " & CHR$(10) &
"Variant Arguments (1,,3) => " & TestOpt(l,,3) & CHRS$ (10) &

"Integer Arguments (1,,3) => " & TestOptI(l,,3) & CHRS$(10)
MsgBox s, 0, "Optional Arguments of Type Variant or Integer"
End Sub

REM Return a string that contains each argument. If the argument
REM is missing, then an M is used in its place.
Function TestOpt (Optional vl, Optional v2, Optional v3) As String
TestOpt = "" & IIF(IsMissing(vl), "M", Str(vl)) &
IIF(IsMissing(v2), "M", Str(v2)) &
ITIF(IsMissing(v3), "M", Str(v3))
End Function

REM Return a string that contains each argument. If the argument

REM is missing, then an M is used in its place.

Function TestOptI (Optional 11%, Optional 12%, Optional 13%) As String
TestOptI = "" & IIF(IsMissing(il), "M", Str(il)) &

57

ITIF(IsMissing(i2), "M", Str(i2)) &
ITF(IsMissing (i3), "M", Str(i3))
End Function

You can omit any optional arguments. Listing 30 demonstrates two functions that accept optional arguments.
The functions are the same except for the argument types. Each function returns a string containing the
argument values concatenated together. Missing arguments are represented by the letter “M” in the string.

Although the return values from TestOpt and TestOpt1 should be the same for the same argument lists, they
are not (see Figure 27). This is a bug.

TIP The IsMissing function returns incorrect results for variables that are not of type Variant when the missing
argument is followed by a comma.

Variant Arguments () == MMM

Integer Arguments () == MMM

Variant Arguments (,,) == MMM

Integer Arguments (,,) => 448 448M

Variant Arguments (1) == 1MM

Integer Arguments (1) == 1MM

Variant Arguments (,2) == M 2ZM

Integer Arguments (,2) => 448 2M

Variant Arguments (1,2
Integer Arguments (1,2
Wariant Arguments (1,,.3) == 1M 3

Integer Arguments (1,,3) == 14483

Figure 27. In rare cases, non-Variant optional arguments fail.

Default argument values

OOo version 2.0 introduced default values for missing arguments. This allows a default value to be specified

if an optional argument is missing. You must use the keywords “Option Compatible” for default values to
work.

Option Compatible
Sub DefaultExample (Optional n as Integer=100)

REM If IsMissing(n) Then n = 100 'I will not have to do this anymore!
Print n

End Sub

3.6.2. Recursive routines

A recursive routine calls itself. Consider calculating the mathematical function Factorial for positive
integers. The usual definition is recursive.

Listing 31. Recursively generate factorial.
Sub DoFactorial

Print "Recursive Factorial = " & RecursiveFactorial (4)

58

Print "Iterative Factorial = " & IterativeFactorial (4)
End Sub

Function IterativeFactorial (ByVal n As Long) As Long
Dim answer As Long
answer = 1
Do While n > 1
answer = answer * n
n=mn-1
Loop
IterativeFactorial = answer
End Function

' This finally works in version 1.1
Function RecursiveFactorial (ByVal n As Long) As Long
RecursiveFactorial = 1
If n > 1 Then RecursiveFactorial = n * RecursiveFactorial (n-1)
End Function

Computers use a data structure called a stack. At home, I have a stack of books that I want to read. When |
receive a new book, I place it on top of the stack. When I have time to read, I take the top book from the
stack. This is similar to the data structure that a computer uses: a section of memory in a computer for
temporary storage in which the last item stored is the first retrieved. Stacks are usually used when a
computer calls a routine and passes arguments. A typical procedure follows:

1. Push the current run location onto the stack.
Push each argument onto the stack.
Call the desired function or subroutine.
The called routine uses the arguments from the stack.

The called routine frequently uses the stack to store its own variables.

2

3

4

5

6. The called routine removes the arguments from the stack.

7. The called routine removes and saves the caller’s location from the stack.

8. [If the called routine is a function, the return value is placed on the stack.

9. The called routine returns to the caller from the saved location on the stack.
10. If the called routine is a function, the return value is taken from the stack.

Although various optimizations are used, there is always some overhead associated with calling subroutines
and functions. There is overhead in running time and in the memory required. The recursive version of
Factorial continually calls itself. While calculating the factorial of four, there is one point at which the stack
contains information for calls for 4, 3, 2, and 1. For some functions — the Fibonacci series, for example —
this call behavior may be prohibitive, and a non-recursive algorithm should be used instead.

3.7. Scope of variables, subroutines, and functions

The idea of scope deals with the lifetime and visibility of a variable, subroutine, or function in OOo Basic.
The scope depends on the location of the declaration, and the keywords Public, Private, Static, and Global.
Dim is equivalent to Private, but variables are Private only if CompatibilityMode(True) is used.

59

3.7.1. Local variables defined in a subroutine or function

Variables declared inside a subroutine or function are called local variables. It is also commonly said that a
variable is local to a routine if the variable is declared inside that routine.

You can declare a variable inside a subroutine or function by using the Dim keyword. Variables defined
inside a routine are visible only inside that routine. It is not possible to directly access a variable defined
inside a routine from outside the routine. However, it is possible to access a variable defined outside any
routine — for example, in a module header — from inside a routine. When a variable or routine name is
encountered inside a routine, OOo Basic starts looking for the variable or routine in the following order:
current routine, module, library, and other open libraries. In other words, it starts inside and works its way
out.

Variables defined in a routine are created and initialized each time the routine is entered. The variables are
destroyed every time the routine is exited because the routine is finished. Leaving the routine to call another
routine does not cause the variables to be reinitialized.

Use the keyword Static to change a variable’s creation and destruction times to the calling macro’s start and
finish times, respectively. Although the variable is visible only in the routine containing the variable, the
variable is initialized once when the macro starts running, and the variable's values are retained through
multiple calls to the same routine. In other words, you start with no macro running. The first time that a
subroutine or function that contains a static variable is called, the static variables contain initial values based
on their types. The static variables retain their values between calls as long as the macro as a whole did not
stop running. The keyword Static uses the same syntax as the keyword Dim, and is valid only inside a
subroutine or function. Listing 32 calls a routine that uses a static variable.

Listing 32. Static example.
Sub ExampleStatic

ExampleStaticWorker ()
ExampleStaticWorker ()
End Sub

Sub ExampleStaticWorker
Static iStaticl As Integer
Dim iNonStatic As Integer

iNonStatic = iNonStatic + 1
iStaticl = iStaticl + 1
Msgbox "iNonStatic = " & iNonStatic & CHRS(10) &_
"iStaticl = " & iStaticl
End Sub

3.7.2. Variables defined in a module

The Dim, Global, Public, or Private statements are used to declare variables in a module header. Global,
Public, and Private use the same syntax as the Dim statement, but they can’t declare variables inside a
subroutine or function. Each variable type has a different life cycle, as summarized in Table 14.

The keywords Static, Public, Private, and Global are not used as modifiers to the keyword Dim; they are
used instead of the keyword Dim.

Although it is sometimes necessary to define a variable in a module header, you should avoid it if possible.
Variables defined in the header can be seen in other modules that don’t expect them. It’s difficult to

60

determine why the compiler claims that a variable is already defined if it is defined in another library or
module. Even worse, two working libraries may stop working because of naming conflicts.

Table 14. Life cycle of a variable defined in a module header.
Keyword Initialized

Global
Public

Dim

Compile time Compile time All modules and libraries.

Macro start Macro finish Declaring library container.

Macro start Macro finish Declaring library container.

Private Macro start Macro finish Declaring module.

Global

Use Global to declare a variable that is available to every module in every library. The library containing the
Global variable must be loaded for the variable to be visible.

When a library is loaded, it is automatically compiled and made ready for use; this is when a Global variable
is initialized. Changes made to a Global variable are seen by every module and are persisted even after the
macro is finished. Global variables are reset when the containing library is compiled. Exiting and restarting
OpenOffice.org causes all libraries to be compiled and all Global variables to be initialized. Modifying the
module containing the Global definition also forces the module to be recompiled.

Global iNumberOfTimesRun

Variables declared Global are similar to variables declared Static, but Static works only for local variables,
and Global works only for variables declared in the header.

Public

Use Public to declare a variable that is visible to all modules in the declaring library container. Outside the
declaring library container, the public variables aren’t visible. Public variables are initialized every time a
macro runs.

An application library is a library that is declared in the “OpenOffice.org” library container. This is available
when OOo is running, is stored in its own directory, and every document can view it. Document-level
libraries are stored in OOo documents. The libraries are saved as part of the document and are not visible
outside the document.

Public variables declared in an application library are visible in every OOo document-level library. Public
variables declared in a library contained in an OOo document are not visible in application-level libraries.
Declaring a Public variable in a document library effectively hides a Public variable declared in an
application library. Simply stated (see Table 15), if you declare a Public variable in a document, it is visible
only in the document and it will hide a Public variable with the same name declared outside the document. A
Public variable declared in the application is visible everywhere — unless a variable declaration with more
local scope takes priority over the declaration with more global scope.

Public oDialog As Object

Table 15. The scope of a Public variable depends on where it is declared.

Declaration Location

Application Visible everywhere.
Document Visible only in the declaring document.
Application and Document Macros in the document are unable to see the application-level variable.

61

Private or Dim

Use Private or Dim to declare a variable in a module that should not be visible in another module. Private
variables, like Public variables, are initialized every time a macro runs. A single variable name may be used
by two different modules as their own variable if the variable is declared Private.

Private oDialog As Variant
Declaring a variable using Dim is equivalent to declaring a variable as Private.
Private variables are only private, however, only with CompatibilityMode(True).
Option Compatible has no affect on private variables.

A Private variable is visible outside the declaring module unless CompatibilityMode(True) is used. To see
for yourself, create two modules — Modulel and Module2 — in the same library. In Modulel, add the
declaration “Private priv_var As Integer”. Macros in Module2 can use the variable “priv_var”. Even if
Module2 is located in a different library in the same document, the variable “priv_var” is visible and usable.
If CompatibilityMode(True) is used, however, then the private variable is no longer visible outside of the
declaring module.

In Modulel, declare a variable “Private priv_var As Double”. A variable of the same name is declared in
Module2, but it is an Integer variable. Each module sees its own Private variable. Changing these two
variables to have Public scope rather than Private introduces an ugly situation; only one of these is visible
and usable, but you don’t know which one it is without performing a test. Assign the value 4.7 to the
variable, and see if it is an Integer or a Double.

3.8. Operators

An operator is a symbol that denotes or performs a mathematical or logical operation. An operator, like a
function, returns a result. For example, the + operator adds two numbers. The arguments to the operator are
called operands. Operators are assigned a precedence. An operator with a precedence of 1 is said to have a
high precedence level, it is, after all, number 1!

TIP While typesetting mathematical equations, the minus sign (—) is represented using the Unicode character
U+2212. With OOo Basic, however, ASCII code 45 (-) must be used instead.

In OOo Basic (see Table 16), operators are evaluated from left to right with the restriction that an operator
with a higher precedence is used before an operator with a lower precedence. For example, 1 +2 * 3
evaluates to 7 because multiplication has higher precedence than addition. Parentheses may be used to
modify the order of evaluation. For example, (1+2) * 3 evaluates to 9 because the expression inside the
parentheses is evaluated first.

Table 16. Operators supported by OpenOffice.org Basic.
Precedence Operator Type Description

1 NOT Unary Logical or bit-wise NOT
1 - Unary Leading minus sign, negation
1 + Unary Leading plus sign
A Binary Numerical exponentiation. Standard mathematical precedence
2 would have exponentiation higher than negation.

62

Precedence Operator Type Description

3 * Binary Numerical multiplication

3 / Binary Numerical division

4 MOD Binary Numerical remainder after division

5 \ Binary Integer division

6 - Binary Numerical subtraction

6 + Binary Numerical addition and string concatenation

7 Binary String concatenation

8 IS Binary Do both operands reference the same object?

8 = Binary Equals

8 < Binary Less than

8 > Binary Greater than

8 <= Binary Less than or equal to

8 >= Binary Greater than or equal to

8 < Binary Not equal

9 AND Binary Bit-wise for numerics and logical for Boolean

9 OR Binary Bit-wise for numerics and logical for Boolean

9 XOR Binary Exclusive OR, bit-wise for numerics and logical for Boolean

9 EQV Binary Equivalence, bit-wise for numerics and logical for Boolean

9 IMP Binary Implication bit-wise for numerics and logical for Boolean.
TIP OOo Precedence does not follow standard mathematical rules; for example, negation should have a lower

precedence than exponentiation so -1°2 should be -1, not 1.

Visual Basic uses a different precedence for operators — for example, numerical exponentiation and
negation are switched, as are integer division and remainder after division.

The word “binary” means something made of or based on two things. “Unary” means something made of or
based on one thing. A binary operator, not to be confused with a binary number, is placed between two
operands. For example, the addition operator uses two operands with 1+2. In OOo Basic, binary operators
are always evaluated from left to right based on operator precedence. A unary operator requires one operand
that is placed directly to the right of the operator. For example, - (1 + 3). By necessity, a series of unary
operators are evaluated right to left. For example, + - (1+3) must evaluate the rightmost negation operator
first.

3.8.1. Mathematical and string operators

Mathematical operators can be used with all numerical data types. When operands of different types are
mixed, a conversion is made to minimize the loss of precision. For example, 1 + 3.443 causes a conversion
to a floating-point number rather than a conversion to an Integer. If the first operand is a number and the
second operand is a string, the string is converted to a number. If the string does not contain a valid
numerical value, a zero is returned and no error is generated. Assigning a string directly to a numeric
variable, however, always assigns the value zero and no errors are generated.

63

Listing 33. Strings are automatically converted to numbers when required.
Dim i As Integer

i = "abc" 'Assigning a string with no numbers yields zero not an error
Print i '0

i = "3abc" 'Assigns 3, automatically converts as it can.

Print i '3

Print 4 + "abc" '4

OOo Basic tries to automatically convert types. No errors are generated when a string is used where a
number is required. This is discussed in depth later.

Unary plus (+) and minus (-)

OOo Basic allows unary operators to have spaces between the operator and the operand (see Table 9). Unary
operators also have the highest precedence and are evaluated from right to left. A leading plus sign is
arguably useless — it emphasizes that a constant is not negative but is otherwise effectively ignored. A
leading minus sign indicates numeric negation.

Exponentiation (*)

Numerical exponentiation supports integer and floating-point exponents. The exponentiation operator can
operate on a negative number only if the exponent is an integer.

result = number”exponent

A positive integer exponent has a conceptually simple representation. The number is multiplied by itself
exponent times. For example, 274 =2 *2 *2 * 2,

1. OOo does not follow standard mathematical rules for exponentiation:

2. Exponentiation has a lower precedence than negation, so -1"2 incorrectly evaluates to 1.
0OOo Basic evaluates multiple exponents (2°3”4) left to right ((273)"4), while standard mathematical
precedence evaluates right to left. (2(374)).

Listing 34. Demonstrate exponentiation.
Sub ExampleExponent

Dim s$
s = "27"3 =" & 2”3 REM 2*2*2 = 8
s = s & CHR$(10) & "372 =" & 372 REM 3 *3 = 9
s = s & CHR$(10) & "-37"2 = " & =372 REM (-3) * (-3) =9
s = s & CHR$(10) & "27372 = " & 27372 REM 27372 = 872 = 64
s = s & CHR$(10) & "470.5 = " & 4.5 REM 2
s = s & CHR$(10) & "47-0.5 =" & 47-.5 REM .5
s = s & CHR$(10) & "-17"2 = " & -1"2 REM 1
s = s & CHR$(10) & "-(172) =" & -(1"2) REM -1
MsgBox s
End Sub

64

P

l’\3 —_
372 =
-372=19
27372 =64
4°0.5 =2
4~-0.5 = 0.5
-172 =1
-(1~2) =-1

Figure 28. Using the exponentiation operator.
Multiplication (*) and Division (/)
Multiplication and division have the same precedence.

Listing 35. Demonstrate multiplication and division.
Sub ExampleMultDiv

Print "2*3 = " §& 2*3 REM 6

Print "4/2.0 = " & 4/2.0 REM 2

Print "-3/2 = " & -3/2 REM -1.5

Print "4*3/2 = " §& 4*3/2 REM 6
End Sub

Remainder after division (MOD)

The MOD operator is also called “remainder after division.” For example, 5 MOD 2 is 1 because 5 divided
by 2 is 2 with a remainder of 1. All operands are rounded to Integer values before the operation is performed.

Listing 36. Definition of the MOD operator for integer operands x and y.
x MOD v = x - (v * (x\y))

Listing 37. Demonstrate mod operator.
REM x MOD y can also be written as

REM CInt(x) = (CInt(y) * (CInt(x)\CInt(y)))

REM CInt is used because the numbers must be rounded
REM before the operations are performed.

Sub ExampleMOD

Dim x(), y(), s$, i%
x() = Array (4, 15, 6, 6.4, 6.5, -15, 15, -15)
y() = Array (15, 6, 3, 3, 3, 8, -8, -8)
For 1 = LBound(x()) To UBound(x())
s =s & x(i) & " MOD " & y(i) & " =" & (x(i) MOD y(i)) & CHRS(10)
Next
MsgBox s, 0, "MOD operator"
End Sub

65

15 MOD -B =7
-15 MOD -8 = -7

Figure 29. Using the MOD operator.

TIP The operands for MOD are rounded to Integer values before the division is done.

Integer division (\)

Regular division expects to divide a Double by a Double, and it returns a Double as an answer. For example,
7.0 /4.0 1s 1.75. Integer division, on the other hand, expects to divide two Integers, and it returns an Integer
as an answer. For example, 7.2 \ 4.3 converts the operands to 7 \ 4 and then returns 1. The numeric constant
operands used with the Integer division operator are truncated to Integer values, and then Integer division is
performed. The result is a truncated result, not a rounded result. Listing 38 compares the difference between
Integer division and regular division.

Listing 38. Demonstrate integer division.
Sub ExampleIntDiv

Dim f As Double

Dim s$
f =5.9
s = "5/2 =" & 5/2 REM 2.5
s = s & CHR$(10) & "5\2 = " & 5\2 REM 2
s = s & CHRS$(10) & "5/3 =" & 5/3 REM 1.666666667
s = s & CHRS$(10) & "5\3 = " & 5\3 REM 1
s = s & CHRS$(10) & "5/4 =" & 5/4 REM 1.25
s = s & CHRS$(10) & "5\4 = " & 5\4 REM 1
s = s & CHR$(10) & "-5/2 =" & -5/2 REM -2.5
s = s & CHRS(10) & "-5\2 = " & -5\2 REM -2
s = s & CHR$(10) & "-5/3 =" & -5/3 REM -1.666666667
s = s & CHRS(10) & "-5\3 = " & -5\3 REM -1
s = s & CHR$S(10) & "-5/4 =" & -5/4 REM -1.25
s = s & CHRS$(10) & "-5\4 = " & -5\4 REM -1
s = s & CHRS$(10) & "17/6 =" & 17/6 REM 2.83333333333333
s = s & CHRS$(10) & "17\6 =" & 17\6 REM 2
s = s & CHR$(10) & "17/5.9 = " & 17/5.9 REM 2.88135593220339
s = s & CHRS$(10) & "17\5 = " & 17\5 REM 3
s = s & CHRS$S(10) & "17\5.9 = " & 17\5.9 REM 3 because 5.9 was truncated to 5.
s = s & CHRS(10) & "17\f = " & 17\f REM 2 because f was rounded up to 6.
s = s & CHRS(10) & "17\(11.9/2) = " & 17\(11.9/2) REM 3 because 11.9/2 truncated to 5.
MsgBox s
End Sub

66

[=|soffice) £23)
5/2=25
5\2 =2
5/3 = 1.66666666666667
53=1
5/ =1.25
S5d=1
-5/2 =-2.5
-5\2 = -2
-5/3 = -1.66666666666667
-5\3 =-1
-5/4 =-1.25
-5\4 =-1
17/6 = 2.83333333333333
176 =2
17/5.9 = 2.88135593220339
1S =3
175.9=3
1 =2
17\(11.9/2) = 3
| |

Figure 30. Integer division.
With integer division, constant numeric operands are truncated to Integer values before the division is done.
When variables are part of an operand, the operand's result is rounded, otherwise truncated.

Addition (+), subtraction (-), and string concatenation (& and +)

Addition and subtraction have the same precedence, which is higher than the string concatenation operator.
Care must be taken while adding numerical values because the plus operator can also signify string
concatenation. When the first operand for the plus operator is a number, and the second is a string; the string
is converted to a number. When the first operand for the plus operator is a string, and the second is a
number; the number is converted to a string.

Print 123 + "3" REM 126 (Numeric)
Print "123"™ + 3 REM 1233 (String)

The string operator tries to convert the operands to strings if at least one operand is a string.

Print 123 & "3" REM 1233 (String)
Print "123" & 3 REM 1233 (String)
Print 123 & 3 REM Use at least one string or it will not work!

Mixing string manipulations and numerical manipulations may lead to confusing results, especially because
string concatenation with the & operator has lower precedence than the + operator.

Print 123 + "3" & 4 '1264 Do addition then convert to String
Print 123 & "3" 4+ 4 '12334 Do addition first but first operand is String
Print 123 & 3 + "4" '1237 Do addition first but first operand is Integer

3.8.2. Logical and bit-wise operators

Each logical operator asks a simple question and provides a True or False answer. For example, is it true that
(you have money) AND (you want to purchase my book)? These types of operations are simple and are
frequently used in OOo Basic. Less frequently used, and provided for completeness to keep the computing

67

professionals happy, are the bit-wise operators. Bit-wise operators are not difficult, but if you don’t
understand them, it isn’t likely to affect your usage of OOo Basic.

A logical operator is usually thought to operate on True and False values. In OOo Basic, logical operators
also perform bit-wise operations on Integer values. This means that each bit of the first operand is compared
to the corresponding bit in the second operand to form the corresponding bit in the result. For example, the
binary operands 01 and 10 use the 0 from 01 and the 1 from 10 to produce the first bit of the result.

The unusual thing about logical and bit-wise binary operators in OOo Basic is that their precedence is the
same. In other languages, AND typically has greater precedence than OR.

Table 17 illustrates the logical and bit-wise operators supported by OOo. True and False represent logical
values, and 0 and 1 represent bit values.

Table 17. Truth table for logical and bit-wise operators.

True True True True False True True
True False False True True False False
False True False True True False True
False False False False False True True
1100 1010 1000 1110 0110 1001 1011

Internally, the logical operators cast their operands to type Long. An unexpected side effect is that a floating-
point operand is converted to a Long, which might cause numerical overflow. The conversion from a
floating-point number to a long integer number is done by rounding the value, not by truncating. The values
chosen for True (-1) and False (0) allow this to work, but the return type with two Boolean operands is still
sometimes of type Long.

Listing 39. Logical operands are of type long integer.

Sub LogicalOperandsArelLongs
Dim v, bl As Boolean, b2 As Boolean
bl = True : b2 = False

v = (bl OR Db2)

Print TypeName (V) REM Long because operands are converted to Long.

Print v REM -1 because the return type is Long.

Print (b2 OR "-1") REM -1 because "-1" is converted to a Long.
End Sub

For some logical expressions, not all operands need to be evaluated. For example, the expression (False
AND True) is known to be False by looking at the first operand and the operator AND. This is known as
“short-circuit evaluation.” Sadly, this isn’t available in OOo Basic; instead, all operands are evaluated.

TIP 0Oo Basic does not support short-circuit evaluation, so (x <> 0 AND y/x > 3) causes a division-by-zero
error when x is zero.

The bit-wise operators are all illustrated the same way. Two arrays are filled with Boolean values and two
integers are given an Integer value.

xi% = 12 : yi% = 10
x() = Array(True, True, False, False)
v() = Array(True, False, True, False)

68

The decimal number 12 is represented in base 2 as 1100, which corresponds to the values in x(). The
decimal number 10 is represented in base 2 as 1010, which corresponds to the value in y(). The operator is
then applied to “x(0) op y(0)”, “x(1) op y(1)”, “x(2) op y(2)”, “x(3) op y(3)”, and “xi op y1”. The result is
displayed in a message box. The integers are displayed as base 2 to emphasize that a bit-wise operation is
performed. Listing 40 demonstrates how an integer is converted to a stream of bits. This uses many
techniques that are discussed later in this chapter.

Listing 40. Convert an integer to binary.
Sub TestIntoToBinary

Dim s$
Dim n%
Dim x%
x = InputBox ("Enter an integer")
If x <> 0 Then
n = Log(Abs(x)) / Log(2) + 1
If (x < 0) Then
n=mn+14
End If
Else
n=1
End If
print "s = " & IntToBinaryString(x, n)
End Sub

REM Convert an Integer value to a string of bits

REM x is the integer to convert

REM n is the number of bits to convert

REM This would be easier if I could shift out the lowest while

REM retaining the sign bit of the number, but I cannot.

REM I emulate this by dividing by two, but this fails for negative
REM numbers. To avoid this problem, if the number is negative

REM I flip all of the bits, which makes it a positive number and
REM then I build an inverted answer

Function IntToBinaryString(ByVal x%, ByVal n%) As String

Dim b0$ 'Bit 0 (the right most bit) for positive numbers.
Dim bl$ 'Bit 1 for positive numbers.
If (x >= 0) Then 'Not negative so the algorithm will work.
bl = "1" : b0 = "0O" 'Use the standard bit wvalues.
Else 'A negative number so
x = NOT x 'flip all of the bits.
bl = "0" : b0 = "1" 'Invert bit 0 and invert bit 1.
End If
Dim s$ 'Accumulate bits as a string in sS$.
Do While n > 0 'n is the number of bits to return.
If (x AND 1) = 1 Then 'AND with 1 to find bit 0 (the right most bit).
s = blS & s 'Bit 1 set so add a 1 (if x was negative add 0).
Else
s = b0S & s 'Bit 1 clear so add a 0 (if x was negative add 1).
End If
x = x\2 'Integer division by 2.
n=n-1 'Decrement n by 1, just finished a bit.
Loop 'Back to the top of the While.
IntToBinaryString = s 'Assign the return value to the Function.

69

End Function

AND

Perform a logical AND operation on Boolean values, and a bit-wise AND on numerical values. Consider the
phrase, “You can go to the movie if you have money AND if you have transportation.” Both conditions must
be true before you are able to go to the movie. If both operands are True, then the result is True; otherwise
the result is False.

Listing 41. Operator AND.
Sub ExampleOpAND

Dim s$, x(), v(), 1%, xi%, yi%
xi% = 12 : yi% = 10
x () = Array(True, True, False, False)
v() = Array(True, False, True, False)
For 1 = LBound(x()) To UBound(x())
s =s & x(i) & " AND " & y(i) & " = " & CBool(x(i) AND y(i)) & CHRS(10)
Next

s = s & IntToBinaryString(xi, 4) & " AND " & IntToBinaryString(yi, 4) &
" =" & IntToBinaryString(xi AND yi, 4) & CHR$(10)
MsgBox s, 0, "Operator AND example"

End Sub

TE::OTJerator AND example i
True AND True = True
True AND False = False
False AND True = False
False AND False = False
1100 AND 1010 = 1000

| L

Figure 31. Using the AND operator.
OR

Perform a logical OR operation on Boolean values, and a bit-wise OR on numerical values. Consider the
phrase, “You can purchase that if you have cash OR your friend has cash.” It does not matter who has cash.
If either operand is True, then the result is True; otherwise the result is False.

Listing 42. Operator OR.

Sub ExampleOpOR

Dim s$, x(), v(), 1%, xi%, yi%
xi% = 12 : yi% = 10
x () = Array(True, True, False, False)
v () = Array(True, False, True, False)
For 1 = LBound(x()) To UBound(x())
s =35 & x(1) & " OR " & y(i) & " =" & CBool(x (i) OR y(i)) & CHRS$(10)
Next

s = s & IntToBinaryString(xi, 4) & " OR " & IntToRinaryString(yi, 4) &
" =" & IntToBinaryString(xi OR yi, 4) & CHRS$(10)
MsgBox s, 0, "Operator OR example"
End Sub

70

[~ Operator OR example |EJ)

True OR True = True
True OR False = True
False OR True = True
False OR False = False
1100 OR 1010 = 1110

I 1

Figure 32. Using the OR operator.
XOR

The XOR operator is called “exclusive or”; this is a question of non-equivalence. The result is True if the
operands have different values. The result is False if both operands have the same value. A logical XOR
operation is performed on Boolean values, and a bit-wise XOR is performed on numerical values.

Listing 43. Operator XOR.

Sub ExampleOpXOR

Dim s$, x(), v(), 1%, xi%, yi%
xi% = 12 : yi% = 10
x () = Array(True, True, False, False)
v () = Array(True, False, True, False)
For 1 = LBound(x()) To UBound(x())
s =35 & x(1) & " XOR " & y(i) & " =" & CBool(x (i) XOR y(i)) & CHRS$(10)
Next

s = s & IntToBinaryString(xi, 4) & " XOR " & IntToBinaryString(yi, 4) &
" =" & IntToBinaryString(xi XOR yi, 4) & CHRS$(10)
MsgBox s, 0, "Operator XOR example"
End Sub

[E-> Operator XOR example

True XOR True = False
True XOR False = True
False XOR True = True
False XOR False = False
1100 XOR 1010 = 0110

b | L

Figure 33. Using the XOR operator.

EQV

The EQV operator is a question of equivalence: Are the two operands the same? A logical EQV operation is
performed for Boolean values, and a bit-wise EQV on numbers. If both operands have the same value, the
result is True. If the operands don’t have the same value, the result is False.

Listing 44. Operator EQV.
Sub ExampleOpEQV

Dim s$, x(), v(), 1%, xi%, vi%
xi% = 12 : yi% = 10
x() = Array(True, True, False, False)
yv() = Array(True, False, True, False)
For i1 = LBound(x()) To UBound(x())
s =35 & x(1) & " EQV " & y(i) & " =" & CBool(x (i) EQV y(i)) & CHRS$(10)

71

Next
s = s & IntToBinaryString(xi, 4) & " EQV " & IntToBinaryString(yi, 4) &
" =" & IntToBinaryString(xi EQV yi, 4) & CHRS$(10)
MsgBox s, 0, "Operator EQV example"
End Sub

[@~ Operator EQV example

True EQV True = True

True EQV False = False
False EQV True = False
False EQV False = True
1100 EQV 1010 = 1001

| 1

Figure 34. Using the EQV operator.
IMP

The IMP operator performs a logical implication. A logical IMP operation is performed on Boolean values,
and a bit-wise IMP on numbers. As the name implies, “x IMP y” asks if the statement that “x implies y” is a
true statement. To help understand logical implication, define x and y as follows:

x = The sky is cloudy
y = The sun is not visible
If x Then y

If both x and y are true — the sky is cloudy and the sun is not visible — the statement can be considered
true. This statement makes no claim about y if X is not true. In other words, if the sky is not cloudy, this
statement does not imply that the sun is, or is not, visible. For example, it might be a clear night, or (like a
good computer geek) you might be inside a room without any windows. This explains why the entire
statement is always considered valid when x is false. Finally, if x is true and y is not, the entire statement is
considered false. If the sky is cloudy, and the sun is visible, the statement cannot possibly be correct; a
cloudy day could not imply that the sun is visible.

Listing 45. Operator IMP.
Sub ExampleOpIMP

Dim s$, x(), v(), 1%, xi%, yi$%
xi% = 12 : yi% = 10
x() = Array(True, True, False, False)
yv() = Array(True, False, True, False)
For i = LBound(x()) To UBound(x())
s =s & x(i) & " IMP " & y(i) & " =" & CBool(x(i) IMP y(i)) & CHRS(10)
Next

s = s & IntToBinaryString(xi, 4) & " IMP " & IntToBinaryString(yi, 4) &_
" =" & IntToBinaryString(xi IMP yi, 4) & CHRS$(10)
MsgBox s, 0, "Operator IMP example"
End Sub

72

[§-~ Operator IMP example [x]

True IMP True = True

True IMP False = False
False IMP True = True
False IMP False = True
1100 IMP 1010 = 1011

b | 1

Figure 35. Using the IMP operator.
NOT

The NOT operator performs a logical NOT operation on Boolean values, and a bit-wise NOT on numerical
values. This means that “Not True” is False and “Not False” is True. For bit-wise operations, a 1 becomes a
0 and a 0 becomes a 1.

Print NOT True REM 0, which is False
Print NOT False REM -1, which is True
Print NOT 2 REM -3, which took the bits 0010 to 1101

3.8.3. Comparison operators

The comparison operators work with numerical, Date, Boolean, and String data types.

Print 2 = 8/4 AND 0 < 1/3 AND 2 > 1 '-1=True
Print 4 <= 4.0 AND 1 >= 0O AND 1 <> 0 '-1=True

String comparisons are based on their internal representations as numbers and are case sensitive. The letter
“A” is less than the letter “B”. The uppercase characters are less than the lowercase letters.

Dim a$, b$, c$

a$ = "A" : b$ = "B" : c$ = "B"
Print a$ < Db$ 'True

Print b$ = c$ 'True

Print c$ <= a$ 'False

Strange problems occur when all of the operands are string constants. If at least one operand is a variable,
the expected results are achieved. This is likely related to how the operands are recognized and converted for
use.

Print "A" < "B" '0=False, this is not correct
Print "B" < "A" '-1=True, this is not correct
Print 3 = "3" 'False, but this changes if a variable is used

When variables are used rather than string constants, the numerical values are converted to string types for
the comparison.

Dim a$, i%, t$

a$ = "A" : t$ = "3" : i% = 3

Print a$ < "B" 'True, String compare
Print "B" < a$ 'False, String compare
Print i% = "3" 'True, String compare
Print i% = "+3" 'False, String compare
Print 3 = t$ 'True, String compare
Print i% < "2" 'False, String compare
Print 1% > "22" 'True, String compare

73

TIP When comparing operands of different types, especially when mixing numeric and string types, it is safer
to explicitly perform a type conversion. Either convert the string to a number, or the number to a string.
The functions to do this are discussed later.

OOo recognizes the Visual Basic statement Option Compare { Binary | Text}, but as of OOo version 3.20,
the statement still does nothing. The current behavior is a binary comparison of strings.

3.9. Flow control

Flow control is about deciding which line of code runs next. Calling a subroutine or function is a simple
form of unconditional flow control. More complicated flow control involves branching and looping. Flow
control allows macros to have complicated behavior that changes based on the current data.

Branching statements cause the program flow to change. Calling a subroutine or function is an unconditional
branch. OOo Basic supports conditional branching statements such as “if x, then do y”. Looping statements
cause the program to repeat sections of code. Looping statements allow for a section to be repeated a
specific number of times or until a specific “exit” condition has been achieved.

3.9.1. Define a label as a jump target

Some flow control statements, such as GoSub, GoTo, and On Error, require a label to mark a point in the
code. Label names are subject to the same rules as variable names. Label names are immediately followed
by a colon. Remember that a colon is also used as a statement separator that allows multiple statements to
occupy the same line. Space between the label name and the colon causes the colon to be used as a statement
separator, which means the label won’t be defined. The following lines all represent valid OOo Basic code.

<statements>
i$ =5 : 2z =qg+ 4.77

MyCoolLabel:

<more statements>

JumpTarget: <more statements> REM no space between label and colon

TIP Inserting a space between a label and the colon causes the colon to be used as a statement separator, and
the label is not defined.

3.9.2. GoSub

The GoSub statement causes execution to jump to a defined label in the current routine. It isn’t possible to
jump outside of the current routine. When the Return statement is reached, execution continues from the
point of the original call. A Return statement with no previous GoSub produces a run-time error. In other
words, Return is not a substitute for Exit Sub or Exit Function. It is generally assumed that functions and
subroutines produce more understandable code than GoSub and GoTo.

TIP GoSub is a persistent remnant from old BASIC dialects, retained for compatibility. GoSub
is strongly discouraged because it tends to produce unreadable code. Use a subroutine or
function instead. In fact, Visual Basic .NET no longer supports the GoSub keyword.

74

Listing 46. Example GoSub.

Sub ExampleGoSub
Dim i As Integer

GoSub Line2 REM Jump to line 2 then return, i is 1
GoSub [Line 1] REM Jump to line 1 then return, i is 2
MsgBox "i = " + i, 0, "GoSub Example" REM i is now 2
Exit Sub REM Leave the current subroutine.
[Line 1]: REM this label has a space in it
i=1i+1 REM Add one to i
Return REM return to the calling location
Line2: REM this label is more typical, no spaces
i=1 REM Set i to 1
Return REM return to the calling location
End Sub

3.9.3. GoTo

The GoTo statement causes execution to jump to a defined label in the current routine. It isn’t possible to
jump outside of the current routine. Unlike the GoSub statement, the GoTo statement doesn’t know from
where it came. GoTo is a persistent remnant from old BASIC dialects, retained for compatibility. GoTo is
strongly discouraged because it tends to produce unreadable code. Use a subroutine or function instead.

Listing 47. Example GoTo.

Sub ExampleGoTo
Dim i As Integer

GoTo Line2 REM Okay, this looks easy enough
Linel: REM but I am becoming confused
i=1i+1 REM I wish that GoTo was not used
GoTo TheEnd REM This is crazy, makes me think of spaghetti,
Line2: REM Tangled strands going in and out; spaghetti code.
i=1 REM If you have to do it, you probably
GoTo Linel REM did something poorly.
TheEnd: REM Do not use GoTo.
MsgBox "i = " + i, 0, "GoTo Example"
End Sub

3.9.4. On GoTo and On GoSub

These statements cause the execution to branch to a label based on a numeric expression N. If N is zero, no
branching occurs. The numeric expression N must be in the range of 0 through 255. This is sometimes called
a “computed goto,” because a computation is used to direct the program flow. It isn’t possible to jump
outside of the current subroutine.

Syntax: On N GoSub Labell[, Label2[, Label3[,...]1]1]
Syntax: On N GoTo Labell[, Label2[, Label3[,...11]

To reiterate how this works, if N = 1 then branch to Label 1, if N = 2 then branch to Label 2... If N is less
than 1 or if N is greater than the number of labels, then the branch is not taken; it is simply ignored.

Listing 48. Example On GoTo.

Sub ExampleOnGoTo
Dim i As Integer
Dim s As String
i=1
On i+1 GoSub Subl, Sub2

75

s = s & Chr(13)
On 1 GoTo Linel, Line2
REM The exit causes us to exit if we do not continue execution
Exit Sub
Subl:
s =s & "In Sub 1" : Return
Sub2:
s = s & "In Sub 2" : Return
Linel:
s = s & "At Label 1" : GoTo TheEnd
Line2:
s = s & "At Label 2"
TheEnd:
MsgBox s, 0, "On GoTo Example"
End Sub

3.9.5. If Then Else

The If construct is used to execute a block of code based on an expression. Although you can use GoTo or
GoSub to jump out of an If block, you cannot jump into an If block. The simplest If statement has the
following form:

If Condition Then Statement

The condition can be any expression that either evaluates to — or is convertible to — True or False. Use a
slightly more complicated version to control more than a single statement.

If Condition Then
Statementblock

[Elself Condition Then]
Statementblock

[Else]
Statementblock

End If

If the first condition evaluates to True, the first block runs. The Elself statement allows multiple If
statements to be tested in sequence. The statement block for the first true condition runs. The Else statement
block runs if no other condition evaluates to True.

Listing 49. Example If-
Sub ExampleIf

Dim 1%
i% = 4
If 1 = 4 Then Print "i is four"

If i <> 3 Then

Print "i is not three"
End If
If i < 1 Then

Print "i is less than 1"
elseif i = 1 Then

Print "i is 1"
elseif i = 2 Then

Print "i is 2"
else

Print "i is greater than 2"

76

End If
End Sub

If statements can be nested.

If 1 <> 3 THEN
If k = 4 Then Print "k is four"
If 7 = 7 Then
Print "J is seven"
End If
End If

3.9.6. Iif

The IIf (“Immediate If”) function returns one of two values based on a conditional expression.

Syntax: object = IIf (Condition, TrueExpression, FalseExpression)

This is very similar to the following code:

If Condition Then

object = TrueExpression
Else

object = FalseExpression
End If

This works as a great single-line If-Then-Else statement.

max _age = IIf(johns age > bills age, johns age, bills age)

3.9.7. Choose

The Choose statement selects from a list of values based on an index.

Syntax: obj = Choose (expression, Select 1[, Select 2, ... [,Select n]l])

The Choose statement returns a null if the expression is less than 1 or greater than the number of selection
arguments. Choose returns “select 17 if the expression evaluates to 1, and “select 2” if the expression
evaluates to 2. The result is similar to storing the selections in an array with a lower bound of 1 and then
indexing into the array.

Listing 50. A division-by-zero error occurs even though 1/(i-2) should be returned.
is = 3

Print Choose (i%, 1/(i+1), 1/(i-1), 1/(i-2), 1/(i-3))

Selections can be expressions and they can contain function calls. Every function is called and every
expression is evaluated in the argument list for the call to the Choose statement. The code in Listing 50
causes a division-by-zero error because every argument is evaluated, not just the argument that will be
returned. Listing 51 calls the functions Choosel, Choose2, and Choose3.

Listing 51. Example Choose statement.
Sub ExampleChoose

Print Choose (2, "One", "Two", "Three") 'Two
Print Choose (2, Choosel (), Choose2(), Choose3()) 'Two
End Sub

Function Choosel$ ()
Print "I am in Choosel"
Choosel = "One"

77

End Function

Function Choose2$ ()
Print "I am in Choose2"
Choose2 = "Two"

End Function

Function Choose3$ ()
Print "I am in Choose3"
Choose3 = "Three"

End Function

TIP All arguments in a Choose statement are evaluated. If functions are used in the arguments for Choose, they
are all called.

3.9.8. Select Case

The Select Case statement is similar to an If statement with multiple Else If blocks. A single-condition
expression is specified and this is compared against multiple values for a match as follows:

Select Case condition expression
Case case expressionl
StatementBlockl
Case case expression2
StatementBlock2
Case Else
StatementBlock3
End Select

The condition_expression is compared in each Case statement. The first statement block to match is
executed. The optional Case Else block runs if no condition matches. It is not an error if nothing matches
and no Case Else block is present.

Case expressions

The conditional expression is evaluated once and then it is compared to each case expression until a match is
found. A case expression is usually a constant, such as “Case 4 or “Case "hello"”".

Select Case 2
Case 1
Print "One"
Case 3
Print "Three"
End Select

You can specify multiple values by separating them with commas: “Case 3, 5, 7”. The keyword To
checks a range of values — for example, “Case 5 To 10”. Open-ended ranges are checked as “Case <
10”oras “Case IS < 10™.

TIP The Case IS statement is different than the IS operator that decides if two objects are the same.

Every Case statement written “Case op expression” is shorthand for writing “Case IS op expression”. The
form “Case expression” is shorthand for “Case IS = expression”. For example, “Case >= 5" 1s
equivalent to “Case IS >= 5", and “Case 1+3” is equivalent to “Case IS = 1+3".

Select Case 1

78

Case 1, 3, 5
Print "i is
Case 6 To 10
Print "i is
Case < -10
Print "i is
Case IS > 10

Print "i is

one,

three,

less than -10"

greater than 10"

Case Else

Print "No idea what 1 is"
End Select

or five"

a value from 6 through 10"

A Case statement can contain a list of expressions separated by commas. Each expression can include an
open-ended range. Each expression can use the statement Case IS (see Listing 52).

Listing 52. The keyword 1S is optional.

Select Case 1%
Case 6, Is =7, Is

Print "" & i

g "

Case Else

Print "" &

i & "

End Select

= 8,
matched"

Is > 15,

Is < 0

is out of range"

If Case statements are easy, why are they frequently incorrect?

I frequently see incorrect examples of Case statements. It’s instructive to see what is repeatedly done
incorrectly. Consider the simple examples in Table 18. The last examples are written correctly in Table 20.

Table 18. Case statements are frequently written incorrectly.
Example

Select
Case

Select
Case

Select
Case

Select
Case

Select
Case

Select
Case

Select
Case

Select
Case

Select
Case

Select
Case

Case 1
2

Case 1
Is = 2

Case 1
Is > 7

Case 1
4, 7, 9

Case x
1.3 TO 5.7

Case 1
i=2

Case 1
i<2 OR i>9

Case 1%
1%$>2 AND 1%<10

Case 1%
IS>8 And i<11

Case 1%
IS>8 And IS<11

Valid

Correct

Correct

Correct

Correct

Correct

Incorrect

Incorrect

Incorrect

Incorrect

Incorrect

Description

The Case expression 2 is evaluated as two. Two is compared to i.
The Case expression 2 is evaluated as two. Two is compared to i.
The expression 7 is evaluated as seven. Seven is compared to i.

The conditional expression i is compared individually to 4, 7, and 9.

You can specify a range and use floating-point numbers.

The Case expression (i=2) is evaluated as True or False. True or False is
compared to i. This is reduced to “IS = (i=2)”.

The Case expression (i<2 OR 9<i) is evaluated as True or False. True or
False is compared to i. This is reduced to “IS = (i<2 OR 9<i)”.

The Case expression (i>2 AND i < 10) is evaluated as True or False. True
or False is compared to i. This is reduced to “IS = (i>2 AND i<10)”.

Again, True and False are compared to i. This is reduced to “IS > (8§ AND
i<11)”. The precedence rules cause this to be reduced to “IS > (8 AND
(i<11))”. This is usually not what’s intended.

Compile error. The keyword IS must immediately follow Case.

79

I have seen OOo examples with incorrect examples such as “Case i > 2 AND i < 10”. This fails. Don’t
believe it even though you see it in print. Understand why this fails and you have mastered Case statements.

The next to the last incorrect example in Table 18 demonstrates the most common error that I see with Case
expressions. Listing 53 considers the case when i is less than 11, and the case when 1 is greater than or equal
to 11. To put it simply, IS>8 AND 1<11 has the Case statement comparing the value ofi to the result of a
Boolean expression, which can be only 0 or -1. The big difficulty with Case statements is that they look like
If statements, which are looking for a True or False, but Case statements are looking for a particular value
against which to match the conditional, and 0 or -1 is not helpful.

Consider the second case in Listing 53, i >= 11. The operator < has higher precedence than the operator
AND, so it is evaluated first. The expression 1<11 evaluates to False (because I assumed that 1>=11). False
is internally represented as 0. Zero has no bits set, so 8 AND 0 evaluates to zero. For values of i greater than
or equal to 11, the entire expression is equivalent to “IS > 0”. In other words, for i = 45, this Case
statement is incorrectly accepted.

A similar argument for values of 1 less than 11, left as an exercise for the reader, demonstrates that the Case
statement is equivalent to “Case IS > 8”. Therefore, values of i less than 11 are correctly evaluated, but
values of i greater than or equal to 11 are not.

Listing 53. “Case IS > 8 AND i < 11" reduces incorrectly.
IS > (8 AND i < 11) => IS > (8 AND -1) => IS > 8 'Assume i < 11 is correct.

IS > (8 AND i < 11) => IS > (8 AND O0) => IS > 0 'Assume i >= 11 is unwanted.

Writing correct Case expressions

After you learn a few simple examples, it’s easy to write correct Case expressions. Table 19 abstractly
enumerates the varieties, and Listing 57 concretely demonstrates the varieties.

Table 19. Simple Case varieties.
Example Description

Case IS operator expression This is both the simplest case and the most difficult case. If the expression is
a constant, it is easy to understand. If the expression is more complicated,
the only difficult part is building the expression.

Case expression This is a reduction of “Case IS operator expression” when the operator
checks for equality.

Case expression TO expression Check an inclusive range. This is usually done correctly.

Case expression, expression, Each expression is compared. This is usually done correctly.

For the difficult cases, it suffices to produce an expression that evaluates to the Case condition expression if
it is correct, and anything else if it is not. In other words, for Select Case 4, the expression must evaluate to 4
for the statement block to run.

Listing 54. If x is a String value, this will work for any Boolean expression.
Select Case x

Case IIF(Boolean expression, x, x&"1") ' Assumes that x is a string

In Listing 54, x is returned if the Boolean expression is True. The expression x=x is True, so the Case
statement passes. If the Boolean expression is False, x&"1" is returned. This is not the same string as x, so
the Case statement will not pass. A similar method is used for numerical values.

80

Listing 55. If x is a numerical value, this will work for any Boolean expression.
Select Case x

Case IIF(Boolean expression, x, x+1) ' Assumes that x is numeric

In Listing 55, x is returned if the Boolean expression is True. The expression x=x is True, so the Case
statement passes. If the Boolean expression is False, x+1 is returned. For numerical values, x=x+1 is not
True, so the Case statement will not pass. There is a possibility of numerical overflow, but in general this
works. A brilliant and more elegant solution for numerical values is provided by Bernard Marcelly, a
member of the OOo French translation project.

Case x XOR NOT (Boolean Expression)
This assumes that the Boolean expression returns True (-1) if it should pass and False (0) if it should not.

Listing 56. This code uses XOR and NOT in a Case statement.
x XOR NOT (True) = x XOR NOT(-1) = x XOR 0 = x

x XOR NOT (False) = x XOR NOT(0) = x XOR -1 <> x

After my initial confusion, I realized how brilliant this really is. There are no problems with overflow and it
works for all Integer values of x. Do not simplify this to the incorrect reduction “x AND (Boolean
expression)” because it fails if x 1s 0.

Listing 57. Select Case example.
Sub ExampleSelectCase

Dim i%
i = Int((20 * Rnd) -2) 'Rnd generates a random number between zero and one
Select Case 1%

Case O
Print "" & 1 & " is Zero"
Case 1 To 5
Print "" & i & " is a number from 1 through 5"
Case 6, 7, 8
Print "" & i & " is the number 6, 7, or 8"
Case IIf(i > 8 And 1 < 11, i, i+1)
Print "" & 1 & " is greater than 8 and less than 11"
Case 1% XOR NOT(i% > 10 AND i% < 16)
Print "" & i1 & " is greater than 10 and less than 16"
Case Else
Print "" & i1 & " is out of range 0 to 15"
End Select
End Sub

ExampleSelectCase in Listing 57 generates a random integer from -2 through 18 each time it runs. Run this
repeatedly to see each Case statement used. Each of the cases could have used the IIF construct.

Now that I’ve explained the different methods to deal with ranges, it’s time to reevaluate the incorrect cases
in Table 18. The solutions in Table 20 are not the only possible solutions, but they use some of the solutions
presented.

Table 20. Incorrect examples from Table 18 — now corrected.

Incorrect Correct Description

Select Case i Select Case i The variable i is compared to 2.
Case 1 = 2 Case 2

Select Case i Select Case 1 The variable i is compared to 2.
Case 1 = 2 Case IS = 2

81

Incorrect Correct Description

Select Case i Select Case i This works even if i is not an integer.
Case i<Z OR i>9 Case IIf(i<2 OR i>9, i, i+1)

Select Case i% Select Case 1% 1% is an integer so the range is from 3
Case 1%>2 AND 1%<10 Case 3 TO 9 ﬂHough9.

Select Case i% Select Case 1% This works because 1% is an integer.
Case IS>8 And i<11 Case 1 XOR NOT (i>8 AND i< 11)

3.9.9. While ... Wend

Use the While ...Wend statement to repeat a block of statements while a condition is true. This construct has
limitations that do not exist with the Do While ... Loop construct and offers no particular benefits. The
While ... Wend statement does not support an Exit statement. You cannot use GoTo to exit a While ... Wend
statement.

While Condition
StatementBlock
Wend

Visual Basic .NET does not support the keyword Wend. This is another reason to use the Do While ... Loop
instead.

3.9.10. Do ... Loop

The Loop construct has different forms and is used to continue executing a block of code while, or until, a
condition is true. The most common form checks the condition before the loop starts, and repeatedly
executes a block of code as long as the condition is true. If the initial condition is false, the loop is never
executed.

Do While condition
Block
[Exit Do]
Block

Loop

A similar, but much less common form, repeatedly executes the code as long as the condition is false. In
other words, the code is executed until the condition becomes true. If the condition evaluates to true
immediately, the loop never runs.

Do Until condition
Block
[Exit Do]
Block

Loop

You can place the check at the end of the loop, in which case the block of code is executed at least once.
With the following construct, the loop runs at least once and then repeatedly runs as long as the condition is
true:

Do
Block
[Exit Do]
Block
Loop While condition

82

To execute the loop at least once and then continue as long as the condition is false, use the following
construct:

Do
Block
[Exit Do]
Block
Loop Until condition

Exit the Do Loop

The Exit Do statement causes an immediate exit from the loop. The Exit Do statement is valid only within a
Do ... Loop. Program execution continues with the statement that follows the innermost Loop statement. The
subroutine ExampleDo in Listing 58 demonstrates a Do While Loop by searching an array for a number.

Listing 58. Do Loop example.
Sub ExampleDo

Dim a(), 1%, x%

a() = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30)

x = Int (32 * Rnd) REM random integer between 0 and 32

i = LBound(a()) REM 1 is the lower bound of the array.

Do While a(i) <> x REM while a(i) is not equal to x
i=1+1 REM Increment i
If i > UBound(a()) Then Exit Do REM If i is too large, then exit

Loop REM Loop back to the Do While

If i <= UBound(a()) Then REM If i is not too large then found x
MsgBox "Found " & x & " at location " & i, 0, "Example Do"

Else
MsgBox "Could not find " & x & " in the array", 0, "Example Do"

End If

End Sub

Which Do Loop should | use?

OOo Basic supports four variants of the Do Loop construct. Each variant has a particular purpose and time
for use. The most common problem is that the loop runs one time too few or one time too many because the
conditional expression was incorrectly placed at the wrong location.

When deciding where to place the conditional expression of a Do Loop, ask yourself this question: “Must
the loop always run at least once?” If the answer is no, the conditional expression must be at the top. This
will prevent the code in the loop from running if the conditional expression fails. Consider, for example,
printing all of the elements in an array of unknown size. The array might contain no elements at all, in which
case the code in the loop shouldn’t run (see Table 21).

Table 21. While and Until loops are very similar.

Do While Do Until
1% = LBound(a()) 1% = LBound (a())
Do While 1% <= UBound(a()) Do Until 1% > UBound(a())
Print a(i%) Print a(i%)
i = 1% + 1 is = 1i% + 1
Loop Loop

83

In each case in Table 21, if the array is empty, the loop never runs. Before the condition is evaluated, 1% is
set to the lower bound of the array. In each case, the loop continues to run while 1% is not larger than the
upper bound.

Consider the difference between a While loop and an Until loop with a simple example. While the car has
gas, you may drive it. Until the car does not have gas, you may drive it. The primary difference between the
While and the Until is the word NOT. Tending more toward OOo Basic, I can write “Until NOT (the car has
gas).” The choice between While and Until is usually based on which one you can write without the NOT.

If the loop should run at least once, move the conditional expression to the end of the Do Loop. Consider
requesting user input until a valid value has been entered. The most natural choice is to place the conditional
expression at the end.

Dim s$, x As Double
Do
s$ = InputBox ("Enter a number from 1 through 5")
x = CDbl (s$) 'Convert the string to a Double
Loop Until x >= 1 AND x <= 5

The loop must run at least once so that at least one number is entered. The loop repeats until a valid value is
entered. As an exercise, consider how to write this as a While loop.

3.9.11. For ... Next

The For ... Next statement repeats a block of statements a specified number of times.

For counter=start To end [Step stepValue]
statement blockl
[Exit For]
statement block2

Next [counter]

The numeric “counter” is initially assigned the “start” value. When the program reaches the Next statement,
the counter is incremented by the “step” value, or incremented by one if a “step” value is not specified. If the
“counter” is still less than or equal to the “end” value, the statement blocks run. An equivalent Do While
Loop follows:

counter = start
Do While counter <= end
statement blockl

[Exit Do]

statement block2

counter = counter + step
Loop

The “counter” is optional on the “Next” statement, and it automatically refers to the most recent “For”
statement.

For 1 = 1 To 4 Step 2
Print i ' Prints 1 then 3

Next i ' The i in this statement is optional.

The Exit For statement leaves the For statement immediately. The most recent For statement is exited.
Listing 59 demonstrates this with a sorting routine. An array is filled with random integers, and then sorted
using two nested loops. This technique is called a “modified bubble sort.”

84

First, iOuter is set to the last number in the array. The inner loop, using ilnner, compares every number to the
one after it. If the first number is larger than the second number, the two numbers are swapped. The second
number is then compared to the third number. After the inner loop is finished, the largest number is
guaranteed to be at the last position in the array.

Next, iOuter is decremented by 1. The inner loop this time ignores the last number in the array, and
compares every number to the one after it. At the end of the inner loop, the second-highest number is second
from the end.

With each iteration, one more number is moved into position. If no numbers are exchanged, the list is sorted.

Listing 59. Modified bubble sort.

Sub ExampleForNextSort
Dim iEntry(10) As Integer
Dim iOuter As Integer, ilInner As Integer, iTemp As Integer
Dim bSomethingChanged As Boolean

' Fill the array with integers between -10 and 10

For iOuter = LBound(iEntry()) To Ubound(iEntry())
iEntry (iOuter) = Int((20 * Rnd) -10)

Next iOuter

' iOuter runs from the highest item to the lowest
For iOuter = UBound(iEntry()) To LBound(iEntry()) Step -1

'Assume that the array is already sorted and see if this is incorrect
bSomethingChanged = False
For iInner = LBound(iEntry()) To iOuter-1
If iEntry(iInner) > iEntry(ilnner+1l) Then
iTemp = iEntry(ilnner)
iEntry(iInner) = iEntry(iInner+l)
iEntry(iInner+l) = iTemp
bSomethingChanged = True
End If
Next ilInner
'Tf the array is already sorted then stop looping!
If Not bSomethingChanged Then Exit For
Next iOuter

Dim s$
For iOuter = LBound (iEntry()) To Ubound (iEntry())
s = s & i0uter & " : " & iEntry(iOuter) & CHRS$(10)

Next iOuter
MsgBox s, 0, "Sorted Array"
End Sub

3.9.12. Exit Sub and Exit Function

The Exit Sub statement exits a subroutine, and the Exit Function statement exits a function. The routine is
exited immediately. The macro continues running at the statement following the statement that called the
current routine. These statements work only to exit the currently running routine, and they are valid only in
their respective types. For example, you can’t use Exit Sub in a function.

85

3.10. Error handling using On Error

Errors are usually placed into three “categories” — compile time, run time, and logic. Compile-time errors
are typically syntax errors such as missing double quotation marks that prevent your macro from compiling.
Compile-time errors are the easiest to deal with because they are found immediately and the IDE shows you
which line caused the problem. Run-time errors compile properly but cause an error when the macro runs.
For example, dividing by a variable that at some point evaluates to zero will cause a run-time error. The
third type, logic errors, are mistakes in the business logic of the program: They compile and run okay, but
generate the wrong answers. They’re the worst kind because you have to find them yourself — the computer
won’t help you at all. This section is about run-time errors: how to deal with them and how to correct them.

An error handler is a piece of code that runs when an error occurs. The default error handler displays an error
message and stops the macro. OOo Basic provides a mechanism to modify this behavior (see Table 22). The
first form, On Error Resume Next, tells OOo to ignore all errors: No matter what happens, keep running and
pretend everything is fine. The second form, On Error GoTo 0, tells OOo to stop using the current error
handler. Ignoring error handler scope issues, as explained later, think of On Error GoTo 0 as restoring the
default method of handling errors: Stop running and display an error message. The final form, On Error
GoTo LabelName, allows you to define code to handle errors the way that you want. This is called “setting
up an error handler.”

Table 22. Supported On Error forms.

On Error Resume Next Ignore errors and continue running at the next line in the

macro.

On Error GoTo O Cancel the current error handler.

On Error GoTo LabelName Transfer control to the specified label.

When an error occurs, the code that was running stops running, and control is transferred to the current error
handler. The error handlers use the functions in Table 23 to determine the cause and location of the error.
Visual Basic uses an Error object and does not support the functions in Table 23.

Table 23. Error-related variables and functions.

CVErr Convert an expression to an error object.
Erl Integer line number of the last error.

Err Integer error number of the last error.
Error Error message of the last error.

All error handlers must be declared in a routine and are local to the containing subroutine or function. When
an error occurs, OOo Basic starts working backward through the call stack until it finds an error handler. If it
doesn’t find an error handler, it uses the default handler. The default handler prints an error message and
halts the program. The error information, such as Erl, indicates the line number in the current routine that
caused the error. For example, if the current routine calls the function b() at line 34 and an error occurs in
b(), the error is reported as occurring at line 34. Listing 60 contains an example of this, and Figure 36 shows
the call stack. Another example is shown in Listing 64.

Listing 60. Use Erl to get the line number.

x = x + 1 'Assume that this is line 33

86

Call b () 'Error in b () or something b() calls (line 34)

Exit Sub 'Leave the subroutine
ErrorHandler: 'No other handlers between here and the error
Print "error at " & Erl '"Prints line 34

5. user handler

Sub a() _ mna

has handler

1. acallsb 4. no handler
kSUb b() B mb
"Nno handler
2. beallsc __SLIb C()

"Nno handlern

3. errormc
but no handler

Figure 36. Walk the call stack to find a handler.
You cannot catch errors that occur in a DLL. Check the return code from the called DLL instead.

3.10.1. CVErr

Use CVErr (as mentioned in Table 23) to create an OOo specific internal data type that represents an error. |
have never seen this done, but it can be useful for a very robust function.

CVErr returns an internal OOo type that should be assigned to a variant variable. Why?

1. Use VarType to check the type of the returned value. A VarType of 10 means that an error object was
returned (see Table 85).

2. CVErr accepts an integer, which represents the internal error code that occurred. The internal error
object casts to an integer and returns that internal error code.

The following example demonstrates CVErr.

Listing 61. Using CVErr
Sub CallNotZero

Dim xVar As Variant

Dim xInt As Integer

Dim i As Integer

Dim s As String

For i = -1 To 1
xInt = NotZero (i)
xVar = NotZero (i)

s = s & "NotZero(" & i & ") = [" & xInt & "] when assigned to an Integer"
s = s & CHR$(10)
s = s & "NotZero(" & i & ") = [" & xVar & "] VarType=" & VarType (xVar)
s = s & CHRS(10)
Next
MsgBox s
End Sub

Function NotZero(x As Integer)

87

If x <> 0 Then
NotZero = x
Else
' 7 is an arbitrary number meaning nothing.
NotZero = CVErr (7)
End If
End Function

MotZero(-1) = [-1] when assigned to an Integer
MNotZero(-1) = [-1] VarType=2

MotZero(Q) = [7] when assigned to an Integer
MotZero(Q) = [Error] VarType=10

MotZero(1l) = [1] when assigned to an Integer
MotZero(1l) = [1] VarType=2

ok |

Figure 37. Return values using CVErr.

3.10.2. Ignore errors with On Error Resume Next

Error handling, in some cases, means ignoring errors. The On Error Resume statement tells OOo Basic that
if a standard error occurs, it should ignore the error and resume running the code at the next line in the
macro (see Listing 62). The error information is cleared, so it isn’t possible to check if an error occurred
following the statement.

Listing 62. The error is cleared by the Resume Next statement.
Private zero%

sub ExampleErrorResumeNext

On Error Resume Next

Print 1/Zero%

If Err <> 0 Then Print Error$ & " at line " & Erl 'Err was cleared
End Sub

3.10.3. Clear an error handler with On Error GoTo 0

Use the statement On Error GoTo 0 to clear an installed error handler. This is usually done inside an error
handler or after the code that used one. If an error occurs inside an error handler, it isn’t handled and the
macro stops.

Listing 63. The error handler is cleared with the statement On Error GoTo 0.

Private zero%

sub ExampleErrorResumeNext
On Error Resume Next
Print 1/Zero%
On Error GoTo 0

End Sub

Some versions of Visual Basic also support On Error GoTo -1, which is equivalent to On Error GoTo 0.

88

3.10.4. Specify your own error handler with On Error GoTo Label

To specify your own error handler, use On Error GoTo Label. To define a label in OOo Basic, type some text
on a line by itself and follow it with a colon. Line labels are no longer required to be unique; they must be
unique only within each routine. This allows for consistency in naming error-handling routines rather than
creating a unique name for every error handler (see Listing 64 and Figure 38). When an error occurs,
execution is transferred to the label.

Listing 64. Error Handling.

Private zero%
Private error s$
Sub ExampleJumpErrorHandler
On Error GoTo ExErrorHandler
JumpErrorl
JumpError2
Print 1/Zero%
MsgBox error s, 0, "Jump Error Handler"

Exit Sub
ExErrorHandler:
error s = error s & "Error in MainJumpErrorHandler at line " & Erl() &

" : " & Error() & CHR$(10)
Resume Next
End Sub
Sub JumpErrorl
REM Causes a jump to the handler in ExampleJumpErrorHandler.
REM The main error handler indicates that the error location is
REM at the call to JumpErrorl and not in JumpErrorl.
Print 1/zero%
error s = error s & "Hey, I am in JumpErrorl" & CHRS (10)
End Sub

Sub JumpError?2
On Error GoTo ExErrorHandler
Print 1/zero%

Exit Sub
ExErrorHandler:
error s = error s & "Error in JumpError2 at line " & Erl() &

" . " g Error() & CHRS$(10)
Resume Next
End Sub

[§-~ Jump Ervor Handler

Error in MainJumpErrorHandler at line 8 : Division by zero
Error in JumpError2 at line 29 : Division by zero
Error in MainJumpErrorHandler at line 10 : Division by zero

| I

Figure 38. The last error handler declared is used.
A routine can contain several On Error statements. Each On Error statement can treat errors differently. The
error handlers in Listing 64 all used Resume Next to ignore the error and continue execution at the line
following the error. Using multiple error handlers, it is possible to skip sections of code when an error
occurs (see Listing 65).

89

TIP The OOo version 3.20 help still incorrectly states that error handling must occur at the start of a routine.

Listing 65. Skip sections of code when an error occurs.

On Error GoTo PropertiesDone 'Ignore any errors in this section.
a() = getProperties|() 'Tf unable to get properties then
DisplayStuff(a(), "Properties") 'an error will prevent getting here.
PropertiesDone:
On Error GoTo MethodsDone 'Ignore any errors in this section.
a() = getMethods()
DisplayStuff(a(), "Methods")
MethodsDone:
On Error Goto 0 'Turn off current error handlers.

When you write an error handler, you must decide how to handle errors. The functions in Table 23 are used
to diagnose errors and to display or log error messages. There is also the question of flow control. Here are
some error-handling guidelines:

Exit the subroutine or function using Exit Sub or Exit Function.
Let the macro continue to run and ignore the error (see Listing 65).

Use Resume Next to continue running the macro at the line following the error (see Listing 66 and Figure
39).

Use Resume to run the same statement again. If the problem is not fixed, the error will occur again.

This will cause an infinite loop.

Use Resume LabelName to continue running at some specified location.

Listing 66. Resume next error handler.
Sub ExampleResumeHandler

Dim s$, z%

On Error GoTo Handlerl 'Add a message, then resume to Spotl
s = "(0) 1/z =" & 1/z & CHRS$(10) 'Divide by zero, so jump to Handlerl
Spotl: 'Got here from Handlerl
On Error GoTo Handler?2 'Handler2 uses resume
s =s & "(1) 1/z = "&l/z & CHRS(10) 'Fail the first time, work the second
On Error GoTo Handler3 'Handler3 resumes the next line
z =0 'Allow for division by zero again
s =5 & "(2) 1/z = "&l/z & CHRS (10) 'Fail and call Handler3
MsgBox s, 0, "Resume Handler"
Exit Sub
Handlerl:

s = s & "Handlerl called from line " & Erl() & CHRS$(10)
Resume Spotl

Handler?2:
s = s & "Handler2 called from line " & Erl() & CHRS(10)
z =1 'Fix the error then do the line again
Resume

Handler3:

s = s & "Handler3 called from line " & Erl() & CHRS(10)
Resume Next
End Sub

90

[§—~ Resume Handler

Handler1 called from line 41
Handler2 called from line 44
M1z=1

Handler3 called from line 47

| I

Figure 39. The last error handler declared is used.

TIP Errors that occur in an error handler are not handled; the macro just stops running.

3.10.5. Error handlers — why use them?

When I run a macro and it crashes, I usually understand the sometimes cryptic error messages and recognize
how to deal with them. When others run my macros and an error occurs, I usually hear about it because they
don’t know how to handle it. This is a good indicator that I have not used proper error handling.

You do not have to write an error handler for each routine. If the current routine doesn’t have an error
handler, but the routine that called it does, the caller’s error handler is called. For example, imagine that
subl has an error handler and it calls sub2 that does not. If an error occurs in sub2, the error handler in sub1
is called.

When you use an error handler, you control how and when a user is notified of an error. Error handlers have
uses other than controlling when a user is informed of an error. A properly used error handler can reduce the
size of your macro. Consider, for example, the mathematical operations. It is cumbersome to check every
mathematical operation before it is used.

If x <> 0 Then y = z / x
If x > 0 Then y = Log(x)
If i%$ < 32767 Then 1% = i% + 1

Even with my paranoid code checking the arguments, I might still have a numeric overflow. Even worse,
nothing is done if an error occurs, and processing continues as normal. Sometimes you can’t check anything
to avoid the error. For example, prior to OOo version 2.0, the DimArray function returned an invalid empty
array. The LBound and UBound functions generate exceptions with these invalid empty arrays. Error
handling was used to safely generate the LBound and UBound even if an error occured. Consider the
following cases:

« The argument is not an array.
« In an empty array, UBound < LBound; -1 and 0, for example.
+ There are no problems if the array is not an invalid empty array.

« Should the optional dimension be considered?

The code in Listing 67 demonstrates a simple error handler that is able to simply ignore errors. The function
returns True if the lower bound is less than or equal to the upper bound — in other words, if the array
contains data. If an error occurs, either because the argument is not an array or because this is an invalid
empty array, the line does not finish running so the assignment never takes place. If the assignment never
takes place, the original default Boolean value of False is used. This is the correct answer. Writing a safe

91

upper-bound or lower-bound routine is left as an exercise for the reader — the safe versions are not required
with the fixed UBound and LBound functions released with OOo 2.0.

Listing 67. Determine if an array has stuff.
Sub ExampleArrayHasStuff

Dim a(), b(3), v
Print ArrayHasStuff (a()) 'False, because empty
Print ArrayHasStuff (v) 'False, not an array, so use error handler
Print ArrayHasStuff (DimArray()) 'False, bad array, so error handler called
Print ArrayHasStuff (DimArray(3)) 'True, this is not empty
Print ArrayHasStuff (b()) 'True, this is not empty

End Sub

Function ArrayHasStuff (v) As Boolean
REM default value for a Boolean is False, so the default answer is False
REM If an error occurs, then the statement never completes!
REM This is a good time to use On Error Resume Next
On Error Resume Next
ArrayHasStuff = CBool (LBound(v) <= UBound(v))
End Function

An error handler can even be interactive. The code in Listing 68 attempts to copy a file that doesn’t exist to a
location that doesn’t exist. Needless to say, an error is generated. An error message is displayed and the user

is asked if the copy should be tried again. The user is given an opportunity to correct any errors and
continue.

Listing 68. Copy a file.

Sub ExampleCopyAFile ()

CopyAFile ("/I/do/not/exist.txt", "/neither/do/I.txt")
End Sub

Sub CopyAFile (Src$, Dest$)

On Error GoTo BadCopy: 'Set up the error handler
TryAgain:

FileCopy (Src$, Dest$) 'Generate the error
AllDone: 'If no error, then continue here

Exit Sub 'Resume to the AllDone label from the handler
BadCopy: 'Display an error dialog

Dim rc% 'Ask if should try again

rc% = MsgBox("Failed to copy from " & Src$ & " to " & Dest$ & " because: "&
CHRS (10) & Error() & " at line " & Erl & CHR$(10) &
"Try again?", (4 OR 32), "Error Copying")
If rc% = 6 Then 'Yes, try the command again
Resume
End If
If rc% = 7 Then 'No
Resume AllDone 'Go to the AllDone label
End If
End Sub

92

3.11. Conclusion

Building any significant OOo macro requires understanding the syntax of OOo Basic. This chapter covered
the key elements:

- The syntax of a macro determines valid and invalid constructs.
« The logic of a macro determines what the macro does.
- Flow control directs the macro as it runs.

« Error handling directs the macro when it does something unexpected.

A complete, well-constructed macro that accomplishes any significant function will most likely use all of
these characteristics of OOo programming. The specific elements within OOo that one uses to build a
specific program depend on the application, the desired logical behavior of the program, and the best
judgment of the programmer. One major part of successful programming is developing the experience to
apply the ideas of this chapter in the most effective way.

93

4. Numerical Routines

This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
numbers — including mathematical functions, conversion routines, formatting numbers as a string, and

random numbers. This chapter also discusses alternate number bases.

Numerical subroutines and functions are routines that perform mathematical operations. If you use

spreadsheets, you may already be familiar with mathematical functions such as Sum, which adds groups of
numbers together, or even IRR, which calculates the internal rate of return of an investment. The numerical
routines supported by OOo Basic (see Table 24) are simpler in nature, typically operating on only one or two

arguments rather than an entire group of numbers.

Table 24. Subroutines and functions related to numbers and numerical operations.

Function
ABS(number)
ATN(number)

CByte(expression)
CCur(expression)
CDbl(expression)
CDec(expression)
Clnt(expression)
CLng(expression)
COS(number)
CSng(expression)
Exp(number)
Fix(number)
Format(obj, format)
Hex(n)
Int(number)

Log(number)

Oct(number)
Randomize(num)
Rnd
Sgn(number)
SIN(number)
Sqr(number)
Str(number)
TAN(number)
Val(str)

Description
The absolute value of a specified number.

The angle, in radians, whose tangent is the specified number in the range of -Pi/2 through
Pi/2.

Round the String or numeric expression to a Byte.

Convert the expression to a Currency type.

Convert a String or numeric expression to a Double.

Generate a Decimal type; implemented only on Windows.
Round the String or numeric expression to the nearest Integer.
Round the String or numeric expression to the nearest Long.
The cosine of the specified angle.

Convert a String or numeric expression to a Single.

The base of natural logarithms raised to a power.

Chop off the decimal portion.

Fancy formatting, discussed in Chapter 6, “String Routines.”
Return the hexadecimal representation of a number as a String.
Round the number toward negative infinity.

The logarithm of a number. In Visual Basic .NET this method can be overloaded to return
either the natural (base e) logarithm or the logarithm of a specified base.

Return the octal representation of a number as a String.

Initialize the random number generator. If num is ommitted, uses the system timer.
Return a random number as a Double from O through 1.

Integer value indicating the sign of a number.

The sine of an angle.

The square root of a number.

Convert a number to a String with no localization.

The tangent of an angle.

Convert a String to a Double. This is very tolerant to non-numeric text.

94

The mathematical functions presented in this chapter are well-known and understood by mathematicians,
engineers, and others who look for excuses to use calculus in everyday life. If that is not you — if, perhaps,
you do not consider the slide rule to be the coolest thing since sliced bread — don’t panic when the coverage
starts to become mathematical in nature. I have tried to make the information accessible while still providing
the in-depth information for those who require it. The routines are topically grouped into sections so you can
skip sections that you know that you won’t use.

The numerical routines perform operations on numerical data. OOo Basic tries to convert arguments to an
appropriate type before performing an operation. It is safer to explicitly convert data types using conversion
functions, as presented in this chapter, than to rely on the default behavior. When an Integer argument is
required and a floating-point number is provided, the default behavior is to round the number. For example,
“16.8 MOD 7” rounds 16.8 to 17 before performing the operation. The Integer division operator, however,
truncates the operands. For example,

“Print 4 \ 0.999” truncates 0.999 to 0, causing a division-by-zero error.

TIP Table 24 contains subroutines and functions, not operators such as MOD, +, and \.
Operators were covered in Chapter 3, Language Constructs.

4.1. Trigonometric functions

Trigonometry is the study of the properties of triangles and trigonometric functions and of their applications.
Discussions of trigonometric functions usually refer to right triangles, which have one angle of 90 degrees
(see Figure 40). There is a set of defined relationships among the trigonometric functions, the lengths of the
sides of a right triangle, and the corresponding angles in the triangle. When you know these relationships,
you can use the trigonometric functions to solve trigonometric problems.

A practical problem that uses trigonometry is to estimate one’s distance from a pole or tower of known
height. By measuring the observed angle from the ground to the top of the pole, and knowing the height of
the pole, your distance from that pole is the height of the pole divided by the tangent of the measured angle.
This principle can be applied to golf, sailing, or hiking, to estimate distance from a fixed point of interest
(the golf flag, for example, or a radio transmission tower).

The principal trigonometric functions are sine, cosine, and tangent. Each is defined as the ratio between two
sides of a right triangle. The values of these functions for any value of the angle, x, correspond to the ratios
of the lengths of the sides of the right triangle containing that angle, x. For a given angle, the trigonometric
functions fix the lengths of the sides of the right triangle. Likewise, knowing the lengths of any two sides of
the right triangle allows one to compute the value of the angle using one of the inverse trigonometric
functions.

0OOo Basic uses radians as the unit of measure for angles; however, most non-scientists think in degrees. An
angle that is 90 degrees, such as the corner of a square, is Pi/2 radians.

TIP The built-in constant Pi is approximately 3.1415926535897932385. Pi is a fundamental constant widely
used in scientific calculations, and is defined as the ratio of the circumference of a circle to its diameter.
The sum of the angles in any triangle — including a right triangle — is 180 degrees, or Pi radians. A
tremendous amount of elegant and practical mathematical methods result from this connection between a
triangle and a circle. All descriptions of periodic motion build on this foundation, making trigonometry a
fundamental and very useful set of mathematical tools.

Using the relationship between degrees and radians, it is easy to convert between radians and degree
measurements of angles.

95

degrees = (radians * 180) / Pi
radians = (degrees * Pi) / 180

To calculate the sine of a 45-degree angle, you must first convert the angle from degrees to radians. Here’s
the conversion:
radians = (45° * Pi) / 180 = Pi / 4 = 3.141592654 / 4 = 0.785398163398

You can use this value directly in the trigonometric function SIN.

Print SIN(0.785398163398) ' .707106781188
To determine the angle whose tangent is 0.577350269189, use the arctangent function. The returned value is
in radians, so this value must be converted back to degrees.

Print ATN(0.577350269189) * 180 / Pi '29.9999999999731

TIP Rounding errors, as discussed later, affect these examples. With infinite precision, the previous example
would result in an answer of 30 degrees rather than 29.9999999999731.

The answer 1s roughly 30 degrees. The triangle in Figure 40 is used to help explain the trigonometric
functions.

(0
Opposite Leg

0=

x = angle

a = Adjacent Leg

Figure 40. A right triangle has one angle at 90 degrees.
Table 25. Trigonometric functions supported by OQo Basic.

OOo Basic vB VB .NET Return Value

ATN ATN Math.Atan The angle, in radians, whose tangent is the specified
number in the range of -Pi/2 through Pi/2.

COS COS Math.Cos The cosine of the specified angle.

SIN SIN Math.Sin The sine of an angle.

TAN TAN Math.Tan The tangent of an angle.

The trigonometric functions supported by OOo Basic are shown in Table 25 and illustrated using the right
triangle in Figure 40. The single argument expression is converted to a double-precision number before the
function is performed.

COS(x) = Adjacent Leg / Hypotenuse

96

SIN(x) = Opposite Leg / Hypotenuse
TAN(x) = Opposite Leg / Adjacent Leg = SIN(x) / COS(x)
ATN(Opposite Leg / Adjacent Leg) = x

The code in Listing 69 solves a series of geometry problems using the trigonometric functions. The code
assumes a right triangle, as shown in Figure 40, with an opposite leg of length 3, and an adjacent leg of
length 4. The tangent is easily calculated as 3/4 and the ATN function is used to determine the angle. A few
other calculations are performed, such as determining the length of the hypotenuse using both the SIN and
the COS functions. Also see Figure 41.

Listing 69. ExampleTrigonometric

Sub ExampleTrigonometric
Dim OppositelLeg As Double
Dim AdjacentLeg As Double
Dim Hypotenuse As Double
Dim AngleInRadians As Double
Dim AngleInDegrees As Double
Dim s As String
Oppositeleg = 3
Adjacentleg = 4
AngleInRadians = ATN(3/4)
AnglelInDegrees = AngleInRadians * 180 / Pi

s = "Opposite Leg = " & OppositeLeg & CHR$(10) &
"Adjacent Leg = " & AdjacentLeg & CHRS$ (10) &
"Angle in degrees from ATN = " & AnglelInDegrees & CHRS(10) &
"Hypotenuse from COS = " & AdjacentLeg/COS (AnglelInRadians) & CHRS(10) &
"Hypotenuse from SIN = " & OppositeLeg/SIN(AngleInRadians) & CHRS(10) &
"Opposite Leg from TAN = " & AdjacentlLeg * TAN (AngleInRadians)

MsgBox s, 0, "Trigonometric Functions"
End Sub

Trigonometric Functions

Opposite Leg= 3
Adjacent Leg = 4
Angle in degrees from ATN = 36.869897645844
Hypotenuse from COS =5
Hypotenuse from SIN =5
Opposite Leg from TAN = 3

Figure 41. Use the trigonometric functions to solve problems with triangles.

4.2. Rounding errors and precision

Numerical calculations performed on either a computer or calculator are performed with only a finite
number of digits; this introduces rounding errors. This isn’t a problem with integer numbers. The number
1/3 is represented in decimal form as 0.33333333, but there needs to be an infinite number of threes
following the decimal point. With four digits of precision, this is written as 0.3333. This introduces
inaccuracies in the representation and the resulting calculations.

1/3 + 1/3 + 1/3 = 3/3 =1 'The exact answer is 1
0.3333 + 0.3333 + 0.3333 = 0.9999 'The finite precision answer, off a bit

97

The simple macro in Listing 70 demonstrates this problem. The value 0.2 is repeatedly added to the variable
num until the value is equal to 5. If infinite precision were used, or if the number 0.2 were exactly
represented inside the computer, the loop would stop with the variable num containing the value 5. The
variable never precisely equals the value 5, however, so the loop never stops. The value 5 is printed, but this
is only because the Print statement rounds 4.9999999 to the value 5 when it prints the number.

Listing 70. Rounding errors and finite precision prevent this from stopping.
Dim num As Single

Do

num = num + 0.2

If num > 4.5 Then Print num 'prints 4.6, 4.8, 5, 5.199999...
Loop Until num = 5.0
Print num

Computers use complex rounding algorithms in an attempt to reduce the impact of finite precision — finite
precision means that a finite number of digits and storage are used to represent a number. Although this
helps, Listing 70 clearly demonstrates that the internal complex rounding algorithms do not solve the
problem. When you compare two floating-point numbers to see if they are equal, it is safer to compare them
to a range of values. The code in Listing 71 stops when the variable is greater than or equal to 5.

Listing 71. Avoid rounding errors by using >= (greater than or equal to).
Dim num As Single

Do

num = num + 0.2
Loop Until num >= 5.0
Print num '5.199999

The code in Listing 71 works to some extent, but you probably want the loop to exit when the variable num
15 4.9999999 rather than when it is 5.199999. You can do this by checking to see if two numbers are close
rather than equal. The big question is, How close must two numbers be before they are considered equal?
You can usually make a simple guess based on what you know about the problem. Single-precision variables
can represent about eight digits of precision. Double-precision variables can represent about 16 digits of
precision. Don’t try to demand more precision from the variables than they support. The code in Listing 71
uses single-precision variables so you can expect roughly seven digits of precision. The code in Listing 72
prints the difference between 5 and num — notice that about six digits are correct.

Listing 72. Compare the variable to a range.
Dim num As Single

Do
num = num + 0.2
Loop Until 4.99999 < num AND num < 5.00001
Print 5 - num '4.76837158203125E-07 = 0.000000476837158203125

The ABS function returns the absolute value of a number. You can use it to simplify the process of checking
to see how close one number is to another.

If ABS(num - 5) < 0.00001 Then
Using ABS and subtraction indicates how close two numbers are to each other, but it may not be sufficient.

For example, light travels at about 299,792,458 meters each second. This number contains nine digits. A
single-precision number is accurate to about seven digits. See Listing 73.

Listing 73. Single-precision variables have only seven or eight digits of accuracy.

Dim cl As Single 'Scientists usually use the letter c to represent
Dim c2 As Single 'the speed of light.

98

cl = 299792458 'Speed of light in meters per second to nine digits

c2 =cl + 16 'Add 16 to the speed of light

If ¢l = c2 Then 'These are equal because only the first seven
Print "Equal" 'or eight digits are significant

End If

The code in Listing 73 adds 16 to the speed of light, but this does not change the value. This is because only
the first seven or eight digits are significant. The code in Listing 74 uses a number that is smaller in

magnitude but uses the same number of digits. Adding 1 to the number would change a significant digit, but
adding a smaller number still leaves the numbers equal.

Listing 74. Single-precision variables have only seven or eight digits of accuracy.

Dim cl As Single 'Scientists usually use the letter c to represent
Dim c2 As Single 'the speed of light.
cl = 299.792458 'This is nine digits but it is not the speed of light
c2 =cl + .0000016 'Must add a smaller number for them to still be equal
If ¢l = c2 Then 'These are equal because only the first seven

Print "Equal" 'or eight digits are significant
End If

Floating-point numbers can have different magnitudes — magnitude refers to the size of the number — and
it doesn’t significantly affect the number of digits that are relevant. To check if two numbers are about the
same value, large numbers can differ by a greater amount than small numbers. The greatest allowed
difference is dependent upon the magnitude (size) of the numbers; a mathematician calls this the “relative
error.” See Listing 75.

Listing 75. Compare two numbers.
REM This uses nl as the primary number of interest

REM n2 is compared to nl in a relative way

REM rel diff is the desired relative difference

REM rel diff is assumed non-negative

Function AreSameNumber (nl, n2, rel diff) As Boolean

AreSameNumber = False 'Assume that they are different
If nl <> 0 Then 'Cannot divide by nl if it is zero
If ABS((nl-n2)/nl) <= rel diff Then 'Divide difference by nl for relative
AreSameNumber = True 'comparison.
End If 'If nl, the number of interest, is
ElseIf ABS(n2) <= rel diff Then 'zero, then compare n2 for size.
AreSameNumber = True
End If

End Function

The code in Listing 75 divides the difference of two numbers by one of the numbers. The code in Listing 76
checks numbers of different sizes to see if they are the same number.

Listing 76. Test if same number.
Sub CheckSameNumber

Dim sl As Single
Dim s2 As Single

Print AreSameNumber (299792458, 299790000, 1le-5) 'True: five digits same
Print AreSameNumber (299792458, 299700000, le-5) 'False: four digits same

sl = 299792458 'sl assigned different value
s2 = 299792448 'than s2 but same number.
Print AreSameNumber (sl, s2, 0.0) 'True: Same number in single precision.

Print AreSameNumber (299.792458, 299.790000, le-5)'True: five digits same

99

Print AreSameNumber (2.99792458, 2.99700000, le-5)'False: four digits same
End Sub

A large quantity of literature and research is available on the negative issues associated with floating-point
numbers. A complete discussion is therefore well beyond the scope of this book. In general usage, the
problems typically aren’t that troublesome, but, when they arise, they can be most perplexing if you aren’t
aware of the issues.

4.3. Mathematical functions

The mathematical functions in OOo Basic take a numeric argument. All of the standard types are converted
to a Double before they are used. Strings may include hexadecimal and octal numbers. The functions are the
same as those available in Visual Basic (see Table 26).

Table 26. Mathematical functions supported by OOo Basic.
0OOo Basic vB VB .NET Return Value

ABS ABS Math.Abs The absolute value of a specified number.

Exp Exp Math.Exp The base of natural logarithms raised to a power.

Log Log Math.Log The logarithm of a number. In VB .NET you can overload this method
to return either the natural (base e) logarithm or that of a specified base.

Sgn Sgn Math.Sign Integer value indicating the sign of a number.

Sqr Sqr Math.Sqrt The square root of a number.

Use the ABS function to determine the absolute value of a number, which you can think of as simply
throwing away the leading + or - sign from the front of the number. The geometrical definition of ABS(x) is
the distance from x to 0 along a straight line.

ABS (23.33) = 23.33
ABS (-3) =3
ABS ("-1") =1 'Notice that the string value "-1" is converted to a Double

Use the Sgn function to determine the sign of a number. An integer with the value -1, 0, or 1 is returned if
the number is negative, zero, or positive.

Sgn(-37.4) = -1
Sgn (0) =
Sgn(ﬂ4ﬂ) =

The square root of 9 is 3, because 3 multiplied by 3 is 9. Use the Sqr function to get the square root of a
number. The Sqr function can’t calculate the square root of a negative number — attempting to do so causes
a run-time error.

Sgr (100) = 10
Sgr(le) = 4
Sqgr (2) = 1.414213562371

Logarithms were devised by John Napier, who lived from 1550 through 1617. Napier devised logarithms to
simplify arithmetic calculations, by substituting addition and subtraction for multiplication and division.
Logarithms have the following properties:

Log(x*y) = Log(x) + Log(y)
Log (x/y) = Log(x) - Log(y)
Log (x"y) = vy * Log(x)

100

The Exp function is the inverse of the Log function. For example, Exp(Log(4)) =4 and Log(Exp(2)) = 2. By
design, logarithms turn multiplication problems into addition problems. This allows the use of logarithms as
they were originally designed.

Print Exp(Log(1l2) + Log(3)) '36 = 12 * 3
Print Exp(Log(12) - Log(3)) ' 4 =12 / 3

Logarithms are defined by the equation y=b”x. It is then said that the logarithm, base b, of y is x. For
example, the logarithm base 10, 10"2 = 100 so the logarithm, base 10, of 100 is 2. The natural logarithm,
with a base approximated by e=2.71828182845904523536, is frequently used because it has some nice
mathematical properties. This is called the “natural logarithm” and is used in OOo Basic. Visual Basic .NET
allows you to calculate logarithms of other bases. This is easily done using the formula that the logarithm
base b is given by Log(x)/Log(b), regardless of the base of the logarithm that is used.

Logarithms are not as useful as a general shortcut for calculations today, when lots of computing power is
available. However, the logarithmic relationship describes the behavior of many natural phenomena. For
example, the growth of populations is often described using logarithms, because geometric growth
expressed on a logarithmic graph displays as a straight line. Exponentials and logarithms are also used
extensively in engineering computations that describe the dynamic behavior of electrical, mechanical, and
chemical systems.

The macro in Listing 77 calculates the logarithm of the number x (first argument) to the specified base b
(second argument). For example, use LogBase(8, 2) to calculate the log, base 2, of 8 (the answer is 3).

Listing 77. LogBase.

Function LogBase(x, b) As Double
LogBase = Log(x) / Log(b)
End Function

4.4. Numeric conversions

OOo Basic tries to convert arguments to an appropriate type before performing an operation. However, it is
safer to explicitly convert data types using conversion functions, as presented in this chapter, than to rely on
the default behavior, which may not be what you want. When an Integer argument is required and a floating-
point number is provided, the default behavior is to round the number. For example, 16.8 MOD 7 rounds
16.8 to 17 before performing the operation. The Integer division operator, however, truncates the operands.
For example, “Print 4 \ 0.999” truncates 0.999 to 0, causing a division-by-zero error.

There are many different methods and functions to convert to numeric types. The primary conversion
functions convert numbers represented as strings based on the computer’s locale. The conversion functions
in Table 27 convert any string or numeric expression to a number. String expressions containing
hexadecimal or octal numbers must represent them using the standard OOo Basic notation. For example, the
hexadecimal number 2A must be represented as “&H2A”.

Table 27. Convert to a numerical type.
Function Type Description

CByte(expression) Byte Round the String or numeric expression to a Byte.

CCur(expression) Currency Convert the String or numeric expression to a Currency. The locale settings are
used for decimal separators and currency symbols.

CDec(expression) Decimal Generate a Decimal type; implemented only on Windows.

ClInt(expression) Integer Round the String or numeric expression to the nearest Integer.

CLng(expression) Long Round the String or numeric expression to the nearest Long.

101

Function Type Description

CDbl(expression) Double Convert a String or numeric expression to a Double.

CSng(expression) Single Convert a String or numeric expression to a Single.

The functions that return a whole number all have similar behavior. Numeric expressions are rounded rather
than truncated. A string expression that does not contain a number evaluates to zero. Only the portion of the
string that contains a number is evaluated, as shown in Listing 78.

Listing 78. CInt and CLng ignore non-numeric values.

Print CInt(12.2) ' 12
Print CLng("12.5") '13
Print CInt ("xxyy") ' 0
Print CLng("12.1xx") ' 12
Print CInt(-12.2) '-12
Print CInt("-12.5") '-13
Print CLng("-12.5xx") '-13

CLng and Clnt have similar, but not identical, behavior for different types of overflow conditions. Decimal
numbers in strings that are too large cause a run-time error. For example, CInt("40000") and
CLng("999999999999") cause a run-time error, but CLng("40000") does not. CLng never causes an
overflow if a hexadecimal or octal number is too large; it silently returns zero without complaint. Clnt,
however, interprets hexadecimal and octal numbers as a Long and then converts them to an Integer. The
result is that a valid Long generates a run-time error when it is converted to an Integer. A hexadecimal value
that is too large to be valid returns zero with no complaints and then is cast to an Integer (see Listing 79).

Listing 79. Clnt interprets the number as a Long, then converts to an Integer.

Print CLng ("&HFFFFFFFFEFFE") '0 Overflow on a Long

Print CInt ("&HFFFFFFFFEFFE") '0 Overflow on a Long then convert to Integer
Print CLng ("&HFFFFE") '1048574

Print CInt ("&HFFFFE") 'Run-time error, convert to Long then overflow

The code in Listing 80 converts numerous hexadecimal numbers to a Long using CLng. See Table 28 for an
explanation of the output in Listing 80.

Listing 80. ExampleCLngWithHex.

Sub ExampleCLngWithHex
On Error Resume Next

Dim s$, 1%

Dim v ()

v() = Array("&HF", "SHFFE", "sHFFEF", "SHFFFF",
"¢HFFFFF", "&HFFFFFEF", "&HFFFFFFE", "&HFFFFFEFFE",
"¢HFFFFFFFEF",

"SHE", "SHFE", "SHFFE", "SHFFFE",
"SHFFFFE", "¢HFFFFFE", "&HFFFFFFE", "&HFFFFFFFE",
"SHEFFEFFFEFE")
For 1 = LBound(v()) To UBound(v())
s =s &1 & " CLng(" & v(i) & ") ="
s = s & CLng(v(i))
s = s & CHRS(10)
Next
MsgBox s
End Sub

102

Table 28. Output from Listing 80 with explanatory text.

Input CLng Explanation

F 15 Correct hexadecimal value.

FF 255 Correct hexadecimal value.

FFF 4095 Correct hexadecimal value.

FFFF 65535 Correct hexadecimal value.

FFFFF 1048575 Correct hexadecimal value.

FFFFFF 16777215 Correct hexadecimal value.

FFFFFFF 268435455 Correct hexadecimal value.

FFFFFFFF 7? Should return -1, but may cause a run time error on 64-bit versions.
FFFFFFFFF 0 Overflow returns zero; this is nine hexadecimal digits.
E 14 Correct hexadecimal value.

FE 254 Correct hexadecimal value.

FFE 4094 Correct hexadecimal value.

FFFE 65534 Correct hexadecimal value.

FFFFE 1048574 Correct hexadecimal value.

FFFFFE 16777214 Correct hexadecimal value.

FFFFFFE 268435454 Correct hexadecimal value.

FFFFFFFE ERROR Run time error, used to return -2.

FFFFFFFFE 0 Overflow returns zero; this is nine hexadecimal digits.

When writing numbers, you don’t need to include leading zeros. For example, 3 and 003 are the same
number. A Long Integer can contain eight hexadecimal digits. If only four digits are written, you can assume
there are leading zeros. When the hexadecimal number is too large for a Long, a zero is returned. The
negative numbers are just as easily explained. The computer’s internal binary representation of a negative
number has the first bit set. The hexadecimal digits 8, 9, A, B, C, D, E, and F all have the high bit set when
represented as a binary number. If the first hexadecimal digit has the high bit set, the returned Long is
negative. A hexadecimal number is positive if it contains fewer than eight hexadecimal digits, and it is
negative if it contains eight hexadecimal digits and the first digit is 8, 9, A, B, C, D, E, or F. Well, this used
to be true.

TIP In 64-bit versions of OO0, CLng generate an error for negative numbers represented as Hexadecimal!
Hopefully this will be fixed. Here are two tests that I expect to print -1. Note: I last tested with OOo
version 3.3.0 and LO 4.0.1.2.

print §HFFFFFFFF

rint CLng ("&HFFFFFFFE") ' Generates an error
P g

The CByte function has the same behavior as CInt and CLng, albeit with a few caveats. The return type,
Byte, is interpreted as a character unless it is explicitly converted to a number. A Byte is a Short Integer that
uses only eight bits rather than the 16 used by an Integer.

Print CByte("65") 'A has ASCII value 65
Print CInt (CByte ("65xx")) '65 directly converted to a number.

103

TIP An integer in VB .NET is equivalent to an OOo Basic Long.

VB uses different rounding rules. Numbers are rounded to the nearest even number when the decimal point
is exactly 0.5; this is called IEEE rounding.

The functions that return a floating-point number all have similar behavior. Numeric expressions are
converted to the closest representable value. Strings that contain non-numeric components generate a run-
time error. For example, CDbl(“13.4e2xx’’) causes a run-time error. CDbl and CSng both generate a run-
time error for hexadecimal and octal numbers that are too large.

Listing 81. CSng and CDbl handle string input.

Print CDbl (12.2) '12.2

Print CSng("12.55el"™) ' 125.5

Print CDbl("-12.2e-1")"'-1.22

Print CSng("-12.5") '-12.5

Print CDbl ("xxyy") ' run-time error
Print CSng("12.1xx") ' run-time error

The functions CDbl and CSng both fail for string input that contains non-numeric data; the Val function does
not. Use the Val function to convert a string to a Double that may contain other characters. The Val function
looks at each character in the string, ignoring spaces, tabs, and new lines, stopping at the first character that
isn’t part of a number. Symbols and characters often considered to be parts of numeric values, such as dollar
signs and commas, are not recognized. The function does, however, recognize octal and hexadecimal
numbers prefixed by &O (for octal) and &H (for hexadecimal).

The Val function treats spaces differently than other functions treat spaces; for example, Val(“ 12 34”)
returns the number 1234; CDbl and CSng generate a run-time error, and Clnt returns 12 for the same input.

Listing 82. Treatment of spaces is different.
Sub NumsAreDifferent

On Error GoTo ErrorHandler:

Dim s$
s = "val("" 12 34"") ="
s =s & Val(" 12 34M)
s = s & CHR$(10) & "CInt(""™ 12 34"") ="
s = s & CInt(" 12 34™)
s = s & CHR$(10) & "CLng(""™ 12 34"") ="
s = s & CLng(" 12 34™)
s = s & CHR$(10) & "CSng(""™ 12 34"") ="
s = s & CSng(" 12 34™)
s = s & CHR$(10) & "CDbl ("™ 12 34"") ="
s = s & CDbl(" 12 34™)
MsgBox s
Exit Sub
ErrorHandler:
s = s & " Error: " & Error

Resume Next
End Sub

TIP The Val function does not use localization while converting a number so the only recognized decimal
separator is the period; the comma can be used as a group separator but is not valid to the right of the
decimal. Use CDbl or CLng to convert numbers based on the current locale. In case you forgot, the locale
is another way to refer to the settings that affect formatting based on a specific country. See Listing 83.

104

Listing 83. The Val function is the inverse of the Str function.
Sub ExampleVal

Print Val("™ 12 34") '1234
Print Vval("12 + 34™) '12
Print Val("-1.23e4") '-12300
Print Val (" &FE") '0
Print Val (" &HEFFE") '255
Print Val ("&HFFFF") '-1
Print Val ("&HFFFE") '-2
Print Val ("&H3FFFE") '-2, vyes, it really converts this to -2
Print Val ("&HFFFFFFFFFFEFEFEF") '-1
End Sub

As of version 1.1.1, the behavior of the Val function while recognizing hexadecimal or octal numbers is

strange enough that I call it a bug. Internally, hexadecimal and octal numbers are converted to a 32-bit Long
Integer and then the least significant 16 bits are converted to an Integer. This explains why in Listing 83 the
number H3FFFE is converted to -2, because only the least significant 16 bits are recognized — in case you

forgot, this means the rightmost four hexadecimal digits. This strange behavior is demonstrated in Listing
84. The output is explained in Table 29.

Listing 84. ExampleValWithHex.

Sub ExampleValWithHex
Dim s$, 1%

Dim 1 As Long

Dim v ()

v() = Array("&HF", "SHFF", "SHFFF", "SHFFFE",
"gHFFFFE", "gHFFFFFF", "GHFFFFFFF", "HFFFFFFEE",
"SHFFFFFFFFE",

"SHE", "SHFE", "SHFFE", "SHFFFE",
"SHFFFFE", "gHFFFFFE", "gHFFFFFFE", "§HFFFFFFFE",
"&HFFFFFFFFE", "&H111111111"™, "&H1111")

For i1 = LBound(v()) To UBound(v())

s =s & "Val(" & v(i) & ") =" & Val(v(i)) & CHRS$(10)

Next

'This worked in 0OOo 2.x, but, it

' fails in 0Oo 3.2.1

'l = "gH" & Hex (-2)

s = s & CHR$(10) & "Hex(-1) = " & Hex(-1) & CHRS$(10)

s = s & "Hex(-2) = " & Hex(-2) & CHRS(10)

's = s & "l = gH" & Hex(-2) & " ==> " & 1 & CHRS$(10)

MsgBox s

End Sub
Table 29. Output from Listing 84 with explanatory text.
Input Output Explanation
F 15 Hexadecimal F is 15.
FF 255 Hexadecimal FF is 255.
FFF 4095 Hexadecimal FFF is 4095.
FFFF -1 Hexadecimal FFFF is -1 for a 16-bit (two-byte) integer.
FFFFF -1 Only the rightmost two bytes (four characters) are recognized.
E 14 Hexadecimal E is 14.

105

Input Output Explanation

FE 254 Hexadecimal FE is 254.

FFE 4094 Hexadecimal FFE is 4094.

FFFE 2 Hexadecimal FFFE is -2 for a 16-bit (two-byte) integer.
FFFFE -2 Only the rightmost two bytes are recognized.

FFFFFE 2 Only the rightmost two bytes are recognized.

FFFFFFE -2 Only the rightmost two bytes are recognized.
FFFFFFFE 2 Only the rightmost two bytes are recognized.
HFFFFFFFFE | -2 Only the rightmost two bytes are recognized.
111111111 4639 Correct value, right most two bytes only.

1111 4639 Correct value

Val converts hexadecimal numbers, but, it only uses the rightmost two bytes.

Use the functions CByte, CInt, CLng, CSng, and CDbl to convert a number, string, or expression to a
specific numeric type. Use the functions Int and Fix to remove the decimal portion and return a Double. A
string expression that does not contain a number evaluates to zero. Only the portion of the string that
contains a number is evaluated. See Table 30.

Table 30. Remove the decimal portion of a floating-point number.
Function Type Description

Double Round the number toward negative infinity.

Double Chop off the decimal portion.

The functions Int and Fix differ only in their treatment of negative numbers. Fix always discards the
decimal, which is equivalent to rounding toward zero. Int, on the other hand, rounds toward negative
infinity. In other words, “Int(12.3)” is 12 and “Int(-12.3)” is -13.

Print Int (12.2) '12
Print Fix(12.2) 12
Print Int("12.5") ' 12
Print Fix("12.5") '12
Print Int ("xxyy") "0
Print Fix("xxyy") ' 0
Print Int(-12.4) '-13
Print Fix(-12.4) '-12
Print Fix("-12.1xx")'-12
Print Int("-12.1xx")'-13

The CCur function converts a numerical expression to a currency object. Visual Basic .NET removed
support for the CCur function as well as the Currency data type. OOo Basic still supports the Currency data

type.

106

4.5. Number to string conversions

String conversion functions, shown in Table 31, change non-string data into strings. In OOo, text is stored as

Unicode version 2.0 values, providing good support for multiple languages. Each String variable can hold

up to 65,535 characters.

Table 31. String
Function Description

conversion functions.

Convert from a number to a String with no localization.

Convert anything to a String. Numbers and dates are formatted based on locale.

Return the hexadecimal representation of a number as a String.

Return the octal representation of a number as a String.

4.6. Simple formatting

Use the CStr function to generally convert any type to a String. The returned value is dependent upon the
input data type. Boolean values convert to the text “True” or “False.” Dates convert to the short date format
used by the system. Numbers are converted to a string representation of the number. See Listing 85.

Listing 85. Output from CStr is locale specific; this is English (USA).

Dim n As Long, d As Double, b As Boolean

n = 999999999 : d = EXP(1.0) : b = False
Print "X" & CStr(b) 'XFalse

Print "X" & CStr(n) 'X999999999

Print "X" & CStr (d) 'X2.71828182845904

Print "X" & CStr (Now) 'X06/09/2010 20:24:24 (almost exactly 7 years after 1°° edition)

The CStr function performs simple number formatting with knowledge of the current locale. Simple
conversion of a number to a string is done with Str. Although the Str function is designed to deal specifically
with numeric values, the output is very similar to CStr. When the Str function converts a number to a string,
a leading space is always included for the sign of the number. A negative number includes the minus sign,
and no leading empty space is present. A non-negative number, on the other hand, includes a leading empty
space. The output of Str is not locale specific; a period is always used as the decimal separator. See Listing
86.

Listing 86. Output from Str is not dependent upon locale.
Dim n As Long, d As Double, b As Boolean

n = 999999999 : d = EXP(1.0) : b = False

Print "X" & Str (b) 'XFalse

Print "X" & Str(n) 'X 999999999

Print "X" & Str(d) 'X 2.71828182845904

Print "X" & Str(Now) 'X06/09/2010 20:28:48 (almost exactly 7 years after 1°° edition)

The output from the code in Listing 85 and Listing 86 is the same except for a leading space in front of the
non-negative numbers. If you run the code using a different locale, such as Germany, the output changes for
Listing 85 but not Listing 86.

TIP There is little reason to use Str rather than CStr. Str may run a bit faster, but CStr knows about your current
locale.

107

To demonstrate that CStr is locale specific, I changed my locale to German (Germany) and then ran the code
in Listing 85 again. Listing 87 shows that the decimal is now expressed as a comma and that the date is now
expressed as MM.DD.YYYY.

Listing 87. Output from CStr is locale specific; this is German (Germany).
Dim n As Long, d As Double, b As Boolean

n = 999999999 : d = EXP(1.0) : b = False
Print "X" & CStr(b) 'XFalse

Print "X" & CStr(n) 'X999999999

Print "X" & CStr(d) 'X2,71828182845904
Print "X" & CStr (Now) 'X14.08.2010 20:39:49

4.7. Other number bases, hexadecimal, octal, and binary

OOo Basic provides the functions Hex and Oct to convert a number to hexadecimal and octal. No native
support is provided for a conversion to and from binary. You can’t directly use the output from Hex and Oct
to convert the string back to a number because it is missing the leading “&H” and “&0O”.

Print Hex (447) '1BF
Print CInt ("&H" & Hex (747)) '747
Print Oct (877) '1555

Print CInt("&0" & Oct(213)) '213

The source code for Chapter 2 contains the function IntToBinaryString, which converts an integer to a binary
number in the Operators module in the source code file SC02.sxw. The function is very flexible but it isn’t
particularly fast. A faster routine using the Hex function is shown in Listing 88.

Listing 88. IntToBinaryString.
Function IntToBinaryString(ByVal x As Long) As String

Dim sHex As String
Dim sBin As String
Dim i As Integer
sHex = Hex (x)
For i=1 To Len (sHex)
Select Case Mid(sHex, i, 1)

Case "0O"

sBin = sBin & "0000"
Case "1"

sBin = sBin & "0001"
Case "2"

sBin = sBin & "0010"
Case "3"

sBin = sBin & "0011"
Case "4"

sBin = sBin & "0100"
Case "5"

sBin = sBin & "0101"
Case "6"

sBin = sBin & "0110"
Case "7"

sBin = sBin & "0111"
Case "8"

sBin = sBin & "1000"
Case "9"

108

sBin = sBin & "1001"

Case "A"

sBin = sBin & "1010"
Case "B"

sBin = sBin & "1011"
Case "C"

sBin = sBin & "1100"
Case "D"

sBin = sBin & "1101"
Case "E"

sBin = sBin & "1110"
Case "EF"

sBin = sBin & "1111"
End Select
Next
IntToBinaryString = sBin
End Function

The code in Listing 88 may be long, but it’s very simple. There is a correlation between hexadecimal digits
and binary digits; each hexadecimal digit is composed of four binary digits. This relationship does not exist
for base 10 numbers. The number is converted to a hexadecimal number using the Hex function. Each
hexadecimal digit is converted to the corresponding binary digits. To convert a binary number in String form
back to an Integer, use the code in Listing 89.

TIP This routine fails with negative numbers because CLng() OOo 3.3.0 fails with Hex numbers representing
negative long values.

Listing 89. BinaryStringToLong.
Function BinaryStringToLong(s$) As Long
Dim sHex As String
Dim sBin As String
Dim i As Integer
Dim nLeftOver As Integer
Dim n As Integer

n = Len(s$)
nLeftOver = n MOD 4
If nLeftOver > 0 Then
sHex = SmallBinToHex (Left (s$, nLeftOver))
End If
For i=nLeftOver + 1 To n Step 4
sHex = sHex & SmallBinToHex (Mid(s$, i, 4))
Next
BinaryStringToLong = CLng("&H" & sHex)
End Function

Function SmallBinToHex (s$) As String
If Len(sS$S) < 4 Then s$ = String(4-Len(s$), "0") & s$
Select Case s$

Case "0000"
SmallBinToHex = "0O"

Case "0001"
SmallBinToHex = "1"

109

Case "0010"

SmallBinToHex = "2"
Case "0011"
SmallBinToHex = "3"
Case "0100"
SmallBinToHex = "4"
Case "0101"
SmallBinToHex = "5"
Case "0110"
SmallBinToHex = "6"
Case "0O111"
SmallBinToHex = "7"
Case "1000"
SmallBinToHex = "8"
Case "1001"
SmallBinToHex = "9"
Case "1010"
SmallBinToHex = "A"
Case "1011"
SmallBinToHex = "B"
Case "1100"
SmallBinToHex = "C"
Case "1101"
SmallBinToHex = "D"
Case "1110"
SmallBinToHex = "E"
Case "1111"
SmallBinToHex = "F"

End Select
End Function

To convert a binary string to an Integer, the number is first converted to a hexadecimal number. A set of four
binary digits correspond to a single hexadecimal digit. The number is padded on the left with zeros so that
the string can be broken up into blocks of four binary digits. Each block of four binary digits is converted to
a single hexadecimal digit. The CLng function is then used to convert the hexadecimal number to decimal
form. The routine in Listing 90 demonstrates the use of these functions; also see Figure 42.

Listing 90. ExampleWholeNumberConversions.

Sub ExampleWholeNumberConversions

Dim s As String

Dim n As Long

Dim nAsHex$, nAsOct$, nAsBin$

s = InputBox ("Number to convert:", "Long To Other", "1389")

If IsNull(s) Then Exit Sub

If Len(Trim(s)) = 0 Then Exit Sub

n = CLng(Trim(s)) 'Trim removes leading and trailing spaces

nAsHex = Hex (n)

nAsOct = Oct (n)

nAsBin = IntToBinaryString(n)

s = "Original number = " & CStr(n) & CHRS$(10) &
"Hex (" & CStr(n) & ") = " & nAsHex & CHRS$(10)
"Oct (" & CStr(n) & ") =" & nAsOct & CHRS (10)
"Binary (" & CStr(n) & ") = " & nAsBin &

&_
&7

110

" ==> " & BinaryStringToLong (nAsBin)
MsgBox (s, 0, "Whole Number Conversions")
End Sub

[E-~ Whole Number Conversions

Original number = 1389

Hex(1389) = 56D

Oct(1389) = 2555

Binary(1389) = 010101101101 ==> 1389

L I

Figure 42. Convert a whole number to hexadecimal, octal, and binary.

4.8. Random numbers

OOo Basic generates floating-point random numbers ranging from 0 through 1. Random numbers generated
by computers aren’t, in general, random. An algorithm is used that generates “random numbers” based on a
previous random number. The first number on which all other random numbers are based is called the
“seed.” You use the Randomize function to specify the seed value. If a value is omitted, the Randomize
function uses a value obtained from the system timer. Specifying the starting seed allows you to test
programs and generate the same sequence of random numbers each time.

The Rnd function is used to generate the random numbers between 0 and 1. The OOo help claims that the
Rnd function accepts an argument; I checked the source code for the Rnd function, which has not changed
from version 1.x through 3.2.1, and the argument is ignored.

TIP The included help files incorrectly claim that the Rnd function accepts an argument that affects the
behavior. The argument is, and always has been, ignored.

Print Rnd () 'Some number from 0 through 1
Print Rnd () 'Another number from 0 through 1

The random number generated is some number from 0 through 1. To obtain a different range, perform a few
mathematical operations. For example, multiplying a number between 0 and 1 by 10 yields a number
between 0 and 10. To use a range that does not start at 0, add an appropriate offset. See Listing 91.

Listing 91. Return a random number in a range.
Function RndRange (lowerBound As Double, upperBound As Double) As Double

RndRange = lowerBound + Rnd() * (upperBound - lowerBound)
End Function

Use an appropriate function, such as Clnt or CLng, if you want a whole number rather than a floating-point
number.

CLng (lowerBound + Rnd() * (upperBound - lowerBound))

I had two functions that solved the same problem — determining the GCD (Greatest Common Divisor) of
two integers — and I wanted to know which was faster. I generated random integers and called each routine
a few thousand times. While performing timing tests, it’s important to use the same data for each trial. I was
able to use random numbers because the Randomize statement allows me to generate the same random
numbers every time.

Randomize (2) 'reset the random number generator to a known state

tl = getSystemTicks ()

111

For i = 0 To 30000

nl = CLng (10000 * Rnd())
n2 = CLng (10000 * Rnd())
call gcdl(nl, n2)
Next
total time 1 = getSystemTicks() - tl
Randomize (2) 'reset the random number generator to a known state

tl = getSystemTicks ()
For i = 0 To 30000
nl = CLng (10000 * Rnd())
n2 = CLng (10000 * Rnd())
call gcd2(nl, n2)
Next
total time 2 = getSystemTicks() - tl

4.9. Conclusion

The standard mathematical functions in OpenOffice.org Basic contain few surprises. The conversion
functions work well, with some idiosyncrasies while converting strings to numbers. Be certain to choose a
function that can handle the format and the ranges used. Rounding is another issue that requires special
attention. Although the rounding behavior is documented and consistent, different functions and operators
cause rounding to occur differently.

112

5. Array Routines

This chapter introduces the subroutines and functions supported by OOo Basic that are used to manipulate
arrays. It covers methods for manipulating arrays, creating arrays with data, creating arrays with no data, and
changing the dimension of arrays. This chapter also presents methods to inspect array variables.

An array is a data structure in which similar elements of data are arranged in an indexed structure — for
example, a column of names or a table of numbers. OOo Basic has subroutines and functions that change
array dimensions, inspect existing arrays, and convert between arrays and scalar (non-array) data types.

The majority of the routines listed in Table 32 require an array variable as the first argument. Array variables
used as arguments to routines can be written with trailing parentheses. Parentheses after the variable are
optional, but they used to be required (see Listing 92).

TIP

There is no way to determine if a() refers to an array or a function while reading code; you must find where
the item in question is declared.

Listing 92. Parentheses are not always required but are always allowed.
Sub AreArrayParensRequired

Dim a(l To 2) 'a() i1s declared with specified dimensions
Dim b () 'b() is declared as an array without specified dimensions
Dim c 'c is a variant and may reference an array.

c = Array(l, 2) 'c references a Variant array
Print IsArray(a()) 'True
Print IsArray(b()) 'True
Print IsArray(c()) 'True
Print IsArray(a) 'True
Print IsArray (b) 'True
Print IsArray(c) 'True
End Sub
Table 32. Summary of subroutines and functions related to arrays.

Function Description

Array(args) Return a Variant array that contains the arguments.

DimArray(args) Return an empty Variant array. The arguments specify the dimension(s).
IsArray(var) Return True if this variable is an array, False otherwise.

Join(array) Concatenate the array elements separated by the optional string delimiter and

Join(array, delimiter) return as a String. The default delimiter is a single space.

LBound(array)
LBound(array, dimension)

ReDim [Preserve] var(args) [As Type]

Split(str)

Split(str, delimiter)
Split(str, delimiter, n)
UBound(array)
UBound(array, dimension)

Return the lower bound of the array argument. The optional dimension specifies
which dimension to check. The first dimension is 1.

Change the dimension of an array using the same syntax as the DIM statement.
The keyword Preserve keeps existing data intact. “As Type” is optional.

Split the string argument into an array of strings. The default delimiter is a space.
The optional argument n limits the number of strings returned.

Return the upper bound of the array argument. The optional dimension specifies
which dimension to check. The first dimension is 1.

113

The word “dimension” is used to refer to arrays similarly to the way that “dimensions” is used to refer to
spatial dimensions. For example, an array with one dimension is like a line; you can set boxes along the line
that represent data. An array with two dimensions is like a grid with rows and columns of data.

Dim a(3) As Integer 'One-dimensional array
Dim b (3 To 5) As String 'One-dimensional array
Dim c (5, 4) As Integer 'Two-dimensional array
Dim d(1 To 5, 4) As Integer 'Two-dimensional array

5.1. Array() quickly builds a one-dimensional array with data

Use the Array function to quickly build a Variant array with data. The Array function returns a Variant array
that contains the arguments to the function. See Listing 93. This is an efficient method to create a Variant
array containing a predefined set of values. One entry in the array is created for each argument.

Use the Array function to quickly generate an array that already has data. The following code creates an
array with five elements, zero through four, and then individually initializes each element.
Dim v (4)

v(0) =2 : v(l) = "help": v(2) = Now : v(3) = True : v(4) = 3.5

This can be done in a much simpler manner. Constants can be used as arguments to functions. You aren’t
always forced to assign a value to a variable so that you can call a function.

Dim v ()

Dim FirstName$: FirstName = "Bob"

v() = Array(0, "help", Now, True, 3.5)

Print Join(Array("help", 3, "Joe", Firstname))

The argument list is a comma-separated list of expressions, which can be of any type because each element
in the returned array is a variant.

Listing 93. The Array function returns a Variant array.

Dim vFirstNames 'A Variant can reference an array

Dim vAges () 'A Variant array can reference an array
vFirstNames = Array("Tom", "Rob") 'Array contains strings

vAges = Array (18, "Ten") 'Array contains a number and a string
Print vAges (0) 'First element has the value 18

Variant variables can contain any type, including an array. I frequently use variant variables when I retrieve
values from methods when I’m not certain of the return type. I then inspect the type and use it appropriately.
This is a convenient use of the Variant variable type. Because a Variant variable can contain any type —
including an array — each element in a Variant array can also contain an array. The code in Table 33
demonstrates placing an array inside another array. The code in each column is roughly equivalent.

TIP Although user defined structures cannot contain arrays, they can contain a variant, which can contain an
array.

One advantage of Variant arrays is that it’s possible to easily build collections of information of different
types. For example, the item description (String), stock-tracking ID (Integer), and invoice amount (Double
or Currency) can readily be stored as rows in an array, with each type of data stored in a single row for each
customer. This allows array rows to behave more like rows in a database. Older programming languages
required use of separately declared arrays for each data type, with added programming overhead of
managing the use of multiple, related arrays of data.

114

Table 33. A Variant can contain an array, so these accomplish the same thing.

Dim v (1) Dim v ()
v(0) = Array(l, 2, 3) v = Array(Array(l, 2, 3),
v(l) = Array("one", "two", "three") Array ("one", "two", "three"))

In OOo version 1.x, to address an array containing an array, you had to first extract the contained array, and
then subscript the contained array. Much of my existing code was written based on this.

Listing 94. Cumbersome method to subscript an array in an array.

v = Array (Array(l, 2, 3), Array("one", "two", "three"))
x = v (0) 'This i1s very cumbersome.
Print x (1) 'Prints 2

Somewhere between version 2.x and 3.x, the obvious solution was introduced; you can directly access the
contained array. This is particularly useful while using data arrays returned by Calc containing cell data.

Listing 95. In OOo 3.x, you no longer need to extract the contained array to use it.
Sub ArrayInArray

Dim v () : v = Array(Array(l, 2, 3), Array("one", "two", "three"))
Print v (0) (1)
End Sub

Although it’s easy to create an array inside of an array, it’s typically easier to use an array with multiple
dimensions, as shown in Listing 96. The “array of arrays” construction is sometimes useful, if there is an
obvious relationship with the natural organization of the data. Generally, it is best to select a way to organize
the data that has the most direct, natural, and memorable relationship to how it is produced, used, and
manipulated.

Listing 96. It is easier to use multi-dimensioned arrays than arrays inside of arrays.
Dim v(0 To 1, 0 To 2)

v(0, 0) =1 : v(0, 1) = 2 : v(0, 2) =3
v(l, 0) = "one" : v(l, 1) = "two" v(l, 2) = "three"
Print v (0, 1) 'prints 2

A Variant array can be assigned to any other array, regardless of its declared type. Assigning one array to

another causes one array to reference the other; they become the same array. As mentioned earlier, this is a
bad idea. This is considered a bug and it may not be allowed in later versions of OOo Basic. Use the Array
function and enjoy the flexibility, but assign the returned Variant array to either a Variant or a Variant array.

Listing 97. Assign an string array to an integer array.
Sub BadArrayTypes

Dim a(0 To 1) As Integer
Dim b (0 To 1) As String
b(0) = "zero": b(l) = "one"
a() = b()
Print a(0)

End Sub

115

TIP

Assigning a Variant array to variables declared as a non-Variant array is ill-advised. For example, after an

Integer array has been assigned to reference a Variant array, it’s possible to assign non-integer values to
elements in the array. References to the array won’t return the expected values due to the mismatch

between Integer and Variant data types.

Dim a(0 To 4)
a(2)
Print a(2)

a() = Array (4,
a(z)
Print a(2)

= "Tom"

= "Tom"

As Integer

"Bob" ,

' Create an array of Integers.

' Assign a string to an Integer variable.
"0,
' Array always returns a variant array.
"al()
' Tom

because the string is converted to zero.

is now a variant.

5.2. DimArray creates empty multi-dimensional arrays

The DimArray function creates and returns a dimensioned Variant array. This allows the dimensions of the
array to be determined at run time. The arguments specify the dimensions of the array; each argument
specifies one dimension. If no arguments are present, an empty array is created.

The primary use of the DimArray statement is to create an empty, dimensioned Variant array. If you know
the size of the array that you will need, you can declare it when you declare the variable. If you don’t know
the size, and if a Variant array is acceptable, then you can create the empty, dimensioned array at run time.

Listing 98. DimArray returns a dimensioned Variant array that contains no data.

i% = 7
v = DimArray (3*i%)
v = DimArray(i%, 4)

'Same as Dim v (0 To 7,

'Same as Dim v (0 To 21)

0 To 4)

The code in Listing 98 does not show how the variable v is declared. This works equally well if v is declared
as a Variant, or a Variant array. The argument list is a comma-separated list of expressions. Each expression
is rounded to an integer and used to set the range of one dimension of the returned array.

Dim a As Variant
Dim v ()

Dim i As Integer
i=2

a = DimArray (3)

a = DimArray(l+i, 2*1i)

v() = DimArray(l)

v(0) = Array(l, 2, 3)

v(l) = Array("one", "two", "three")
v = DimArray(l, 2)

v(0, 0) =1 v(0o, 1) = 2

v(l, 0) = "one" v(l, 1) = "two"
Print v (0, 1) 'prints 2

'Same as Dim a(0 To 3)
'Same as Dim a(0 To 3, 0 To 4)
'Same as Dim v (0 To 1)

'Oh no,

'You can do it,

not this again!
but yuck!

'Now that makes more sense!
2) =3
2) = "three"

TIP

Option Base 1 has no effect on the dimensions of the array returned by the DimArray function. For each

dimension, the lower bound of the range is always zero and the upper bound is the rounded integer value of

the relevant expression.

116

5.3. Change the dimension of an array

Use ReDim to change the dimensions of an existing array by using the same syntax as the DIM statement.
Increasing the dimension of an array while using the keyword Preserve preserves all of the data, but
decreasing the dimension causes data to be lost by truncation. Unlike some variants of BASIC, OOo Basic
allows all dimensions of an array to be changed while also preserving data.

The primary use of the ReDim statement is to change the dimension of an existing array. If you know the
size of the array that you will need, you can declare it when you declare the variable. If you don’t know the
size ahead of time, you can declare the array with any size, including as an empty array, and then change the
dimension when you know it.

Dim v () As Integer
Dim x(4) As Integer
i% =7

ReDim v (3*1%) As Integer 'Same as Dim v (0 To 21) As Integer.
ReDim x(i%, 1 To 4) As Integer 'Same as Dim x(0 To 7, 1 To 4).

The ReDim statement changes the dimension of an existing array, even an empty one. ReDim specifies both
the dimensions and the type. The type specified with the ReDim statement must match the type specified
when the variable is declared. If the types differ, you’ll see the compile-time error “Variable already
defined.”

Dim a () As Integer 'Empty Integer Array.

Dim v (8) 'Variant array with nine entries.
ReDim v () 'v() is a valid empty array.
ReDim a(2 To 4, 5) As Integer 'a() is a two-dimensional array.

The DimArray function creates and returns a dimensioned Variant array that contains no data. This is not
useful if you require an array of a specific type, or if you simply need to change the dimensions of an
existing array while preserving data. The ReDim statement changes the dimensions of an existing array with
the option of preserving existing data. You can use the ReDim statement to change a dimensioned array to an

empty array.
The subroutine in Listing 99 contains many examples of the ReDim statement using the keyword Preserve.
Figure 43 shows the results of these commands.

Listing 99. Use ReDim with Preserve to change dimension and preserve data.
Sub ExampleReDimPreserve

Dim a(5) As Integer 'A dimensioned array, 0 To 5

Dim b () 'An empty array of type Variant

Dim c () As Integer 'An empty array of type Integer

Dim s$ 'The string that accumulates the output text
REM a 1s dimensioned from 0 to 5 where a(i) = 1

a(0) =0 : a(l)y =1 : a(2) =2 : a(3) =3 : a(4) =4 : a(5) =5

s$ = "a() at start = " & Join(a()) & CHRS$S(10)

REM a is dimensioned from 1 to 3 where a(i) = i

ReDim Preserve a(l To 3) As Integer
s$ = s$ & "ReDim Preserve a(l To 3) = " & Join(a()) & CHRS(10)

ReDim a () As Integer

s$ = s$ & "ReDim a() has LBound = " & _
LBound(a()) & " UBound = " & UBound(a()) & CHRS$(10)

117

REM Array () retu
Rem b is dimensi
b = Array(l, 2,

s$ = s & CHRS (10

REM b is dimensi
Dim 11%, 1iu%

il =1 : iu = 3
ReDim Preserve b
s$ = s$ & "ReDim

ReDim b (-5 To 5)
s$ = s$ & "ReDim
s$ = s$ & "ReDim

LBound (b ())

ReDim b (-5 To 5,
s$ = s$ & "ReDim
LBound (b ())
s$ = s$ & "ReDim
LBound (b (),

rns a Variant type

oned from 0 to 9 where b(i) = i+1

3, 4, 5, 6, 7, 8, 9, 10)

) & "b() at start = " & Join(b()) & CHRS$(10)
oned from 1 to 3 where b(i) = i+1

(11 To iu)

Preserve b(l To 3) =" & Join(b()) & CHRS(10)
b(-5 To 5) =" & Join(b()) & CHRS$(10)

b(-5 To 5) has LBound = " &

& " UBound = " & UBound(b()) & CHRS$S(10) & CHRS(10)
2 To 4)

b(-5 To 5, 2 To 4) has dimension 1 LBound = " &
& " UBound = " & UBound(b()) & CHRS$(10)

b(-5 To 5, 2 To 4) has dimension 2 LBound = " &
2) & " UBound = " & UBound(b(), 2) & CHRS$(10)

MsgBox s$, 0, "ReDim Examples"

End Sub

[§-~ ReDim Examples [x]

a()atstart=012345
ReDim Preserve a(1 To3) =123
ReDim a() has LBound = 0 UBound = -1

b()atstart=123456789 10

ReDim Preserve b(1 To3) =23 4

ReDimb(-5 To 5) =

ReDim b(-5 To S) has LBound = -5 UBound = S

ReDim b(-5 To S5, 2 To 4) has dimension 1 LBound = -5 UBound =5
ReDim b(-5 To S, 2 To 4) has dimension 2 LBound = 2 UBound = 4

il 1

Figure 43. Use ReDim to change the dimensions of an array.

5.4. Array to String and back again

Just as it’s common to convert an array of values into a single string for display, it is also common to split a
string into multiple pieces. OOo Basic provides these abilities with the functions Join and Split.

The first argument to the Join function is a one-dimensional array. Any other dimension causes a run-time
error. The elements in the array are concatenated with an optional delimiter string between each element.

The default delimiter is

a single space.

Join (Array(l, 2, 3)) 'l 2 3 wusing the default delimiter
Join (Array(l, 2, 3), "XM) '1X2X3 specifying a delimiter
Join(Array (1, 2, 3), "") '123 specifying an empty delimiter

118

The Split function returns a Variant array of strings, created by breaking a string into multiple strings based
on a delimiter. In other words, it parses a string into pieces with one command. The delimiter separates
portions of the string. For example, the delimiter “XY” splits “12XY11XY?22” into the strings (“12”, “117,
“22”). The delimiter defaults to a space but can be any string expression with length greater than zero.
Split("1 2 3") 'return Array("1", "2", "3") split on " "
Split ("1, 2, 3", ", ™) 'return Array("1", "2", "3") split on ", "

The optional third argument is used to limit the size of the returned array. This is used only to limit the
returned size and has no effect if the returned size is less than the limit. For example, the 4 in
Split(“1X2X3”, “X”, 4) has no effect because the returned array has only three elements. If the size is
limited, however, the last element in the array contains the remainder of the unparsed string.

Split ("1, 2, 3", ", ", 2) 'return Array("1", "2, 3") split on ", "

TIP The second argument to Split is a string, so, OOo automatically converts it to a string. The statement
Split(“0 1 2 37, 2) converts the 2 to a string and uses it as the delimiter. The returned array contains two
elements, “0 1 and ““ 3”. You must specify the delimiter if you want to specify the number of strings
returned. The correct format is Split(“0 1 2 37, “ ”, 2).

The Split function assumes that a string comes before and after each delimiter, even if the string has length
Zero.

Split(uxlxxzxnl qu) — (Hll, "l", llH, 11211, Hll)

The first returned string is empty because the first argument contains a leading delimiter. Two consecutive
delimiters produce an empty string between the “1”” and the the “2”. Finally, the trailing string is empty
because there is a trailing delimiter.

The Split function is almost the inverse of the Join function. The Join function can use a zero-length string
as the delimiter, but the Split function cannot. If the joined string contains the delimiter, splitting the string
will produce a different set of strings. For example, joining “a b” and “c” with a space produces “a b c”.
Splitting this with a space produces (“a”, “b”, “c”), which is not the original set of strings.

I spent a lot of time writing and debugging a macro to parse through a string to remove all occurrences of the
text “Sbx”. Using Split and Join is significantly smaller and faster:

Join (Split (s, "Sbx"), "")

5.5. Array inspection functions

The most fundamental thing to ask about an array is whether or not it really is an array. The IsArray function
returns True if the argument is an array, and False otherwise. Use the LBound and UBound functions to
determine the lower and upper bounds of an array. An array is empty if the upper bound is less than the
lower bound.

The first argument to LBound and UBound is the array to check. The second optional argument is an integer
expression specifying which dimension is returned. The default value is 1, which returns the lower bound of
the first dimension.

Dim a()

Dim b(2 to 3, -5 To 5)

Print LBound(a()) "0

Print UBound(a()) '-1 because the array is empty

Print LBound(b()) ' 2 no optional second argument so defaults to 1

Print LBound(b(),1) ' 2 optional second argument specifies first dimension

119

Print UBound(b(),2) ' 5

If the value of the second argument doesn’t contain a valid value, if it’s greater than the number of
dimensions, or if it’s less than 1, a run-time error occurs.

Listing 100. SafeUBound will not generate an error.

Function SafeUBound (v, Optional n) As Integer

SafeUBound = -1 'If an error occurs, this is already set

On Error GoTo BadArrayFound 'On error skip to the end

If IsMissing(n) Then 'Was the optional argument used?
SafeUBound = UBound (V)

Else
SafeUBound = UBound (v, n) 'Optional argument is present

End If

BadArrayFound: 'Jump here on error
On Error GoTo O 'Turn off this error handler

End Function

The macro in Listing 100 properly returns -1 if an error occurs. The proper value is returned for invalid
empty arrays, but it also returns -1 if the first argument isn’t an array or if the second argument is simply too
large. The ArrayInfo function in Listing 101 uses a similar technique to return array information about a
variable. Also see Figure 44.

Listing 101. Print information about an array.
REM If the first argument is an array, the dimensions are determined.

REM Special care is given to an empty array that was created using DimArray
REM or Array.

REM a : Variable to check
REM sName : Name of the variable for a better looking string
Function arrayInfo(a, sName$) As String

REM First, verify that:
REM the variable is not NULL, an empty Object
REM the variable is not EMPTY, an uninitialized Variant
REM the variable is an array.
If IsNull(a) Then
arrayInfo = "Variable " & sName & " is Null"

Exit Function

End If
If IsEmpty(a) Then
arrayInfo = "Variable " & sName & " is Empty"
Exit Function
End If
If Not IsArray(a) Then
arrayInfo = "Variable " & sName & " is not an array"

Exit Function
End If

REM The variable is an array, so get ready to work

Dim s As String 'Build the return value in s

Dim iCurDim As Integer 'Current dimension

Dim 1%, J% 'Hold the LBound and UBound values
On Error GoTo BadDimension 'Set up the error handler

iCurDim = 1 'Ready to check the first dimension

120

REM Initial pretty return string

s = "Array dimensioned as " & sName$ & " ("

Do While True 'Loop forever
i = LBound(a(), iCurDim) 'Error if dimension is too large or
J = UBound(a (), iCurDim) 'if invalid empty array
If i > j Then Exit Do 'If empty array then get out
If iCurDim > 1 Then s = s & ", " 'Separate dimensions with a comma
s =s5 &1 &" To" & j 'Add in the current dimensions
iCurDim = iCurDim + 1 'Check the next dimension

Loop

REM Only arrive here if the array is a valid empty array.
REM Otherwise, an error occurs when the dimension is too
REM large and a jump is made to the error handler

REM Include the type as returned from the TypeName function.

REM The type name includes a trailing " ()" so remove this
s =s & ") As " & Left(TypeName (a), LEN(TypeName (a))-2)
arrayInfo = s

Exit Function

BadDimension:
REM Turn off the error handler
On Error GoTo O

REM Include the type as returned from the TypeName function.
REM The type name includes a trailing " ()" so remove this
s =s & ") As " & Left (TypeName (a), LEN(TypeName (a))-2)

REM If errored out on the first dimension then this must
REM be an invalid empty array.
If iCurDim = 1 Then s = s & " *** INVALID Empty Array"
arrayInfo = s

End Function

Sub UseArrayInfo
Dim i As Integer, v
Dim ia(l To 3) As Integer
Dim sa () As Single
Dim m(3, 4, -4 To -1)

Dim s As String

s = s & arrayInfo(i, "i") & CHRS$(10) 'Not an array

s = s & arrayInfo(v, "v") & CHR$(10) 'Empty variant

s = s & arrayInfo(sa(), "sa") & CHRS$(10) 'Empty array

s = s & arrayInfo(Array(), "Array") & CHRS$(10) 'BAD empty array
s = s & arrayInfo(ia(), "ia") & CHRS$(10)

s = s & arrayInfo(m(), "m") & CHRS(10)

MsgBox s, 0, "Array Info"

121

End Sub

[§—~ Array Info [x]
Variable i is not an array

Variable v is Empty

Array dimensioned as sa() As Single

Array dimensioned as Array() As Variant *** INVALID Empty Array
Array dimensioned as ia(1 To 3) As Integer

Array dimensioned as m(0 To 3, 0 To 4, -4 To -1) As Variant

L 1

Figure 44. Use proper error handling to determine the dimension of the array.
An array with one dimension may have an upper bound that is less than the lower bound. This indicates that
the array has no allocated spots for data. This is different than an array that has data locations allocated but
no data has been saved in them. For most data types, such as Integer, if space is allocated for an integer, then
it has a value.

Dim a(3) As Integer 'This array has four integer values, they are all zero

Dim b (3) 'This array has four Variants, they are all Empty
Dim c () 'This array has one dimension and no space Ubound < Lbound
v = Array () 'This array has zero dimensions.

5.6. Conclusion

Array handling in OOo Basic is very flexible. You have the ability to inspect arrays and to change their
dimensions. Using the Variant type in OOo Basic provides a great deal of flexibility for creating collections
of related data of different types. Strings and arrays are related; string arrays can be processed with Join and
Split functions, permitting the creation of compact code that is very powerful for processing string
information.

122

6. Date Routines

This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
dates — including functions to retrieve the current date and time, manipulate dates and times, and perform
timing functions. It also discusses some potentially unexpected behavior around October 4, 1582, and again
around December 30, 1899.

Date variables contain both a date and a time value. OOo Basic stores dates internally as a floating-point
Double. The portion of the number to the left of the decimal contains the date, and the fractional portion to
the right of the decimal contains the time. For example, adding 1 to a date value adds one day to the date.
Adding 1/24 to a date value adds one hour to a date value; remember that there are 24 hours in a day. The
date and time functions supported by OpenOffice.org are listed in Table 34.

Table 34. Functions and subroutines related to dates and times.

Function Type Description

CDate(expression) Date Convert a number or string to a date.

CDateFromIso(string) Date Convert to a date from an ISO 8601 date representation.

CDateTolso(date) String Convert a date to an ISO 8601 date representation.

Date() String Return the current date as a string.

DateAdd Date Add an interval to a date.

DateDiff Integer Returns the number of intervals between two dates.

DatePart Variant Obtain a specific part of a date value.

DateSerial(yr, mnth, day) Date Create a date from component pieces: Year, Month, Day.

DateValue(date) Date Extract the date from a date/time value by truncating the decimal portion.

Day(date) Integer Return the day of the month as an Integer from a Date value.

FormatDateTime String Format the date and time as a string. Requires OptionCompatible.

GetSystemTicks() Long Return the number of system ticks as a Long.

Hour(date) Integer Return the hour as an Integer from a Date value.

IsDate(value) Boolean | Is this (value, converted to a string) a date?

Minute(date) Integer Return the minute as an Integer from a Date value.

Month(date) Integer Return the month as an Integer from a Date value.

MonthName String Return the name of the month based on an integer argument (1-12).

Now() Date Return the current date and time as a Date object.

Second(date) Integer Return the seconds as an Integer from a Date value.

Time() Date Return the time as a String in the format HH:MM:SS.

Timer() Date Return the number of seconds since midnight as a Date. Cast this to a
Long.

TimeSerial(hour, min, sec) Date Create a date from component pieces: Hours, Minutes, Seconds.

TimeValue(“HH:MM:SS”) Date Extract the time value from a date; a pure time value between 0 and 1.

WeekDay(date) Integer Return the integer 1 through 7 corresponding to Sunday through
Saturday.

WeekdayName String Return the day of the week based on an integer argument (1-7).

Year(date) Integer Return the year as an Integer from a Date value.

123

6.1. Compatibility issues

When OOo added a number and a date, the result was always a date. LibreOffice changed this behavior to
always return a number. After breaking existing macros, LibreOffice changed the code so that some
combinations involving a date and a number return a date. If existing code fails, explicitly cast the result to a
date:

CDate (2 + Now)

6.2. Retrieve the current date and time

OOo Basic has functions to determine the current date and time: Date, Time, and Now (described in Table
35). The Date and Time functions return a string with the current date and time, respectively. The strings are
formatted based on the current locale (Tools | Options | Language Settings | Languages; and then set the
locale). The Now command returns a Date object that contains both the current date and the current time.

TIP Now returns a Date object, which internally is stored as a Double. The functions Date and Time both return
a String.

Table 35. Date and time functions in OQOo Basic.

Function Description

Date Return the current date as a String.

Now Return the current date and time as a Date object.
Time Return the current time as a String.

Printing the date and time is easy.

Print Date
Print Time
Print Now

6.3. Dates, numbers, and strings

0OO0o Basic recognizes dates in two different string formats. The obvious format is set by the locale. A less
obvious format is the ISO 8601 date format. String formats are always assumed to be in a locale-specific
format except for routines specific to the ISO 8601 format. Arguments passed to the date and time functions
are converted to an appropriate type if possible. As a result, most of the functions in Table 36 accept string,
numeric, and date arguments.

Table 36. Date and string conversion functions

Function Description

CDate Convert a number or string to a date.

DateValue Convert a formatted string from December 1, 1582 through December 31, 9999 to a Date
value that contains no time.

CDateFromlIso Convert to a date from an ISO 8601 date representation.

CDateTolso Convert a date to an ISO 8601 date representation.

IsDate Is this string a properly formatted date?

124

Use the IsDate function to test if a string contains a valid date. The argument is always converted to a string
before it is used, so a numeric argument will return False. The IsDate function tests more than just syntax —
it checks to see if the string contains a valid date. For example, “02/29/2003 fails because February 2003
contains only 28 days. The same validity check is not performed on the time component of the string (see
Listing 102 and Listing 103).

Listing 102. IsDate verifies that a string contains a valid date.
Print IsDate ("December 1, 1582 2:13:42") 'True

Print IsDate("2:13:42") 'True

Print IsDate("12/1/1582") 'True

Print IsDate (Now) 'True

Print IsDate("26:61:112") 'True: 112 seconds and 61 minutes!!!
Print IsDate (True) 'False: Converts to string first
Print IsDate(32686.22332) 'False: Converts to string first
Print IsDate("02/29/2003") 'False: Only 28 days in February 03

The apparent inconsistency with the IsDate function is that “02/29/2003” is an invalid date but “26:61:112”
is valid. With time values, if a section of the time is too large, it is simply added to the next section. For
example, 61 minutes is one hour and one minute. Again, 112 seconds adds one minute and 52 seconds to the
final computed time value. This is demonstrated in Listing 103 and shown in Figure 45. Notice that, in line
two, 30 hours becomes six hours and the day is incremented by one.

Listing 103. Converting time is strange.
Sub ExampleTimeConversions

On Error GoTo Oops:

Dim Dates ()

Dim i As Integer

Dim s As String

Dates() = Array("1/1/1 00:00:00 ", "1/1/1 22:40:00 ", "1/1/1 30:40:00 ",
"1/1/1 30:100:00 "™, "1/1/1 30:100:100")

For 1 = LBound(Dates()) To UBound(Dates())

s = s & CStr(i) & " " & Dates(i) & " => "
s = s & CDate(Dates (1))
s = s & CHRS$(10)

Next

MsgBox s, 0, "Strange Time Values"

Exit Sub

Oops:

s = s & " Error"

Resume Next
End Sub

~

[=]strangelTimelValues] e
0 1/1/1 00:00:00 == 01/01/2001
1
2
3
il

1/1/1 22:40:00 == 01/01/2001 22:40:00
1/1/1 30:40:00 == 01/02/2001 06:40:00
1/1/1 30:100:00 == 01/02/2001 07:40:00
1/1/1 30:100:100 == 01/02/2001 07:41:40

Figure 45. What appear to be invalid times are valid.

125

Apart from the strange behavior with respect to time, dates and times are converted with no problems except
for invalid dates during the skip from the Julian to the Gregorian calendar.

6.4. Locale formatted dates

Use the CDate function to convert a string or number to a date. The CDate function performs a locale-
specific conversion including the time component. The DateValue function removes the time portion by
removing the fractional portion of the underlying Double. This causes unexpected results with some date
values. See Listing 104.

Listing 104. CDate returns a date and a time; DateValue removes the time.
Print Now 'for example, 08/16/2003 16:05:53

Print DateValue (Now) 'for example, 08/16/2003

The default language on the computers that [use is “English USA.” To use a different locale, select Tools |
Options | Language Settings | Languages to open the Languages tab on the Options dialog. Then choose a
locale.

To test different locales, use the code in Listing 105.

Listing 105. Print date-related information dependent on current locale.
Dim d As Date

d = CDhate("1/2/3") 'You can use 1.2.3 or 1/2/3 regardless of locale
Print d 'Prints locale specific

Print Year (d)

Print Month (d)

Print Day(d)

I ran the code in Listing 105 using four different locales: English USA, English UK, French France, and
German Germany. The results are shown in Table 37. The format used to print a date is locale-specific, as
you can see in the Germany column. The CDate function accepts dates formatted using the period as a
separator, even for the USA locale. Initializing d using CDate("1.2.3") rather than CDate("1/2/3") does not
change the output in Table 37.

Table 37. Locale affects the date.

France Germany
Print d “01/02/2003” “01/02/2003” “01/02/2003” “01.02.2003”
Print Year (d) 2003 2003 2003 2003
Print Month (d) 1 2 2 2
Print Day (d) 2 1 1 1

6.5. ISO 8601 dates

The International Standard ISO 8601 specifies the numeric representations of date and time. This standard
notation helps to avoid confusion in international communication caused by numerous different notations,
and increases the portability of computer user interfaces. In addition, these formats have several important
advantages for computer usage compared to other traditional date and time notations.

The international standard date notation is YYYY-MM-DD, which is a four-digit year followed by a two-
digit month and a two-digit day. The year is based on the usual Gregorian calendar. For example, March 8,
2003 is written as 2003-03-08. The separators are optional, so you could also express the date as 20030308;

126

this is the format returned by CDateTolSO. See Listing 121. Other components of the date format are
beyond the scope of this book. The ISO format has several advantages:

ISO 8601 is easily comparable and sortable with a string comparison. This is why I prefer this format
when appending dates to file names.

ISO 8601 is easily readable and writable by software because no translation to and from month
names is required.

ISO 8601 is language and locale independent.

There is no ambiguity compared to other date formats. For example, in other formats, there’s often a
question as to whether the month or the day is listed first. The convention in Europe, for example, would
express the fifth day of June in 2003 as 5/6/03, while in the United States — and North and South America,
generally — the same date would commonly be expressed as 6/5/03. The opportunity for confusion is great,
especially around the time bills are due near the beginning of each month! This is illustrated by the Month
and Day row entries shown in Table 37. Listing 106 Converts the same data to the appropriate ISO 8601
string .

Listing 106. Convert to ISO 8601.

Sub ExampleCDateToISO

Print CDateToISO("12/30/1899") '18991230

Print CDateToISO (Now) '20100816

Print CDateFromISO("20030313") '03/13/2003
End Sub

6.6. Problems with dates

Date and time information usually requires little thought. Just use the date and time functions and the correct
expected results are produced. Unfortunately, this falls apart as your dates start moving back in time. Three
specific dates and times are of interest for each function:

December 30, 1899 at 00:00:00, when the internal Date representation is a numerical zero. Any pure
time value (without a date component) appears to occur on December 30, 1899.

October 4, 1582, when the Julian calendar was dropped.
October 15,1582, when the Gregorian calendar begins.

Various calendar systems have been used at different times and places around the world. The Gregorian
calendar, on which OOo Basic is based, is used almost universally. The predecessor to the Gregorian
calendar is the Julian calendar. The two calendars are almost identical, differing only in how they handle
leap years. The Julian calendar has a leap year every fourth year, while the Gregorian calendar has a leap
year every fourth year except century years that aren’t exactly divisible by 400.

The change from the Julian calendar to the Gregorian calendar occurred in October of 1582, based on a
scheme instituted by Pope Gregory XIII. The Julian calendar was used through October 4, 1582, at which
point 10 days were skipped and it became October 15, 1582. Typically, for dates on or before 4 October
1582, the Julian calendar is used; for dates on or after 15 October 1582, the Gregorian calendar is used.
Thus, there is a 10-day gap in calendar dates, but no discontinuity in Julian dates or days of the week.
Astronomers, however, typically use Julian dates because they don’t have a 10-day gap; discontinuous dates
do not typically work well in numerical calculations. As seen in Listing 116, Dates are printed based on the
Gregorian calendar, but when the component parts are extracted, they are based on the Julian date.

127

The ISO 8601 standard, introduced to standardize the exchange of date and time-related data, introduces a
complication. The standard states that every date must be consecutive, so changing to the Julian calendar
violates the standard (because at the switchover date, the dates would not be consecutive).

The following examples demonstrate converting a date / time with CDate, DateValue, and CDateToISO. The
DateValue operates on the value returned from CDate. The standard values work as expected (see Table 38).
January 1, 2001 is 36892 days after December 30, 1899, and January 1, 1900 is 2 days after December 30,
1899.

Table 38. Dates after January 1, 1900 work fine.

Date / Time DateValue CDate CDateTolSO
01/01/1900 12:00 AM 2 2 19000101
01/01/1900 06:00 AM 2 2.25 19000101
01/02/1900 12:00 AM 3 3 19000102
01/02/1900 06:00 AM 3 3.25 19000102
01/01/2001 12:00 AM 36892 36892 20010101
01/01/2001 06:00 AM 36892 36892.25 20010101
01/01/2001 12:00 PM 36892 36892.5 20010101

Values near December 30, 1899 reveals some bugs.

1) DateValue generates an error on December 30, 1899. This may be intentional so that DateValue
generates an error on a pure time value, which cannot be distinguished from a date/time on
December 30, 1899.

2) DateValue returns an incorrect answer for all dates before December 30, 1899 for all time values
other than midnight.

3) CDateTolSO returns an incorrect answer for all dates before January 1, 1900 for all time values other
than midnight.

4) CDateTolSO has an exceptional failure on on December 31, 1899 for times after midnight.

Table 39. Dates near December 30, 1899 are a problem.
Date / Time DateValue CDate CDateTolSO

12/28/1899 12:00 AM -2 -2 18991228
12/28/1899 06:00 AM -1 -1.75 18991229
12/29/1899 12:00 AM -1 -1 18991229
12/29/1899 06:00 AM Error -0.75 18991230
12/30/1899 12:00 AM Error 0 18991230
12/30/1899 06:00 AM Error 0.25 18991231
12/31/1899 12:00 AM 1 1 18991231
12/31/1899 06:00 AM 1 1.25 18991201

Purely invalid dates generate an error as they should; for example, dates between the end of the Julian
calendar and the start of the Gregorian calendar. Issues with DateValue and CdateToISO continue when the
time is not midnight.

128

Table 40. Nothing special about dates near the Julian / Gregorian calendar change.
Date / Time DateValue CDate CDateTolSO

10/04/1582 12:00 AM -115859 -115859 15821014
10/04/1582 06:00 AM -115858 -115858.75 15821015
10/05/1582 00:00:00 Error Error Error
10/05/1582 06:00:00 Error Error Error
10/15/1582 12:00 AM -115858 -115858 15821015
10/15/1582 06:00 AM -115857 -115857.75 15821016

Listing 107 Demonstrates the issues converting to date / time values.

Listing 107. Demonstrate odd date behavior.
Sub OddDateTimeBehavior

On Error GoTo Oops:

Dim Dates ()

Dim i As Integer

Dim s As String

Dates() = Array("10/04/1582 00:00:00", "10/04/1582 06:00:00",
"10/05/1582 00:00:00", "10/05/1582 06:00:00", _
"10/15/1582 00:00:00", "10/15/1582 06:00:00", _
"12/28/1899 00:00:00", "12/28/1899 06:00:00", _
"12/29/1899 00:00:00", "12/29/1899 06:00:00", _
"12/30/1899 00:00:00", "12/30/1899 06:00:00",
"12/31/1899 00:00:00", "12/31/1899 06:00:00", _
"01/01/1900 00:00:00", "01/01/1900 06:00:00", _
"01/02/1900 00:00:00", "01/02/1900 06:00:00", _
"1/1/1 00:00:00", "1/1/1 06:00:00", "1/1/1 12:00:00" _
)

For 1 = LBound (Dates()) To UBound(Dates())

s = s & CStr(i) & " " & Dates(i) & " => "
s = s & CDbl (DateValue (CDate (Dates(1))))
s =s & " =>7"
s = s & CDbl (CDhate(Dates(i))) & " => " & CDateToISO (Dates (1))
s = s & CHRS$(10)
Next
MsgBox s, 0, "Strange Time Values"
Exit Sub
Oops:
s =s & " Error"

Resume Next
End Sub

129

[=]strangefTime\Values 2.3

10/04/1582 00:00:00 == -115859 == -115859 == 15821014
10/04/1582 06:00:00 == -115858 == -115858.75 == 15821015
10/05/1582 00:00:00 == Error == Error
10/05/1582 06:00:00 == Error == Error
10/15/1582 00:00:00 == -115858 == -115858 == 15821015
10/15/1582 06:00:00 == -115857 == -115857.75 == 15821016
12/28/1899 00:00:00 == -2 == -2 == 18991228
12/28/1899 06:00:00 == -1 == -1.75 == 18991229
12/29/1899 00:00:00 == -1 == -1 == 18991229
12/29/1899 06:00:00 == Error == -0.75 == 18991230
12/30/1899 00:00:00 == Error == 0 == 18991230
12/30/1899 06:00:00 == Error == 0.25 == 18991231
12/31/1899 00:00:00 == 1 => 1 == 185991231
12/31/1899 06:00:00 == 1.25 == 18991201
01/01/1900 00:00:00 == 2 == 19000101
01/01/1900 06:00:00 == 2.25 == 19000101
01/02/1900 00:00:00 == 3 == 19000102
01/02/1900 06:00:00 == 3 == 3.25 == 19000102
1/1/1 00:00:00 == 36892 == 36892 == 20010101
1/1/1 06:00:00 == 36892 == 368092.25 == 20010101
1/1/1 12:00:00 == 36892 == 36892.5 == 20010101

L= EWKEOD

e el e
B LWKEOD

,_..
w
[T [l
Vv VY

S e
Lo I I R I)
LR L I

Figure 46. Some Date values convert poorly.

TIP DateValue fails with a run-time error for dates with a zero day component, such as
DateValue(CDate("12/30/1899 06:00:00")). Dates before this return an incorrect value. I might also argue
that dates and times that use the same data type is a bug, because it isn’t possible to distinguish between a
time and a date value for the day 12/30/1899.

DateValue truncates the decimal portion of the number to determine the date. The Int function, however,
always rounds toward negative infinity, which produces the correct result. See Listing 108. Remember that
the Int function rounds towards negative infinity and returns a double.

Listing 108. Round toward negative infinity and convert it to a Date.
Function SafeDateValue(v) Date

SafeDateValue = CDate (Int (CDate(v)))
End Function

SafeDateValue in Listing 108 corrects the wrong behavior. Listing 109 repeats Listing 107 using
SafeDateValue, so now the correct values are obtained.

Listing 109. Round toward negative infinity and convert it to a Date.

Sub SafeDateTimeBehavior

On Error GoTo Oops:

Dim Dates ()

Dim i As Integer

Dim s As String

Dates () = Array("10/04/1582 00:00:00", "10/04/1582 06:00:00",
"10/05/1582 00:00:00", "10/05/1582 06:00:00", _
"10/15/1582 00:00:00", "10/15/1582 06:00:00", _
"12/28/1899 00:00:00", "12/28/1899 06:00:00", _

130

"12/29/1899 00:00:00", "12/29/1899 06:00:00",
"12/30/1899 00:00:00", "12/30/1899 06:00:00", _
"12/31/1899 00:00:00", "12/31/1899 06:00:00", _
"01/01/1900 00:00:00", "01/01/1900 06:00:00",
"01/02/1900 00:00:00", "01/02/1900 06:00:00", _

"1/1/1 00:00:00", "1/1/1 06:00:00", "1/1/1 12:00:00" _
)

For 1 = LBound(Dates()) To UBound(Dates())
s = s & CStr(i) & " " & Dates(i) & " => "
s = s & CDbl (SafeDateValue (CDate (Dates(i))))
s =s & " ="
s = s & CDbl (CDate (Dates(i))) & " => " & CDateToISO(SafeDateValue (Dates(i)))
s = s & CHRS$ (10)

Next

MsgBox s, 0, "Strange Time Values"

Exit Sub

Oops:

s = s & " Error"

Resume Next
End Sub

6.7. Extract each part of a date

Date objects are based on floating-point Double numbers so mathematical operations and comparisons can
be used with Date objects. The Date and Time functions, however, return strings, so they can’t be used in
this capacity. OOo Basic provides functions to retrieve the individual pieces of a date (see Table 41).

Table 41. Date component extraction functions in OQOo Basic.

Function Description

Year(date) Return the year portion of a Date value as an Integer.

Month(date) Return the month portion of a Date value as an Integer.

Day(date) Return the day portion of a Date value as an Integer.

Hour(date) Return the hour portion of a Date value as an Integer.

Minute(date) Return the minutes portion of a Date value as an Integer.

Second(date) Return the seconds portion of a Date value as an Integer.

WeekDay(date) Return an integer value from 1 through 7, corresponding to the day of the week,
Sunday through Saturday.

The functions in Table 41 all expect a Date object, which is internally based on a Double. OOo Basic
automatically converts the argument to the appropriate type if possible. The Date function returns a string
with no time information (everything to the right of the decimal is zero) so there is no time information for
the Hour, Minute, and Second functions to return. Similarly, the Time function returns a string with no date
information (everything to the left of the decimal is zero), which corresponds to December 30, 1899.

Print "Year = " & Year (0.223) '1899, 0 for date means December 30, 1899
Print "Year = " & Year (Time) '1899, No date information from Time ()
Print "Month = " & Month (Date) 'Current month

Print "Day = " & Day (Now) 'Now contains date and time information
Print "Hour = " & Hour (Date) '0, No time information from Date ()

Print "Minutes = " & Minute (Now) 'Current minutes

131

Print "Seconds = " & Second(Time) 'Current seconds

Use the WeekDay function to determine the day of the week. Some calendars start on Monday and some
start on Sunday; OOo Basic assumes that Sunday is the first day of the week. See Listing 110.

Listing 110. Determine the day of the week.

Sub ExampleWeekDayText
Print "Today is " & WeekDayText (Date)
End Sub
Function WeekDayText (d) As String
Select Case WeekDay (d)
case 1
WeekDayText="Sunday"
case 2
WeekDayText="Monday"
case 3
WeekDayText="Tuesday"
case 4
WeekDayText="Wednesday"
case 5
WeekDayText="Thursday"
case 6
WeekDayText="Friday"
case 7
WeekDayText="Saturday"
End Select
End Function

The DatePart function allows you to pass a string expression that determines the part of the date of interest;
as expressed as a string as the first argument. Running DatePart with September 15, 2010 at 19:13:20 yields
the results shown in Table 42.

Table 42. DatePart string specifier.
Format Description Result

yyyy Four-digit year 2010

q Quarter 3

m Month 9

y Day of year 258

w Weekday 4

WW Week of year 38
Day of Month 15

h Hour 19

n Minute 13

S Second 20

Listing 111. Use DatePart to extract components of a date.
Sub ExampleDatePart

Dim TheDate As Date
Dim f
Dim i As Integer

132

Dim s$
TheDate = Now

f = Array("yyyy", "g", "m", "y", "w", "ww", "d", "h", "n", "s")
s = "Now = " & TheDate & CHRS$ (10)
For i = LBound(f) To UBound(f)
s = s & "DatePart (" & f(i) & ", " & TheDate & ") =" &
DatePart (f (i), TheDate) & CHRS (10)
Next
MsgBox s
End Sub
TIP A German user claimed that DatePart failed if it were not run with CompatibilityMode(True).

DatePart supports an optional third argument that specifies when a week is assumed to start (see Table 43).
The optional fourth argument, specifies when the year is assumed to start. The third and fourth arguments
affect things such as the week of the year, but will not affect other values such as the day of the year.

Table 43. DatePart week start and year start values.
Value Week Start Description Year Start Description

0 Use system default value. Use system default value.

1 Sunday (default) Week 1 is the week with January first (default).

2 Monday Week 1 is the first week containing four or more days of that year.
3 Tuesday Week 1 is the first week containing only days of the new year.

4 Wednesday

5 Thursday

6 Friday

7 Saturday

After extracting portions of the date, it is useful to print the values in an easy to read format. Use
MonthName to convert the month number to the month name. Setting the optional second argument to True
causes the name to be abbreviated.

Listing 112. Print the Month as a string.

Sub ExampleMonthName
Dim 1%
Dim s$
For i = 1 To 12
s =s &1 & "™ =" & MonthName (i, True) & " = " & MonthName (i) & CHRS$(10)
Next
MsgBox s, 0, "MonthName"
End Sub

133

B x
1 = Jan = January
2 = Feb = February
3 = Mar = March
4 = Apr = April ’ ‘
5 — May = May —~ WeekDayName) ¥
6 = Jun = June 1 = Sun = Sunday
7 = Jul = July 2 = Mon = Monday
&8 = Aug = August 3 = Tue = Tuesday
9 = Sep = September 4 = Wed = Wednesday
10 = Oct = October 5 = Thu = Thursday
11 = Nov = November 6 = Fri = Friday
12 = Dec = December 7 = Sat = Saturday
| oK | | |

Figure 47. Use MonthName and WeekDayName to convert an integer into the name.

WeekDayName, similar to Monthname, returns the day of the week as a string. Oddly, WeekDayName only
works if compatibility mode is on. WeekDayName also supports a third argument, which specifies the day
that the week begins (see Table 44).

Listing 113. Print the day of the week as a string.

Sub ExampleWeekDayName

Dim 1%
Dim s$
CompatibilityMode (True)
For i = 1 To 7
s =s &1 & " =" & WeekDayName (i, True) & " = " & WeekDayName (i) & CHR$ (10)
Next
MsgBox s, 0, "WeekDayName"

End Sub

Table 44. Third argument for WeekDayName to specify the first day of the week.
Value Description

~N O L AW NN~ O

Use National Language Support API setting.
Sunday (default)

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Use the WeekDay function to extract the day of the week based on a date. The optional second argument
specifies the day on which the week starts; the values are the same as for WeekDayName (see Table 44)
except that 0 corresponds to the system default setting.

Print WeekDay (Now)

134

Use FormatDateTime to display the date and time in a common format. The first argument is the date. The
second argument is optional and specifies how the date should be formatted (see Table 45).

Listing 114. Format a date/time string.

Sub ExampleFormatDateTime
Dim s$, 1%
Dim d As Date

d = Now
CompatibilityMode (True)
s = "FormatDateTime(d) = " & FormatDateTime (d) & CHRS$ (10)
For i=0 To 4
s = s & "FormatDateTime(d, " & 1 & ") = " & FormatDateTime (d, i) & CHRS$ (10)
Next
MsgBox s, 0, "FormatDateTime"
End Sub

= B%rll Lol e’ L - L LR 'L'\l.v"r wra O TP Wik LA LY W hd WLl
= |FormatDateTime %

FormatDateTime(d) = 09/15/2010 21:16:29
FormatDateTime(d, 0) = 09/15/2010 21:16:29
FormatDateTime(d, 1) = Wednesday, September 15, 2010
FormatDateTime(d, 2) = 09/15/2010

FormatDateTime(d, 3) = 21:16:29

FormatDateTime(d, 4) = 21:16

| ‘. :

Figure 48. Format a date and time with FormatDateTime.
Table 45. Second argument to FormatDateTime specify format.

Value Description

0 Default format with a short date and and a long time.
1 Long date format with no time.

2 Short date format.

3 Time in the computer's regional settings.

4 24 hour hours and minutes as hh:mm.

6.8. Date arithmetic

Internally, a date is represented as a floating point number. The decimal portion represents the time, and the
integer portion represents the date. The representation allows mathematical manipulation, but, it requires a
bit of thought; for example, add:

. 1 Add one day Now + 1
- 124 Add one hour Now + 1/24
- 365 Add one year, but leap years are a problem.

Use DateAdd to simplify the process. The third argument is the date. The first argument (see Table 42)
determines how the value in the second argument is interpreted. I can repeat the list above as:

Print DateAdd("d", 1, Now) 'Add one day.

135

Print DateAdd("h", 1, Now) 'Add one hour.
Print DateAdd("yyy", 1, Now) 'Add one year.

Use DateDiff to determine the number of “intervals” between two dates; for example, the number weeks
between two dates. The first argument specifies the interval to use (see Table 42). The second argument is
the first date, and the third argument is the second date. The optional fourth and fifth arguments specify the
first day of the week and the first week of the year (see Table 43).

Print DateDiff ("yyyy", "03/13/1965", Date (Now)) 'Years from March 13, 1965 to now
Print DateDiff ("d", "03/13/1965", Date (Now)) 'Days from March 13, 1965 to now

6.9. Assembling dates from components

The functions Hour, Minute, Second, Year, Month, and Day are used to break a date into parts. The functions
DateSerial and TimeSerial are used to put the dates back together again. The function DateSerial creates a
Date object from the year, month, and day. The function TimeSerial creates a Date object from the hours,
minutes, and seconds.

Print DateSerial (2003, 10, 1) '10/01/2003
Print TimeSerial (13, 4, 45) '13:04:45

The first argument to the DateSerial function is the year, the second argument is the month, and the final
argument is the day. If the month or day aren’t valid values, a run-time error occurs. Year values greater than
100 are used directly. Year values less than 100, however, have 1900 added to them. Two-digit years are
mapped to the years 1900 and later (see Listing 115).

Listing 115. DateSerial adds 1900 to years earlier than 100.

Sub ExampleDateSerial
On Error Goto OOPS
Dim x
Dim 1%

Dim s$

x = Array (2003, 10, 1,
1899, 12, 31,
1899, 12, 30,
1899, 12, 29,
1899, 12, 28,

99, 10, 1, _
3, 10, 1, _
o, 1, 1, _
-3, 10, 1, _
-99, 10, 1, _
-100, 10, 1, _
-1800, 10, 1, _

-1801, 10, 1)

i = LBound(x)

Do While i < UBound (x)

s = s & DateSerial (x(i), x(i+1l), x(i+2))
s =5 & " <= (" & ToStrWithLen(x (i), 4) & ","
s = s & ToStrWithLen(x(i+1l), 3) & ","
s = s & ToStrWithLen(x(i+2), 3) & ")"
s = s & CHRS(10)
i=1+3
Loop

136

MsgBox s
Exit Sub
OOPS:
s = s & ERROR

Resume Next

End Sub
=Jsoffice] ‘ £3)
10/01/2003 <= (2003, 10, 1)
12/31/1899 == (1899, 12, 31)
00:00:00 == (1899, 12, 30)
12/29/1899 <= (1899, 12, 29)
12/28/1899 <= (1899, 12, 28)
10/01/1999 == (99, 10, 1)
10/01/1903 <= (3, 10, 1)
01/01/1900 <= (0, 1, 1)
10/01/1897 == (-3, 10, 1)
10/01/1801 == (-99, 10, 1)
10/01/1800 == (-100, 10, 1)
10/02/100 == (-1800, 10, 1)
Invalid procedure call. == (-1801, 10, 1)
Figure 49. DateSerial creates a date from a year, month, and day value.
TIP DateSerial adds 1900 to years earlier than 100, including negative years. An error is generated if the

resulting year is still lower than 100. This allows years from -1800 through -1, which should probably be
an error. The Date type is able to handle dates prior to 1/1/00, but obviously, DateSerial cannot.

Dates are printed based on the Gregorian calendar, but when the component parts are extracted, they are
based on the Julian date.

Listing 116. DateSerial accepts Gregorian dates before 10/15/1582.

Print DateSerial (1582, 10, 15) '10/15/1582
Print DateSerial (1582, 10, 14) '10/04/1582
Print Day(DateSerial (1582, 10, 14)) '14

6.10. Measuring elapsed time over short intervals

You can obtain simple elapsed time by subtracting two date values. For example, CLng(Now -
CDate("1/1/2000")) determines the number of days elapsed since January 1, 2000. OOo Basic supports
returning elapsed time as the number of seconds (Timer) and as the number of system ticks
(GetSystemTicks). See Table 46. Internally, computers have a system timer that advances at a certain rate;
the rate is hardware dependent. On Intel-based computers this value is 1/17" of a second. Each time that the
timer advances by 1, it’s called a “system tick.” The number returned by GetSystemTicks is always based on
milliseconds, even if it relies on a less accurate clock.

137

Table 46. Elapsed time functions in OOo Basic.
Function Description

GetSystemTicks Return the number of system ticks as a Long. The reported time is always in
milliseconds, even if the underlying timer is less accurate.

Timer Return the number of seconds since midnight as a Date. Cast this to a Long.

Use GetSystemTicks to get the system-dependent number of system timer ticks. This value is typically used
to time internal operations because it has higher precision than the internal time and date functions (see
Listing 117 and Figure 50). The return value is a Long.

Listing 117. Measuring elapsed time.

Sub ExampleElapsedTime
Dim StartTicks As Long
Dim EndTicks As Long
Dim StartTime As Date
Dim EndTime As Date
StartTicks = GetSystemTicks ()

StartTime = Timer

Wait (200) 'Pause execution for 0.2 seconds

EndTicks = GetSystemTicks ()

EndTime = Timer

MsgBox "After waiting 200 ms (0.2 seconds), " & CHRS(10) &
"System ticks = " & CStr(EndTicks - StartTicks) & CHRS(10) & _
"Time elapsed = " & CStr((EndTime - StartTime)) &

" seconds" & CHR$(10), 0, "Elapsed Time"
End Sub

[=JElapseditime &3

After waiting 200 ms (0.2 seconds),
System ticks = 200
Time elapsed = 0 seconds

Figure 50. GetSystemTicks has better resolution than Now.
Run the macro in Listing 117 a few times. Sometimes it shows 0 seconds, and sometimes it shows 1 second.
The resolution is too large for short duration items.

The Timer function returns the number of seconds since midnight as a Date object. The problem with this is
that at 10 seconds past midnight, the return value is 10. The Date object, however, interprets 10 to mean “10
days”. Cast the returned type directly to a numerical type using CLng or CDbl to obtain the number of
elapsed seconds.

Dim nSeconds As Long

nSeconds = Timer
Print "Number of seconds = " & nSeconds
Print "Number of seconds = " & Clng(Timer)
TIP The Timer function returns the number of seconds since midnight. Using Timer to determine elapsed time

for spans that start before midnight and end after midnight produces useless results.

138

6.11. How fast does this run? A real-world example!

The greatest common divisor (GCD) of two integers is the largest integer that divides both integers with no
remainder. For example, the GCD of 6 and 9 is 3. The numbers 1 and 3 both divide the numbers 6 and 9 (see

Table 47). The greatest of these is 3.
Table 47. Dividing

1 6 9 Yes
2 3 4 remainder 1 No
3 2 3 Yes
4 1 remainder 2 2 remainder 1 No
5 1 remainder 1 1 remainder 4 No
6 1 1 remainder 3 No
7 0 remainder 6 1 remainder 2 No
8 0 remainder 6 1 remainder 1 No
9 0 remainder 6 | No

9 Divided By #

Both Divide

This example begins around the year 300 B.C. with a guy living in ancient Greece named Euclid. Euclid was
a pretty smart guy who wrote numerous books, including Data, concerning the solution of problems through
geometric analysis, On Divisions (of Figures), the Optics, the Phenomena, a paper on spherical geometry for
astronomers, the Elements, a 13-volume textbook on geometry, and several lost works on higher geometry.
His impact on society was huge. One of his most well-known contributions is an extremely efficient
algorithm to solve the GCD problem. Now jump ahead a few thousand years to Olivier Bietzer, who noticed
that I had an impractically slow algorithm for solving the GCD problem. Olivier, who certainly knows a lot
about these things, wrote the macro in Listing 118 that solves the GCD problem using Euclid’s algorithm,
and sent it to me.

Listing 118. Calculate the GCD.

'Author: Olivier Bietzer
'e-mail: olivier.bietzer@laposte.net

'This uses Euclid's algorithm and it is very fast!
Function GCD 1 (ByVal x As Long, ByVal y As Long) As Long
Dim pgcd As Long, test As Long

' We must have x >= y and positive values
x=abs (x) : y=abs(y)
If (x < y) Then
test = x ¢ x =y : y = test
End If
If vy = 0 Then Exit Function

' Euclid says

pgcd = vy ' by definition, PGCD is the smallest
test = x MOD y ' remainder after division

Do While (test) ' While not 0

pgcd = test ' pgcd is the remainder

X =Y ' x,y and current pgcd permutation

y = pgcd

139

mailto:olivier.bietzer@laposte.net

test = x MOD y ' test again
Loop
GCD_ 1 = pgcd ' pgced is the last non 0 rest ! Magic ...
End Function

In general, the best way to speed up a solution to a computational problem is by using a better algorithm.
The algorithm in Listing 118 runs roughly 1000 times faster than the routine that I had. If a faster algorithm
is not available, you can look for other ways to improve performance. (Sometimes it’s possible to invent a
wholly new and improved algorithm; but that is quite a trick! If you succeed in developing a new, faster
algorithm for a widely known problem, you may have great career potential as a professional mathematics or
computer science professor.) The code in Listing 118 is already pretty lean. There isn’t a whole lot to
remove, but I thought that I could reduce the number of assignments (see Listing 119).

Listing 119. Calculate the GCD (another way).

Function GCD 2 (ByVal x As Long, ByVal y As Long) As Long
Dim pgcd As Long, test As Long

' We must have x >= y and positive values
x=abs (x) : y=abs(y)
If (x < y) Then
test = x ¢ x =y : y = test
End If
If vy = 0 Then Exit Function

Do While (y) ' While not O

pgcd =y ' pgcd is the remainder

y = x MOD pgcd ' test again

x = pgcd ' x,y and current pgcd permutation
Loop
GCD_2 = pgcd ' pgced is the last non 0 remainder ! Magic ...

End Function

Now the question is, which function is faster? If you use a stopwatch to see how quickly I can blink, the
results aren’t likely to be very accurate because of measurement errors. It’s much easier to tell me to blink as
many times as I can in four seconds or to time how quickly I can blink 50 times. The code in Listing 120
does something similar. It sits in a tight loop and calls each GCD implementation 5000 times. [want to
know how long it takes to call the GCD function 5000 times, but I’'m actually timing how long it takes to
loop 5000 times, generate 10,000 random numbers, and call the GCD function 5000 times. To compensate
for this, the amount of time required to loop 5000 times and generate 10,000 random numbers is measured.

TIP The test program takes a few seconds to run, so, be patient.

Listing 120. Time the two different GCD methods.
Sub testGCD

Dim nStartTicks As Long 'When I started timing

Dim nEndTicks As Long 'When I stopped timing

Dim nLoopTicks As Long 'Ticks to do only the loop
Dim nGCD 1 Ticks As Long 'Ticks for GCD 1

Dim nGCD 2 Ticks As Long 'Ticks for GCD 2

Dim nMinIts As Long 'Number of iterations

Dim x&, y&, 1&, né& 'Temporary long numbers
Dim s$ 'Hold the output string

140

nMinIts = 5000 'Set the number of iterations

Randomize (2) 'Set to a known state

nStartTicks = GetSystemTicks () 'Start ticks

For i& = 1 To nMinIts 'Control the number of iterations
x = 10000 * Rnd() 'Generate the random data
y = 10000 * Rnd() 'Generate the random data

Next

nEndTicks = GetSystemTicks ()
nLoopTicks = nEndTicks - nStartTicks

Randomize (2) 'Set to a known state

nStartTicks = GetSystemTicks () 'Start ticks

For 1i& = 1 To nMinIts 'Control the number of iterations
x = 10000 * Rnd() 'Generate the random data
y = 10000 * Rnd() 'Generate the random data
GCD_1(x, v) 'Do the work we really care about

Next

nEndTicks = GetSystemTicks ()
nGCD 1 Ticks = nEndTicks - nStartTicks - nLoopTicks

Randomize (2) 'Set to a known state
nStartTicks = GetSystemTicks () 'Start ticks
For i& = 1 To nMinIts 'Control the number of iterations
x = 10000 * Rnd() 'Generate the random data
y = 10000 * Rnd() 'Generate the random data
GCD 2(x, vy) 'Do the work we really care about
Next

nEndTicks = GetSystemTicks ()

nGCD 2 Ticks = nEndTicks - nStartTicks - nLoopTicks
s = "Looping " & nMinIts & " iterations takes "
" ticks" & CHRS$(10) &

"Calling GCD_ 1 takes " & nGCD 1 Ticks & " ticks or " &
Format (nMinIts * 100 /nGCD_1 Ticks, "#####00.00") &

" Iterations per second" & CHRS$ (10) &

"Calling GCD 2 takes " & nGCD 2 Ticks & " ticks or " &
Format (nMinIts * 100 /nGCD_2 Ticks, "#####00.00") &

"

& nLoopTicks &

Iterations per second"

MsgBox s, 0, "Compare GCD"
End Sub

One problem in writing timing routines is determining how many iterations to do. I frequently use computers
of different speeds. The results in Figure 51 are based on my home computer running the macro in Listing
120. The macro in Listing 120 makes a specific number of iterations. Sometimes I use a solution that limits
the iterations based on time rather than number of iterations. This complicates the measurement of overhead
and is left as an interesting, but not overly difficult, problem for the reader.

141

[=]Compare|GCD) 23

Looping 5000 iterations takes 39 ticks
Calling GCD_1 takes 2246 ticks or 222.62 Iterations per second
Calling GCD_2 takes 2223 ticks or 224.92 Iterations per second

...........

Figure 51. The improvement is about 10 percent.

6.12. Long time intervals and special dates

It’s easy to obtain elapsed time over long intervals by subtracting date values. To determine precise dates and
intervals, you can creatively use the component pieces. For example, given the date, what is the first day of
the month? This is easy because the first day of every month is day 1. Use the functions Year and Month to
extract the year and month, and then reassemble the date using DateSerial and set the day to 1. The sample
macro also calls WeekDayText shown in Listing 110.

Listing 121. First day of the month.

Function FirstDayOfMonth(d As Date) As Date
FirstDayOfMonth () = DateSerial (Year(d), Month(d), 1)
End Function

Sub FirstDayOfThisMonth ()

Dim d As Date

d = FirstDayOfMonth (Now())

MsgBox "First day of this month (" & d & ") is a " & WeekDayText (d)
End Sub

To find the last day of a month, find the first day of the next month and then subtract 1 from the number. If
the current month is December, set the month to January and increment the year by 1.

Listing 122. Last day of the month.

Function LastDayOfMonth (d As Date) As Date
Dim nYear As Integer
Dim nMonth As Integer

nYear = Year (d) 'Current year

nMonth = Month(d) + 1 'Next month, unless it was December.

If nMonth > 12 Then 'If it is December then nMonth is now 13
nMonth =1 'Roll the month back to 1
nYear = nYear + 1 'but increment the year

End If

LastDayOfMonth = CDate (DateSerial (nYear, nMonth, 1)-1)
End Function

Sub LastDayOfThisMonth ()
Dim d As Date
d = LastDayOfMonth (Now ())
MsgBox "Last day of this month (" & d & ") is a " & WeekDayText (d)
End Sub
It’s easy to find the first day of the year for any given date; it’s always January 1 of that year. Use the Year
function to obtain the current year and then set the day and month each equal to 1. Finding the last day of the
year for any given date is only marginally more difficult. First, find the first day of the next year by

142

incrementing the year by 1 and setting the month and day equal to 1. Subtracting 1 from the first day of next
year provides the last day of this year.

d = Now
Print DateSerial (Year(d), 1, 1) '01/01/2003
Print CDate (DateSerial (Year(d)+1, 1, 1)-1) '12/31/2003

Use the WeekDay function to find the first and last days of a week. Subtract the day of the week and add 1 to
take the date to Sunday at the beginning of the current week.

d = Date
Print CDate (CDbl (d) - WeekDay(d) + 1) '8/10/2003 is a Sunday
Print CDate (CDbl (d) - WeekDay(d) + 7) '8/16/2003 is a Saturday

You can use similar date manipulations to solve other date-related problems, such as determining the work
week, how many days until your anniversary, or the age of a person in years, months, and days.

6.13. Conclusion

Although dates in OpenOffice.org Basic are straightforward and easy to use, you must take care with dates
prior to October 15, 1582. The jump from the Gregorian and Julian calendar also may potentially cause
unexpected problems. Also take care when the underlying implementation, a Double, becomes a negative
number; this happens around December 30, 1899. This chapter also discussed methods of timing routines
and determining specific dates.

143

7. String Routines

This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
strings. This includes functions to manipulate strings, convert other data types to strings, and to perform
special formatting.

Text data is stored in strings as a sequence of 16-bit unsigned integer Unicode version 2.0 values. The
Unicode Worldwide Character Standard is a set of binary codes representing textual or script characters
designed because ASCII, the original standard, can handle only 256 distinct characters. The first 128
characters (numbered 0 through 127) correspond to the letters and symbols on a standard U.S. keyboard. The
next 128 characters (numbered 128 through 255) consist of special characters such as accent marks, Latin-
based characters, and a few symbols. The remaining 65,280 values — of which only about 34,000 are
currently used — are used for a wide variety of worldwide text characters, mathematical symbols, accent
marks (diacritics), and technical symbols.

OpenOftice.org has a large number of functions that allow you to manipulate strings. These string-
manipulation operations range from converting uppercase to lowercase (or vice versa) to selecting substrings
out of a longer string. The functions listed in Table 48 are the string functions covered in this chapter. The
functions listed in Table 49 are related to strings as well as either numerical or array manipulations; these are

covered in other chapters.

Table 48. These string

Function

-related functions are covered in this section.

Description

ASC(str)

CHR(n)

CStr(obyj)
Format(obj, format)
Hex(n)

InStr(str, str)

InStr(start, str, str)

InStr(start, str, str,
mode)

InStrRev(str, find, start,
mode)

Join(s())
Join(s(), str)

LCase(str)

Left(str, n)

Len(str)

LSet strl = str2
LTrim(str)

Mid(str, start)
Mid(str, start, len)
Mid(str, start, len, str)
Oct(n)

Return the integer ASCII value of the first character in the string. This supports 16-bit Unicode
values as well.

Convert an ASCII number to a character.

Convert standard types to a string.

Fancy formatting; works only for strings.

Return the hexadecimal representation of a number as a string.

Attempt to find string 2 in string 1. Returns 0 if not found and starting location if it is found.
The optional start argument indicates where to start looking. The default value for mode is 1
(case-insensitive comparison). Setting mode to 0 performs a case-sensitive comparison.

Return the position of the first occurrence of one string within another, starting from the right
side of the string. Only available with “Option VBASupport 1”. Start and mode are optional.

Concatenate the array elements, separated by the optional string delimiter, and return the value
as a string. The default delimiter is a single space. Inverse of the Split function.

Return a lowercase copy of the string.

Return the leftmost n characters from the string.

Return the length of the string.

Left-justify a string into the space taken by another string.
Return a copy of the string with all leading spaces removed.

Return the substring, starting at start. If the length is omitted, the entire end of the string is
returned. If the final string argument is included, this replaces the specified portion of the first
string with the last string.

Return the octal representation of a number as a string.

144

Function Description

Replace(str, find, rpl,
start, count, mode)

Right(str, n)

RSet strl = str2
RTrim(str)

Space(n)

Split(str)

Split(str, str)

Str(n)

StrComp(s1, s2)
StrComp(s1, s2, mode)

StrConv(str, mode[,
local])

String(n, char)
String(n, ascii)

StrReverse

Trim(str)
UCase(str)
Val(str)

Search str for find and replace it with rpl. Optionally, specify the start, count, and mode.

Return the rightmost n characters.

Right-justify a string into the space taken by another string.
Return a copy of the string with all trailing spaces removed.
Return a string with the number of specified spaces.

Split a string into an array based on an optional delimiter. Inverse of the Join function.

Convert a number to a string with no localization.

Compare two strings returning -1, 0, or 1 if the first string is less than, equal to, or greater than
the second in alphabetical order. Set the optional third argument to zero for a case-insensitive
comparison. The default is 1 for a case-sensitive comparison.

Converts a string based on the mode: 1=upper, 2=lower, 4=wide, 8=narrow, 16=Katakana,
32=Hiragana, 64=to unicode, 128=from unicode.

Return a string with a single character repeated multiple times. The first argument is the
number of times to repeat; the second argument is the character or ASCII value.

Reverse a string. Must use “Option VBASupport 17, or precede it with
CompatibiltyMode(True).

Return a copy of the string with all leading and trailing spaces removed.
Return an uppercase copy of the string.

Convert a string to a double. This is very tolerant to non-numeric text.

The subroutines and functions related to string handling in OOo Basic are listed in Table 48. Some of these

functions (see Table 49) have in-depth coverage in other chapters, because they are directly related to the
content in those chapters. They are covered briefly near the end of this chapter, in the section titled
“Converting data to a string.”

Table 49. These string-related functions are covered in other chapters.

Function

Join(s())
Join(s(), str)

Split(str)
Split(str, str)
CStr(obj)
Str(n)
Hex(n)
Oct(n)
Val(str)

Covered In

5Array Routines

5Array Routines

4Numerical Routines
4Numerical Routines
4Numerical Routines
4Numerical Routines

4Numerical Routines

Description

Concatenate the array elements, separated by the optional string delimiter,
and return the value as a string.

Split a string into an array based on an optional delimiter.

Convert standard types to a string.

Convert a number to a string with no localization.

Return the hexadecimal representation of a number as a string.
Return the octal representation of a number as a string.

Convert a string to a double. This is very tolerant to non-numeric text.

145

7.1. ASCIl and Unicode values

In the early days of computers there were different types of data-processing equipment, and there was no
common method of representing text. To alleviate this problem, the American National Standards Institute
(ANSI) proposed the American Standard Code for Information Interchange (ASCII) in 1963. The standard
was finalized in 1968 as a mapping of 128 characters, numbers, punctuation, and control codes to the
numbers from 0 to 127 (see Table 50). The computer-minded reader may notice that this requires 7 bits and
does not use an entire byte.

Table 50. The original 128 ASCII characters.

0 1 2 3 4 5 6 7 8 9 A B Cc D E F
0 NUL |SOH |[STX |ETX |EOT |ENQ |ACK |BEL |BS HT |LF VT FF CR |SO |SI
1 DLE |DC1 |DC2 |DC3 |DC4 |NAK |SYN |ETB |CAN |[EM |[SUB |ESC |FS GS |RS us
2 SP |1 # S % & | () . * ' - /
3 0 1 2 3 4 5 6 7 8 9 ; < = >
4 @ A B C D E F G H I J K L M N)
5 P Q R S T U \ W X Y z [\ 1 A _
6 : a b c d e f g h i j k | m n o
7 p q r s t u v w X y z { | } ~ DEL

Table 50 lists the original 127 ASCII characters. The top row and the left column are used to identify the
hexadecimal ASCII value. For example, the capital letter A has an ASCII value of 41 in hexadecimal format,
and z has an ASCII value of 5A. If more than one letter occupies a box, that value represents a special
command character (see Table 51). Some of these special commands are designed for communications,
some for file formats, and some are even available on the keyboard.

Table 51. Non-printable ASCII characters.
Hex DEC Symbol Description

00 0 NUL Null, usually signifying nothing

01 1 SOH Start of heading

02 2 STX Start of text

03 3 ETX End of text

04 4 EOT End of transmission — not the same as ETB

05 5 ENQ Enquiry

06 6 ACK Acknowledge — I am here or data successfully received

07 7 BEL Bell — Causes teletype machines and many terminals to ring a bell

08 8 BS Backspace — Moves the cursor or print head backward (left) one space

09 9 TAB Horizontal tab — Moves the cursor (or print head) right to the next tab
stop

0A 10 LF Line feed or new line — Moves the cursor (or print head) to a new line

0B 11 VT Vertical tab

0C 12 FF Form feed — Advances paper to the top of the next page

0D 13 CR Carriage return — Moves the cursor (or print head) to the left margin

OE 14 SO Shift out — Switches the output device to an alternate character set

146

Hex DEC Symbol Description

OF 15 SI Shift in — Switches the output device back to the default character set
10 16 DLE Data link escape

11 17 DC1 Device control 1

12 18 DC2 Device control 2

13 19 DC3 Device control 3

14 20 DC4 Device control 4

15 21 NAK Negative acknowledge

16 22 SYN Synchronous idle

17 23 ETB End of transmission block — not the same as EOT
18 24 CAN Cancel

19 25 EM End of medium

1A 26 SUB Substitute

1B 27 ESC Escape — This is the Esc key on your keyboard
1C 28 FS File separator

1D 29 GS Group separator

1E 30 RS Record separator

1F 31 UsS Unit separator

7F 127 DEL Delete — This is the Del key on your keyboard

For most computers, the smallest easily stored and retrieved piece of data is a byte, which is composed of 8
bits. The characters in Table 50 require only 7 bits. To avoid wasting space, the Extended ASCII characters
were introduced; these used the numbers 128 through 255. Although these characters introduce special,
mathematical, graphic, and foreign characters, it just wasn’t enough to satisfy international use. Around
1986, Xerox started working to extend the character set to work with Asian characters. This work eventually
led to the current Unicode set, which uses 16-bit integers and allows for 65,536 unique characters.

OOo stores characters as 16-bit unsigned integer Unicode values. The ASC and CHR functions convert
between the integer value and the character value, for example, between 65 and A. Use the ASC function to
determine the numerical ASCII value of the first character in a string. The return value is a 16-bit integer
allowing for Unicode values. Only the first character in the string is used; the rest of the characters are
ignored. A run-time error occurs if the string has zero length. This is essentially the inverse of the CHR$
function, which converts the number back into a character.

TIP The CHR function is frequently written as CHRS. In Visual Basic, CHRS returns a string and can’t handle
null input values, and CHR returns a variant that’s able to accept and propagate null values. In OOo Basic,
they are the same; they both return strings and they both generate a run-time error with a null input value.

Use the CHR function to convert a 16-bit ASCII value to the character that it represents. This is useful when
you want to insert special characters into a string. For example, CHR(10) is the new-line character. The
CHR function is the inverse of the ASC function. Although the ASC function returns the Unicode numbers,
these numbers are frequently generically referred to as “the ASCII value.” Strictly speaking, this is incorrect,
but it’s a widely used slang expression. The numbers correspond directly to the ASCII values for the

147

numbers 0 through 255, and having used the terminology for years, programmers aren’t likely to stop. So,
when you see the term “ASCII value” in this book, think “Unicode value.”

Listing 123. Demonstrate new line.
Sub ShowChrAsc

Dim s$
Print CHRS (65) 'A
Print ASC ("Andrew") '65
s = "1" & CHRS$(10) & "2" 'New line between 1 and 2
MsgBox s
End Sub
TIP Use the MsgBox statement to print strings that contain CHR$(10) or CHR$(13) — they both cause OOo

Basic to print a new line. The Print statement displays a new dialog for each new line. MsgBox, however,
properly displays new lines in a single dialog.

While attempting to decipher the internal functions of OpenOffice.org, I frequently find strings that contain
characters that aren’t immediately visible, such as trailing spaces, new lines, and carriage returns.
Converting the string to a sequence of ASCII characters simplifies the process of recognizing the true
contents of the string. See Listing 124 and Figure 52.

Listing 124. Convert a string to ASCIL

Sub ExampleStringToASCII
Dim s As String

S = "ABH mmn mmn HBA"
MsgBox s & CHR$(10) & StringToASCII(s), 0, "String To ASCII"
End Sub

Function StringToASCII (sInput$) As String
Dim s As String
Dim i As Integer
For 1 = 1 To Len(sInput$)
s = s & CStr(ASC (Mid(sInput$, i, 1))) & " "
Next
StringToASCII = s
End Function

=)StringToJASCII £

AB"™ ""BA
65 66 34 34 32 34 34 66 65

Figure 52. A string followed by its corresponding ASCII values: A=65, B=66, "=34, and so on ...

On more than one occasion, I needed to know exactly how OOo stored data in a text document. One
common example is trying to manipulate new lines and new paragraphs in a manner not easily supported by
regular expressions. The subroutine in Listing 125 displays the currently selected text as a string of ASCII
values. The important thing to learn in this chapter is how to view the ASCII values associated with the text.
This will show the characters used between paragraphs, for example. The methods to properly retrieve and
manipulate selected text are covered later. To test this macro, select run the macro.

148

Listing 125. Display the selected text as ASCII characters.
Sub SelectedTextAsASCII ()

Dim vSelections 'Multiple disjointed selections
Dim vSel 'A single selection
Dim vCursor '00o document cursor
Dim i As Integer 'Index variable
Dim s As String 'Temporary utility string variable
Dim bIsSelected As Boolean 'Is any text selected?
bIsSelected = True 'Assume that text is selected

'The current selection in the current controller.

'Tf there is no current controller, it returns NULL.

'Thiscomponent refers to the current document

vSelections = ThisComponent.getCurrentSelection ()

If IsNull (vSelections) OR IsEmpty(vSelections) Then
bIsSelected = False

ElseIf vSelections.getCount() = 0 Then
bIsSelected = False

End If

If NOT bIsSelected Then 'Tf nothing is selected then say so
Print "Nothing is selected" 'and then exit the subroutine
Exit Sub

End If

'The selections are numbered from zero
'Print the ASCII values of each
For 1 = 0 To vSelections.getCount() - 1
vSel = vSelections.getByIndex (i)
vCursor = ThisComponent.Text.CreateTextCursorByRange (vSel)
s = vCursor.getString()
If Len(s) > 0 Then
MsgBox StringToASCII (vCursor.getString()), 0, "ASCII of Selection " & i

ElseIf vSelections.getCount() = 1 Then
Print "Nothing is selected"
End If
Next
End Sub

7.2. Standard string functions

The comparison operators (=, <, <=, >, >=, and <>) work with strings and numbers performing a case-

sensitive comparisons. This means that the strings “a” and “A” are not equal. The built-in StrComp function

can compare strings with and without case sensitivity. The StrComp function, which defaults to a case-

sensitive comparison, returns -1, 0, or 1 if the first string argument is less than, equal to, or greater than the

second string argument. Set the optional third argument to zero for a case-insensitive comparison.

TIP Use StrComp(stringl, string2, 0) to alphabetize strings using a locale based case-sensitive compare.

The following pseudo code shows a simplified version of how StrComp could work for a case-sensitive
comparison. A case-insensitive comparison would convert both strings to all uppercase before performing
the comparison; I have no idea if StrComp is locale specific.

149

Let sl = stringl
Let s2 = string2
Let min len = minimum(Len(sl), Len(s2))
For i = 1 To min len
If ASC(Mid(sl, i, 1)) < ASC(Mid(s2, i, 1)) Then
set return value to -1
Exit Function
End If
If ASC(Mid(sl, i, 1)) > ASC(Mid(s2, i, 1)) Then
set return value to 1
Exit Function
End If
Next
If Len(sl) < Len(s2) Then
set return value to -1
Exit Function
End If
If Len(sl) > Len(s2) Then
set return value to 1
Exit Function
End If
set return value to 0
Exit Function

The numerical Unicode value of the first character in the first string is compared to the numerical Unicode
value of the first character in the second string. If the first character is numerically less than the second
character, -1 is returned. If the first character is numerically greater than the second character, 1 is returned.
If the first character in each string is the same, the second character in each string is compared. If the
corresponding numerical Unicode value of each character is the same and the strings are the same length, 0
is returned. If corresponding characters all match, but the strings are of different lengths, the shorter string is
considered less than the longer string.

Listing 126. Demonstrate StrComp.

Print StrComp("A", "AA") '-1 because "A" < "AA"

Print StrComp ("AA", "AA") ' 0 because "AA" = "AA"

Print StrComp ("AA", "AM) ' 1 because "AA" > "A"

Print StrComp("a", "A") ' 1 because "a" > "A"

Print StrComp("a", "A", 1)' 1 because "a" > "A"

Print StrComp("a", "A", 0)' 0 because "a" = "A" if case 1is ignored

Use the UCase and LCase functions to return a copy of the string with all characters in uppercase or
lowercase.

Listing 127. Demonstrate UCase and LCase.
S$ = "Las Vegas"

Print LCase(s) REM Returns "las vegas"
Print UCase (s) REM Returns "LAS VEGAS"

If numerous comparisons will be made, using LCase or UCase is sometimes faster than performing a case-
insensitive comparison each time. And sometimes, it is simply easier to use.

If LCase(Right (sFileName, 3)) = "odt" Then

150

Use StrConv(string, mode, locale id) to convert a string with more flexibility than the individual methods
UCase and LCase. The supported modes (shown in Table 52) are bit values that can be used together; for
example, 1+64=65 causes all characters to be converted to uppercase and to Unicode. The final argument,
locale_id, is an optional integer locale identifier that is not currently supported (as of OOo version 3.2.1)

Table 52. Modes supported by the StrConv statement.
Mode Description

0 No change.

1 Convert all characters to uppercase.

2 Convert all characters to lowercase.

4 Convert narrow (half-width) characters in the string to wide (full-width) characters.
8 Convert wide (full-width) characters in the string to narrow (half-width) characters.
16 Convert Hiragana characters in the string to Katakana characters.

32 Convert Katakana characters in the string to Hiragana characters.

64 Converst all characters to Unicode.

128 Convert all characters from Unicode.

Use the LTrim, RTrim, and Trim functions to return copies of a string with leading, trailing, or both leading
and trailing spaces removed. I usually do this with data retrieved from files and databases, and directly from
users. The original string is unchanged, as are all internal spaces. Some trim routines in other programming
languages trim all sorts of invisible characters, such as carriage returns, new-line characters, and tabs. In
0OO0o Basic, only the space character with an ASCII value of 32 is trimmed.

Listing 128. Demonstrate LTrim and RTrim.

s =" hello world "

Print " (" & LTrim(s) & ")" '(hello world
Print " (" & RTrim(s) & ")" '(hello world)
Print " (" & Trim(s) & ")" '(hello world)

Use the Len function to return the number of characters in the string. If the argument is not a string, it is
converted to a string first. It’s probably safer to use CStr to convert nonstring arguments to strings, rather
than to rely on the automatic behavior. For example, types such as Byte will not convert automatically as
expected. The value held in the Byte data type is treated as an ASCII value and converted to a single
character. The CStr function avoids this problem.

Listing 129. Demonstrate Len.
Print Len("") '0

Print Len("1") 'l
Print Len("123"™) '3
(

Print Len (12) '2 the number is converted to a string

To create a string with a single character repeated multiple times, use the String function. The first argument
is an integer indicating how many times the character is repeated. Zero is a valid value for the first argument,
returning an empty string. The second argument is the character to repeat. Just like the ASC function, the
String function uses the first character from the string and ignores the rest. If the second argument is a
number, it’s treated as an ASCII value and the character is created from the number.

Listing 130. Demonstrate String.
Print String(2, 65) 'AA 65 is ASCII for A

Print String(2, "AB") 'AA Only the first character is used

151

Print ASC(String(2)) '0
Print Len (Space (4)) "4

Bug: Created string with two ASCII 0 characters

Four spaces

Use the function InStr to find where (and if) one string is contained inside another. The InStr function can
take four arguments. The first argument is an optional integer that indicates the first character to check. This
defaults to 1, the first character, if it is not included. InStr then searches the second argument to see if it
contains the third argument. The fourth optional argument determines if the comparison is case sensitive (0)
or case insensitive (1). The default search is case insensitive. You can’t use the fourth argument unless you
also use the first argument.

TIP

The StrComp function uses a 0 to indicate a case-insensitive comparison and a 1 — the default — to
indicate a case-sensitive comparison. The InStr function, however, uses a 0 to indicate a case-sensitive
comparison and a 1 — the default — to indicate a case-insensitive comparison. The only similarity is that
the value 1 is the default.

Listing 131. Demonstrate InStr.

Print InStr ("CBAABC",
Print InStr(
Print InStr(
Print InStr(
Print InStr(
Print InStr(
Print InStr(

"abc™)
1, "CBAABC", "b")
2, "CBAABC", "b")
3, "CBAABC", "b")
1, "CBAABC", "b", 0)
1, "CBAABC", "b", 1)
1, "CBAABC", "B", 0)

'4
'2
'2
'S5
'0
'2

default to case insensitive

first argument is 1 by default

start with second character

start with third character

case-sensitive comparison

case-insensitive comparison

'2 case-sensitive comparison

InStrRev is only available while VB compatibility mode is true. The start location is argument 3, as opposed
to the first argument in InStr. A start location of -1 means start at the right most character; I wish that -2 was
the second character from the right, but it causes a run-time exception.

Listing 132. Demonstrate InStrRev.
Sub ExampleInStrRewv

CompatibilityMode (True)

Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
End Sub

InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",
InStrRev ("CBAABC",

HABCH)
"abC")

"abc"

ngw,
ngm,
ngw,
ngm,
ngw,
"o,
"o,
ngn,

1
1)
2)
-1)
5)
4)
-1, 0)
-1, 1)
-1, 0)

'4 default to
'0 default to

1) '4 force
'0 start
'2 start
'5 start
'5 start
'2 start

case
with
with
with
with
with

case sensitive
case sensitive
insensitive
first character
second character
last character
fifth character
fourth character

'0 case-sensitive comparison

'5 case-insensitive comparison

'5 case-sensitive comparison

Prior to OOo 2.0, the return value from InStr is an integer, which is limited to values from -32,768 through
32,767. A string can be up to 65,535 characters in length, which causes problems when InStr searches large
strings. Starting with OOo 2.0, however, the return type is a long.

Listing 133. Demonstrate InStr and a long string.
Dim sl As String

sl = String (44000, "*") &
Print InStr(sl, "XX")

X"

'This string has 44002 characters.
'44001 in OOo 2.0 and

152

-21535 in 000 1.1.1.

7.3. Locale and strings

Use Tools | Options | Language Settings | Languages to view the Locale used by OO. My Locale setting is
“Default — English (USA)”. After changing the Locale, you must exit and restart for the changes to be used.
The following macro returns different results based on the configured locale. Notice the difference when run
as English — US and Turkish locales.

Listing 134. Some string functions use Locale.
Sub LocaleStringTests

Dim s$

' compare Turkish dotless i with upper case i

' Turkish Locale returns 0, English returns -1

s = "Compare dotless i with upper case 1 : " & StrComp("12", "I", 0) & CHRS$(10)

' compare lower case 1 to upper case i
' English Locale returns 0, Turkish Locale returns 1.

s = s & "Compare i with upper case 1 : " & StrComp("i", "I", 0) & CHRS$(10)
s = s & "Lower Case I = " & LCase("I") & CHRS$(10)
s = s & "Upper Case i = " & UCase("i")
MsgBox s
End Sub
v -
soffice soffice
Compare dotless i with upper casei: -1 Compare dotless i with upper casei: 0
Compare i with upper case i: 0 Compare i with upper casei: 1
Lower Case |l =i Lower Case |l =1
Upper Case i =1 Upper Case i = 1|

Figure 53. English — US Locale on the Left, Turkish Locale on the Right.
I did not explore other areas that may also rely on Locale specific settings.

7.4. Substrings

Use the Left function to retrieve a portion of the string from the start. The first argument is the string from
which to extract the characters, and the second argument indicates how many characters to return.
Analogously, the Right function returns strings from the end of a string. If the requested length is zero, an
empty string is returned. If the requested length is too large, the entire string is returned.

Print TLeft("12345", 2) '12
Print Left("12345", 8) '12345
Print Right ("12345", 2) '45

The length argument for the Left and Right functions is a long, correctly handling strings, which can contain
up to 65,535 characters (see Listing 135).

Listing 135. Strings can contain up to 65,535 characters.
Dim sl As String
sl = String (44002, "*") 'This string has 44002 characters

153

Print Len(sl) '44002
Print Len (Left(sl, 44000)) '44000 (fixed in 0OOo 2.0)
Print Len(Right (sl, 44000)) '44000

Use the Mid function to extract arbitrary substrings and to replace substrings in an existing string. In general,
the string functions return a new string rather than modifying the existing string. For example, the Trim
function returns a new string with leading and trailing spaces removed, rather than removing leading and
trailing spaces from the existing string. The Mid function, however, can be used to modify the string rather
than simply returning a new one. In its simplest form, the Mid function has functionality to the Right
function. The first argument is a string, and the second argument is a starting position. The optional third
argument indicates the length of the string to return.

Listing 136. Demonstrate Mid.

Print Mid("123456", 3) '3456

Print Mid("123456", 3, 2) '34

sl = String (44000, "*")&"XX"

Print Mid(sl, 44000) 'FXX No problem with large arguments
Print Len (Mid(sl, 2, 40000)) '40000 No problem with large arguments

The Mid function can provide the same functionality as the Left function.

Left (s, n) = Mid(s, 1, n)

The Mid function takes an optional fourth argument, a string, that replaces the specified substring in the first
argument. In other words, if four arguments are present, the first three arguments specify a substring in the
string and the fourth argument replaces the substring. This may shorten the length of a string, but in OOo
Basic this will never cause the string to become longer. If the final argument is longer than the specified
substring, only the first characters are used from the final argument to replace the substring.

Listing 137. Demonstrate Mid to replace strings.

s = "123456789"

Mid(s, 3, 5, "") 'Replace five characters with nothing

Print s '1289

s = "123456789"

Mid(s, 3, 5, "XX") 'Replace five characters with two

Print s '12XX89

s = "123456789"

Mid(s, 3, 5, "ABCDEFG") 'Cannot add more than you replace from the middle
Print s '"12ABCDE89

s = "123456789"

Mid (s, 7, 12, "ABCDEFG")'You can add more than you remove from the end
Print s '123456ABCDEFG

7.5. Replace

The ReplacelnString function (see Listing 138) emulates the Mid function, with two exceptions: It puts the
entire new string in place, even if it’s longer than the substring that it replaces, and it doesn’t modify the
original string.

Listing 138. A general replace string method.

REM This function is similar to Mid with four arguments.
REM This function does not modify the original string.

154

REM This function handles replacement text larger than n.
Function ReplaceInString(s$, i&, né&, sNew$) As String
If i <= 1 Then
'Place the string in front.
'The only question is how much string must be removed.

If n < 1 Then 'Remove nothing
ReplaceInString = sNew & s

ElseIf n >= Len(s) Then 'Remove everything
ReplaceInString = sNew

Else 'Remove a portion from the left
ReplaceInString = sNew & Right (s, Len(s) - n)

End If

ElseIf 1 + n > Len(s) Then
'Replacing past the end, then extract the leftmost parts
'Mid works to find if the length argument is larger than the

'string, so this is fine! Append the new text to the end.
ReplaceInString = Mid(s, 1, i - 1) & sNew

Else
'Replace somewhere in the middle of the string.
'First, obtain the leftmost text.
'Second, insert the new text, if any.
'Finally, obtain the rightmost text.

ReplaceInString = Mid(s, 1, i - 1) & sNew & Right(s, Len(s) - i - n + 1)
End If
End Function

But wait, there is an undocumented statement Replace(strng, find, rpl, start, Count, mode), which finds all
occurrences of find and replaces them with rpl. The last three arguments are optional.

The start value indicates what part of the string to return, not where to start replace. A value of one for the
start value returns all of the characters. A start value of three ignores the first two characters in the return
string.

The count indicates the maximum number of times to replace the found text. A value of -1 replaces all
values.

A mode value of 1, the default, indicates a case-insensitive compare is used to find matching text. A mode
value of 0 causes a case-sensitive compare.

7.6. Aligning strings with LSet and RSet

Use the LSet and RSet statements to left-justify and right-justify strings into the space taken by another
string. This is useful, for example, to create column headings that are left or right justified with leading or
trailing spaces. The RSet and LSet functions use the same syntax.

LSet string 1 = expression
RSet string 1 = expression

155

The string on the left-hand side can contain any data as long as it is the length that you want. The right-hand
side must evaluate to a string; that string will be displayed in the space defined by the length of the left-hand
string. Unlike the behavior for many functions in OOo Basic, the expression is not automatically converted
to a string.

Listing 139. RSet.

Dim s As String 'String variable to contain the result

s = String (10, "*") 'The result is 10 characters wide

RSet s = CStr(1.23) 'The number is not automatically converted to a string
Print "$" & s 'S 1.23

The important thing about the string on the left is its length — the width of the field in which the value of
interest will be displayed. The easiest way to get a string of a specified length is to use the String function.

The character that you use is not important because all of the extra characters in the final result are replaced
with spaces.

Listing 140. LSet.

Dim s As String 'String variable to contain the result

s = String (10, "X") 'The result is 10 characters wide

LSet s = CStr(1.23) 'The number is not automatically converted to a string
Print s & "%" '1.23 %

If the string on the left is shorter than the string expression on the right, the expression is truncated to fit.

Both LSet and RSet chop characters from the end of the expression to make it fit within the defined string
length.

Listing 141. LSet and RSet truncate.

Dim s As String 'String variable to contain the result

s = String (4, "X") 'The result will be four characters wide
LSet s = CStr(21.23) 'Truncated on the right

Print "S$" & s & "%" '$21.2%

RSet s = CStr(21.23) 'Truncated on the right

Print "$" & s & "S$" '$21.2%

The code in Listing 142 demonstrates the behavior of the LSet and RSet commands. The results are
displayed in Figure 54.

Listing 142. Complete LSet and RSet example.
Sub ExampleLSetAndRSet

Dim s As String
Dim sVar As String
Dim sTmp As String

sTmp = "12345"

sVar = String(10,"*")

LSet sVar = sTmp

s = "LSet " & String(10, "*") & " =" & STmp &
" == >" & sVar & "<" & CHRS$(10)

sVar = String(10,"*")
RSet sVar = sTmp

s = s & "RSet " & String (10, "*") & " =" & STmp &
" == >" & sVar & "<" & CHRS$(10) & CHRS(10)

sVar = String(2,"*")

156

LSet sVar = sTmp
s = s & "LSet " & String(2, "*") & " =" & STmp &
" == >" & sVar & "<" & CHRS$(10)

sVar = String(2,"*")

RSet sVar = sTmp

s = s & "RSet " & String(2, "*") & " =" & STmp &
" == >" & sVar & "<" & CHRS$(10)

MsgBox s, 0, "RSet and LSet"

End Sub
(=]RSetjand LSet 3

LSet ****#xxxxk = 12345 == >12345 <
RSet **#xxxxaak = 12345 == > 12345<
LSet #* = 12345 == =12<

RSet ** = 12345 == =12=<

Figure 54. RSet and LSet justify strings.

TIP In Visual Basic, LSet allows you to overlay data from one user-defined type with data from another,

overlaying all the bytes from one data structure on top of the other; ignoring the underlying structure. In
0Oo Basic, LSet only manipulates strings.

7.7. Fancy formatting with Format

You can convert a number to a string formatted according to the optional format string. And you can include
multiple formats in a single format string. See Table 53. The current locale influences the returned formatted

string. Set the locale using Tools | Options | Language Settings | Languages. If the format string is
omitted, Format produces output similar to the CStr function.

Listing 143. Simple Format statement.
Print Format (1223, "00.00") '1223.00

Print Format (1234.56789, "###00.00") '1234.57

Each individual format is separated by a semicolon (;). The first format is used for positive numbers, the

second for negative numbers, and the third for zero. If only one format code is present, it applies to all
numbers.

Listing 144. Format string may specify formatting for positive , negative, and zero numbers.
Dim s As String

s = "P 00000.000;N ####.00;Z 0.0"
Print Format (-12.3, s) 'N 12.30
Print Format (0, s) 'Z2 0.0

Print Format (12.3, s) 'P 000012.300

Table 53. Numeric Format specifiers.
Description

0 If the number has a digit at the position of the 0 in the format code, the digit is displayed;
otherwise a zero appears. This means that leading and trailing zeros are displayed, leading digits

157

Code Description

are not truncated, and trailing decimals are rounded.
This works like the 0, but leading and trailing zeros are not displayed.

The decimal placeholder determines the number of decimal places to the left and right of the
decimal separator. Although the period is used in the format string regardless of locale, the output
correctly uses the locale-specific decimal separator.

% Multiply the number by 100 and insert the percent sign (%) where it appears in the format code.

E- If the format code contains at least one numerical digit placeholder (0 or #) to the right of the
symbol, the number is formatted in the scientific notation. The letter E or e is inserted between the

E+ number and the exponent. The number of placeholders for digits to the right of the symbol

e- determines the number of digits in the exponent. If the exponent is negative, a minus sign (-) is

ot displayed directly before an exponent. If the exponent is positive, a plus sign (+) is only displayed
before exponents with E+ or e+.
The comma is a placeholder for the thousands separator. It separates thousands from hundreds in a

, number with at least four digits. The thousands delimiter is displayed if the format code contains
the placeholder surrounded by digit placeholders (0 or #).

_+$() space Plus signs (+), minus signs (-), dollar signs ($), spaces, or brackets entered directly in the format

code are displayed as the literal character.

The backslash displays the next character in the format code. In other words, it prevents the next
character from being seen as a special character. The backslash is not displayed unless you enter a
double backslash (\\) in the format code. Characters that must be preceded by a backslash in the

\ format code in order to be displayed as literal characters are the date- and time-formatting
characters (a, ¢, d, h, m, n, p, q, s, t, W, ¥, /, :), numeric-formatting characters (#, 0, %, E, e,
comma, period), and string-formatting characters (<, >). You may also enclose characters in
double quotation marks.

General Number Numbers are displayed as entered.

Currency A currency symbol is placed in front of the number, and negative numbers are in brackets.
Fixed At least one digit is displayed in front of the decimal separator. Two decimals are displayed.
Percent Multiply the number by 100 and append a percent sign (%).

Standard Displays numbers with a locale-specific thousands separator. Two decimals are displayed.
Scientific Displays numbers in scientific notation. Two decimals are displayed.

The format function has been dramatically improved over the years and most of the bugs have been fixed.
Format specifiers related to numbers are shown in Table 53.

Listing 145. Demonstrate numeric format specifiers.
Sub ExampleFormat

MsgBox Format (6328.2, "#4#,##0.00") REM 6,328.20
MsgBox Format (123456789.5555, "##,##0.00™) REM 123,456,789.56
MsgBox Format (0.555, ".##") REM .56
MsgBox Format (123.555, "#.##") REM 123.56
MsgBox Format (123.555, ".##") REM 123.56
MsgBox Format (0.555, "O.##") REM 0.56
MsgBox Format (0.1255555, "S#.#4") REM %12.56
MsgBox Format (123.45678, "H##E—-###4#") REM 12E1
MsgBox Format (.0012345678, "O.0E-####") REM 1.2E-003
MsgBox Format (123.45678, "#.e—###") REM 1.e002
MsgBox Format (.0012345678, "#.e-##4#") REM 1.e-003

158

MsgBox
MsgBox
MsgBox
MsgBox
MsgBox
MsgBox
MsgBox
MsgBox
End Sub

Format specifiers related to date and time formatting are shown in Table 54. For reasons that I do not

Format (123.456789, "#.## is ##4#") REM 123.46

Format (8123.456789, "General Number") REM 8123.456789

Format (8123.456789, "Fixed") REM 8123.46

Format (8123.456789, "Currency") REM 8,123.46 $ (broken)
Format (8123.456789, "Standard") REM 8,123.46

Format (8123.456789, "Scientific") REM 8.12E+03

Format (0.00123456789, "Scientific") REM 1.23E-03

Format (0.00123456789, "Percent") REM 0.12%

understand, they are not included with the standard documentation.

Table 54. Date and time format specifiers.

Code

q
qq
y

d

dd
ddd
dddd
ddddd
dddddd
w

WwW

h

hh

n

nn

s

ss

ttttt

Description

The quarter of the year (1 through 4).

The quarter of the year as 1st quarter through 4th quarter
The day in the year (1 through 365).

Two-digit year.

Complete four-digit year.

Month number with no leading zero.

Two-digit month number; leading zeros are added as required.
Month name abbreviated to three letters.

Full month name as text.

First letter of month name.

Day of the month with no leading zero.

Day of the month; leading zeros are added as required.
Day as text abbreviated to three letters (Sun, Mon, Tue, Wed, Thu, Fri, Sat).
Day as text (Sunday through Saturday).

Full date in a short date format.

Full date in a long format.

Day of the week as returned by WeekDay (1 through 7).
Week in the year (1 though 52).

Hour with no leading zero.

Two-digit hour; leading zeros are added as required.
Minute with no leading zero.

Two-digit minute; leading zeros are added as required.
Second with no leading zero.

Two-digit second; leading zeros are added as required.
Display complete time in a long time format.

Display a complete date and time.

Date separator. A locale-specific value is used.

Time separator. A locale-specific value is used.

159

The date and time format specifiers are now implemented. I am aware of at least one bug that is
demonstrated in Listing 146 with the format string “d/mmmm/yyyy h:nn:ss”; Figure 55 shows that “nn’

does not expand properly on the last line.

Listing 146. Demonstrate date and time format specifiers.
Sub FormatDateTimeStrings
Dim i%
Dim d As Date
d = now ()
Dim s$
Dim formats
formats = Array("g", "qg", "y", "yy", "vyyyy",
"m", "mm", "mmm", "mmmm", "mmmmm",
"d", "dd", "ddd", "dddd", "ddddd", "dddddd",
,

"y ww", "h", "hh", vvnvv, "nn", nnnnn, "S", HSS",

"ttttt", "c", "d/mmmm/yyyy h:nn:ss")

For 1 = LBound(formats) To UBound(formats)
s = s & formats(i) & " => " & Format(d, formats(i)) & CHRS$(10)
Next
MsgBox s
End Sub

160

b

gq==Q3

gq => 3rd quarter
y=>214

yy =>11

yyyy == 2011
m=>8

mm => 08

mmm => Aug
mmmm => August
mmmmm == A
d=>2

dd == 02

ddd == Tue

dddd == Tuesday
ddddd == 8/2/11
dddddd => Tuesday, August 02, 2011

w == 3

ww == 372
h==21
hh=»=21
n==28
nn==28

nnn => Tuesday
s=>10

ss=> 10

ttttt => 9:28:10 PM
c=>8/2/11 9:28:10 PM
d/mmmm/fyyyy hinn:ss => 2/August/2011 21:Tue:10

............

Figure 55. Date and time format specifiers.
Format specifiers related to strings are shown in Table 55.

Table 55. String format specifiers.
Description

String in lowercase.

String in uppercase.

Other string format specifiers used to be documented, but have never been implemented (see Table 56). |
include them because the specifiers in Table 54 and Table 55 used to be documented but not implemented;
now they are implemented but not documented.

161

Table 56. String format specifiers.

Code Description

@ Character placeholder. If the input character is empty, place a space in the output
string. For example, “(@@@)” formats to “()” with an empty string.

& Character placeholder. If the input character is empty, place nothing in the output

string. For example, “(&&&)” formats to “()” with an empty string.

Normally, character placeholders are filled right to left; the ! forces the placeholders to
be filled left to right.

As of this writing with OOo version 3.2.1, only the upper / lower case string format specifiers are
implemented.

Listing 147. String format specifiers.

Sub FormatStrings
Dim i%
Dim s$

Dim formats

formats = Array("<", ">",
ree", "(eee)", "[reeeei", _
"e&", "(&&&)", "[&&&&1",
)
For i = LBound(formats) To UBound (formats)
s = s & formats(i) & " => (" & Format ("On", formats(i)) & ")"™ & CHRS(10)
Next
MsgBox s
End Sub

7.8. Converting data to a string

OO0 Basic contains functions that convert other data types to a string. Although the Format function is the
most versatile method of converting a number to a string, that level of control is typically not required. The
Str function converts a number to a string with no localization, and the Val function converts it back to a
number.

The Hex and Oct functions convert a Long to its corresponding hexadecimal or octal notation. The leading
“&H” and “&0” are not included. To convert back to a number, these strings must be manually prepended to
the string.

The CStr function is able to intelligently convert almost any data type to a string in a locale-specific way
(see Table 57). The Str function is limited to numbers and does not perform a locale-specific conversion.

Table 57. Converting data types with CStr.
Type Converted to String

Boolean True or False

Date Formatted date string such as 06/08/2010

Null, uninitialized object

Empty, uninitialized variant

any numeric value

Run-time error
Zero-length string

Number as a string

162

Listing 148. CStr with a few data types.

Sub ExampleCStr
On Error Goto Handler
Dim b As Boolean
Dim o As Object

Dim v As Variant ' This is empty
Dim d As Double . d = PI()
Print "Boolean (" & CStr(b) & ™))"
Print "Date (" & CStr(Now) & ")"
Print "Empty Variant (" & CStr(v) & ")"
Print "Double (" & CStr(d) & ")"
Print "Null object (" & CStr(o) & ")"
Exit Sub
Handler:
Print "Encountered error: " & Error

Resume Next
End Sub

The CStr function is useful when you need to explicitly convert a value to a string to avoid incorrect default
conversions to other types. For example, the first operand to the addition operator determines if the result is
a string or a number. This is also an argument against the use of the addition operator (+) for string
concatenation rather than the operator specifically designed for string concatenation (&).

Print 3 + "4" "7

Print CStr(3) + "4" '34
The Join function concatenates all of the elements in a one-dimensional array into a single string. If no
delimiter is specified, a space separates each element.

Print Join (Array (3, 4, 5))
Print Join(Array (3, 4, 5), "X")

'3 45
' 3X4X5

The Split function is used to split a string into pieces based on an optional delimiter. This is essentially the
opposite of the Join function and is the fastest method to parse a string into a series of substrings based on a
delimiter.

Split("3 4 5m)
Split ("3X4X5", "X")

'returns the array (3, 4, 5)

'returns the array (3, 4, 5)

7.9. Advanced searching

The usual search methods are StrComp (Listing 126), InStr (Listing 131), and InStrRev (Listing 132).
Advanced searching can be done using the TextSearch service. Searching can be done using ABSOLUTE,
REGEXP, or APPROXIMATE mode. I will not take the time to pursue the TextSearch service in depth; for
example, to investigate replacing text.

Listing 149. using the TextSearch service.
Sub StringTextSearch

Dim oTextSearch TextSearch service.

Dim sStrToSearch As String String to search.

Dim sMatchString As String String that was found.

Dim aSearchResult com.sun.star.util.SearchResult
Dim rank As Long

Dim

Dim

iMatchStartPos As Long
iMatchLen As Long

163

Dim aSrcOpt As New com.sun.star.util.SearchOptions
Dim s$
Dim enLocale As New com.sun.star.lang.Locale

enLocale.Language = "en"
enLocale.Country = "US"

oTextSearch = CreateUnoService ("com.sun.star.util.TextSearch™)

s = ""

With aSrcOpt
'http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchFlags.html
.searchFlag = com.sun.star.util.SearchFlags.REG EXTENDED
.Locale = enlocale
'Supports ABSOLUTE, REGEXP, and APPROXIMATE
.algorithmType = com.sun.star.util.SearchAlgorithms.REGEXP
.searchString = "a+"

'This does not work.
'.transliterateFlags = com.sun.star.il8n.TransliterationModulesNew.IGNORE CASE

'This works
.transliterateFlags = com.sun.star.il8n.TransliterationModulesNew.UPPERCASE LOWERCASE

End With
oTextSearch.setOptions (aSrcOpt)

sStrToSearch = "aaa hello AAA"
aSearchResult = oTextSearch.searchForward(sStrToSearch, 0,Len(sStrToSearch)-1)

'Print aSearchResult.subRegExpressions

REM subRegExpressions has value zero if no match...
Do While aSearchResult.subRegExpressions > 0
'"Print "" + LBound (aSearchResult.startOffset) + ":" 4+ UBound(aSearchResult.startOffset)
rank = aSearchResult.subRegExpressions - 1
iMatchStartPos = aSearchResult.startOffset (rank) + 1
iMatchLen = aSearchResult.endOffset (rank) - aSearchResult.startOffset (rank)
sMatchString = Mid(sStrToSearch, iMatchStartPos, iMatchLen)
s = s & "(" + LBound(aSearchResult.startOffset) & ":" & o
UBound (aSearchResult.startOffset)s& ") => " & sMatchString & CHR$(10)

aSearchResult = oTextSearch.searchForward(sStrToSearch,
aSearchResult.endOffset (rank)+1,Len(sStrToSearch)-1)
Loop
MsgBox s
End Sub

7.10. Conclusion

It pays to know the different functions supported by OOo Basic. Before I was aware of the Split function, I
spent a lot of time writing a macro that parsed a string into pieces. I rewrote my code using the Split function

164

and the macro was significantly faster. It’s also important to know the limitations of strings. I saw a macro
that counted words in a document by first converting the entire document into a single string. This technique
worked well, and it was very fast, but it failed when the number of characters in the document exceeded
65,535.

There are a lot of very powerful capabilities for formatting text in OOo Basic. Among other things, the use
of the Unicode character set allows processing of nearly any language in the world. There are also a number
of good functions for joining, splitting, and formatting text strings.

165

8. File Routines

This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
files and directories. After reading this chapter you’ll be able to create, delete, rename, and move files and
directories. You’ll learn methods that inspect files, both open and closed, and directories. This chapter also
explains the idiosyncrasies and bugs related to reading and writing files, along with differences between
operating systems.

OOo Basic includes functions that allow you to interact with the file system (see Table 58). You can perform
simple and complex tasks such as creating and deleting directories, or even opening and parsing files. In this
chapter I’ll spend a fair amount of time on directories, file attributes, and the different file types. I will
examine how files are organized and manipulated, how the different file types are structured, and which
functions read and write data for those different file types. I was happy with how easily I was able to write
macros to move and rename files. On the other hand, the functions to manipulate binary and random files
feel rough around the edges.

Table 58. File functions in OOo Basic.

Function Description

ChDir(path) Change the currently logged directory or drive. Deprecated; do not use.

ChDrive(path) Change the currently logged drive. Deprecated; do not use.

Close #n Close a previously opened file or files. Separate file numbers with a comma.

ConvertFromURL(str) Convert a path expressed as a URL to a system-specific path.

ConvertToURL(str) Convert a system-specific path to a URL.

CurDir Return the current directory as a system-specific path. If the optional drive is specified, the

CurDir(drive) current directory for the specified drive is returned.

Dir(path) Return a listing of files based on an included path. The path may contain a file specification

Dir(path, attr) — for example, “/home/andy/*.txt”. Optional attributes determine if a listing of files or

’ directories is returned.

EOF (number) Return True if the file denoted by “number” is at the end of the file.

FileAttr(number, 1) Return the mode used to open the file given by “number”. The second argument specifies if
the file-access or the operating-system mode is desired, but only the file mode is currently
supported.

FileCopy(src, dest) Copy a file from source to destination.

FileDateTime(path) Return the date and time of the specified file as a string.

FileExists(path) Return True if the specified file or directory exists.

FileLen(path) Return the length of the specified file as a long.

FreeFile() Return the next available file number for use.

Get #number, variable Read a record from a relative file, or a sequence of bytes from a binary file, into a variable.

Get #number, pos, variable If the position argument is omitted, data is read from the current position in the file. For files

T opened in binary mode, the position is the byte position in the file.

GetAttr(path) Return a bit pattern identifying the file type.

GetPathSeparator() Return the system-specific path separator.

Input #number, var Sequentially read numeric or string records from an open file and assign the data to one or
more variables. The carriage return (ASC=13), line feed (ASC=10), and comma act as
delimiters. Input cannot read commas or quotation marks (") because they delimit the text.
Use the Line Input statement if you must do this.

Kill(path) Delete a file from disk.

Line Input #number, var Sequentially read strings to a variable line-by-line up to the first carriage return (ASC=13)

166

Function Description

or line feed (ASC=10). Line end marks are not returned.

Loc(number) Return the current position in an open file.

LOF(number) Return the size of an open file, in bytes.

MkDir(path) Create the directory.

Name src As dest Rename a file or directory.

Open path For Mode As #n | Open a data channel (file) for Mode (Input = read, Output = write)
Put #n, var Write a record to a relative file or a sequence of bytes to a binary file.

Put #n, pos, var

Reset Close all open files and flush all files to disk.
RmDir(path) Remove a directory.

Seek #n, pos Set the position for the next writing or reading in a file.
SetAttr(path, attr) Set file attributes.

Write #n, string Write data to a file.

8.1. Using URL notation to specify a file

Many of the functions in Table 58 specify a file or path. These functions accept both system-specific names
and Uniform Resource Locator (URL) notation. This is the same notation used by your Web browser. Table
59 shows examples.

Table 59. URL examples.

System Path URL Path
Windows c:\Temp\help.txt file:///c:/Temp/help.txt
Windows c:\My Documents file:///c:/My%20Documents
Unix /home/andy/Temp/help.txt file:///home/andy/Temp/help.txt
Unix /home/andy/My Documents file:///home/andy/My%20Documents
TIP The statement “Shell("C:\Prog Files\calc.exe",2)” failed because there is a space in the path. The Shell

statement passes the string to the command shell, which interprets the portion of the path before the space
as the program to run. URL notation avoids this problem.

One advantage of URL notation is that special characters are encoded. Arguments that are passed to a shell,
for example, frequently have problems with paths that contain a space. In URL notation, spaces are encoded
as “%?20” (see Table 59). Use the functions ConvertToURL to convert a system-specific path to URL
notation and ConvertFromURL to convert to a system-specific path.

Listing 150. Converting to and from a URL.

Sub ToFromURL
Print ConvertToURL ("/home/andy/logo.miff")

Print ConvertFromURL("file:///home/andy/logo.miff") 'This requires UNIX

Print ConvertToURL("c:\My Documents") 'This requires Windows

Print ConvertFromURL ("file:///c:/My%20Documents") 'This requires windows
End Sub

167

Special characters, such as the space, are encoded with a percent sign (%) followed by the ASCII value of
the character encoded as a two-digit hexadecimal number. The space character has an ASCII value of 32,
which is 20 in hexadecimal format. This is why a space is encoded as %?20.

Listing 151. Special URL characters.
Sub URLSpecialEncoding

Print ConvertFromURL ("file:///%41%42%43/%61%62%63") '/ABC/abc (UNIX)
Print ConvertFromURL ("file://c:/%41%42%43/%61%62%63")'/ABC/abc (Windows)
End Sub

URL notation is system independent, so URL paths work as well on an Apple computer as they do on a
Windows computer. To create a system-specific path, use the function GetPathSeparator to obtain the
system-specific path separator. Listing 152 demonstrates how to use GetPathSeparator to build a complete
path. Windows-based computers use “\” as the path separator, and Unix-based computers use ““/”” as the path
separator. URL notation uses “/” as the separator regardless of the operating system.

Listing 152. Use GetPathSeparator() rather than “\” or “/”.
sPathToFile = "C:\temp"

sBookName = "OOME.odt"
sPathToBook = sPathToFile & GetPathSeparator () & sBookName

TIP Visual Basic for Applications (VBA) does not support the function GetPathSeparator, but it does have the
property Application.PathSeparator, which always returns a backslash, even on a Macintosh computer.
VBA also does not support ConvertToOURL or ConvertFromURL.

8.2. Directory manipulation functions

Some functions apply equally well to directories as well as files. This section is concerned with those that
apply only to directories.

The function CurDir, with a drive specifier as the argument, returns the current directory for the specified
drive. See Listing 153 and Figure 56. If the argument is omitted, the current directory for the current drive is
returned. The drive specifier is ignored on Unix systems. The initial value of the current directory is system
dependent and may change depending upon how OOo is started. If you start OOo from a command-line
prompt, you’ll likely have a different current directory than if you start OOo from a menu or another
application. For some operating systems, using File | Open to open an existing document sets the current
directory to the directory containing the opened document (I have seen this in Windows). In some operating
systems, such as Linux, this does not affect the current directory. Do not rely on this behavior!

Listing 153. Print the current directory.
Sub ExampleCurDir

MsgBox "Current directory on this computer is " &
CurDir, 0, "Current Directory Example"
End Sub

[~ Current Directory Example

Current directory on this computer is /home/andy

| L

Figure 56. CurDir returns the current directory.
The functions ChDir and ChDrive, although present in OOo Basic, do nothing and will likely be removed
from the language. Their original purpose was to change the current drive and directory, but this was a

168

system wide change, which is dangerous in multitasking environments like we use today. The initial current
directory is dependent upon the operating system and how OOo was opened. The initial values, therefore,
cannot be assumed.

Use the MkDir function to create a directory, and RmDir to remove a directory. In Listing 154, a directory
path is created from the argument to MkDir. If an absolute path is not provided, the created directory is
relative to the current directory as obtained with the function CurDir. The function RmDir removes the
directory, all directories below it, and all files contained in the directories. This macro calls OOMEWorkDir
in Listing 165.

Listing 154. Create and then remove directories in the OOME Work Directory.

Sub ExampleCreateRmDirs
If NOT CreateOOMEWorkDir () Then
Exit Sub
End If
Dim sWorkDir$
Dim sPath$
sWorkDir = OOMEWorkDir ()
sPath = sWorkDir & "a" & GetPathSeparator () & "b"
MkDir sPath
Print "Created " & sPath

RmOOMEWorkDir ()
Print "Removed " & sWorkDir
End Sub

The code in Listing 154 uses absolute paths. It’s possible to use relative paths, but I strongly discourage it.
The behavior of the current directory is operating-system dependent.

File-related functions that also work with directories include Dir, FileDateTime, FileExists, FileLen,
GetAttr, and Name. These are discussed later.

8.3. File manipulation functions

This section explores functions that deal with inspecting and manipulating entire files, rather than the
contents of those files. Some of these functions have a dual purpose, acting on both files and directories. In
each case, the function accepts at least one argument that identifies a file or directory. The following things
are true about arguments that identify files or directories:

If the path is not present, the current directory — as returned by CurDir — is used.

The system representation and the URL notation are both allowed. For example, “C:\tmp\foo.txt” and
“file:///c:/tmp/foo.txt” refer to the same file.

Unless it is explicitly stated, a single file or directory must be uniquely identified. The only function that
accepts a file specification is Dir, which returns a listing of files matching the file specification.

Each file and directory has attributes (see Table 60). Each attribute represents a single bit in a number,
allowing each item in a path to have multiple attributes set at the same time. Some attributes have been
deprecated to be more system dependent. Not all systems support hidden or system files, for example. Use
GetAttr to return the attributes.

169

Table 60. File and directory attributes.
Deprecated Attribute Description

No 0 Normal; no bits set

No 1 Read-Only

Yes 2 Hidden

Yes 4 System

No 8 Volume

No 16 Directory

No 32 Archive bit (file changed since last backed up)

The function in Listing 155 accepts an attribute from the GetAttr function and returns an easy-to-understand
string. If no bits are set, the attributes indicate a normal file.

Listing 155. Print attributes as a string.

REM uses bitwise comparison to read the attributes
Function FileAttributeString(x As Integer) As String
Dim s As String
If (x = 0) Then

s = "Normal"

Else
If (x AND 16) <> 0 Then s = "Directory" 'Directory bit 00010000 set
If (x AND 1) <> 0 Then s = s & " Read-Only" 'read-only bit 00000001 set
If (x AND 2) <> 0 Then s = s & " Hidden" 'Deprecated
If (x AND 4) <> 0 Then s = s & " System" 'Deprecated
If (x AND 8) <> 0 Then s = s & " Volume" 'Volume bit 00001000 set
If (x AND 32) <> 0 Then s = s & " Archive" 'Archive bit 00100000 set

End If

FileAttributeString = s

End Function
TIP Listing 155 performs bit operations (explained later) to determine which attributes are set.

Use the GetAttr function to get the attributes of a file, and use SetAttr to set the attributes. The first
argument to the function SetAttr is the name of the file — relative or absolute — and the second argument is
a number representing the attributes to set or clear. In other words, after calling SetAttr(name, n), the
function GetAttr(name) should return the integer n. For example, calling SetAttr with the attribute set to 32
sets the archive bit and clears all the others so GetAttr returns 32. To set more than one bit at the same time,
use the OR operator to combine attributes. Use SetAttr(fileName, 1 OR 32) to set both the archive bit and
the read-only bit. SetAttr works on directories as well as files.

TIP Attributes favor the Windows environment. On Unix-based operating systems such as Linux and Sun,
setting attributes affects the user, group, and world settings. Setting the attribute to 0 (not read-only)
corresponds to “rwxrwxrwx”. Setting the attribute to 1 (read-only) corresponds to “r r r”.

Use the FileLen function to determine the length of a file. The return value is a long. The function in Listing
156 obtains the file length and then creates a pretty string to display the length. The file length is returned in
bytes — K, MB, G, or T — depending on the length. This produces a more easily understood result than a
simple number.

170

Listing 156. Display a number in a nice readable form such as 2K rather than 2048.
Function PrettyFilelLen (path$) As String

PrettyFileLen = nPrettyFileLen (FilelLen (path))
End Function

Function nPrettyFileLen (ByVal n As Double) As String
Dim i As Integer 'Count number of iterations
Dim v () As Variant 'Holds abbreviations for Kilobytes, Megabytes,
v () = Array("bytes", "K", "MB", "G", "T") 'Abbreviations

REM Every time that the number is reduced by 1 kilobyte,

REM the counter is increased by 1.

REM Do not decrease the size to less than 1 kilobyte.

REM Do not increase the counter by more than the size of the array.
Do While n > 1024 AND i+l < UBound (v ())

n = Fix(n / 1024) 'Truncate after the division
i =1+ 1 'Started at i=0 (bytes) increment to next abbreviation
Loop

nPrettyFileLen = CStr(n) & v (i)
End Function

Use the FileExists function to determine if a file or directory exists. Use FileDateTime to return a string with
the date and time that a file was created or last modified. The returned string is in a system-dependent
format. On my computer, the format is “MM/DD/YYYY HH:MM:SS”. The returned string can be passed
directly to the function CDate. The GetFileInfo macro in Listing 157 uses all of the file and directory
inspection functions to return information in an easy-to-read format. Also see Figure 57.

Listing 157. Get information about a file.
Function GetFileInfo(path) As String

Dim s As String
Dim iAttr As Integer

S = "The path mwan & path & miwn
If Not FileExists(path) Then
GetFileInfo = s & " does not exist"

Exit Function

End If
s = s & " exists" & CHRS$(10)
s = s & "Date and Time = " & FileDateTime (path) & CHRS$ (10)

iAttr = GetAttr (path)
REM The length of a directory is always zero

If (iAttr AND 16) = 0 Then

s = s & "File length = " & PrettyFileLen (path) & CHRS$(10)
End If
s = s & "Attributes = " & FileAttributeString (iAttr) & CHRS$(10)

GetFileInfo = s
End Function

171

[§- File Info

The path "/home/andy/download/viavoice_dict_rtl:_3.tar" exists
Date and Time = 04/30/2002 00:17:23

File length = 74Mb

Attributes = Normal

1| I

Figure 57. You can learn a lot about a file by using the file-inspection functions.
Use the Kill statement to delete a file from the disk. A run-time error occurs if the file does not exist.

Kill ("C:\temp\BadFile.txt")

Use the FileCopy function to copy files. The first argument is the file to copy and the second argument is the
destination file. See Table 61. The FileCopy function is able to recursively copy entire directories, but it
can’t handle file specifications. Surprisingly, if the first argument is a file, the second argument must also be
a file — I expected that I could copy a file to a directory with FileCopy("C:\auto.bat", "C:\bak\").

Table 61. Arguments to FileCopy.
Valid Source Destination Comment

Yes File File Copy the file. The names do not have to be the same.
Yes Directory Directory Recursively copy all files and directories contained in one directory
to another directory.

No file spec File specifications (wildcards, for example, *.*) are not allowed.
No File Directory If the source is a file, the destination must also be a file.

FileCopy ("C:\auto.bat", "C:\auto.bak") 'Copy file

FileCopy ("C:\auto.bat", "C:\tmp\auto.bat") 'Copy file

FileCopy ("C:\1logs", "C:\bak") 'Copy directory

TIP Do not recursively copy a directory into itself — this creates an infinite loop. For example,

FileCopy("C:\logs", "C:\logs\bak") will never finish because the “bak” subdirectory immediately becomes
part of the contents of “logs”, which then has to be copied as well. Bad idea.

Use the Name statement to rename a file or directory. This statement has an unusual syntax: It places the
keyword As between the source and destination names.

Name "C:\Joe.txt" As "C:\bill.txt" 'Rename a file
Name "C:\logs" As "C:\oldlogs" 'Rename a directory
Name "C:\Joe.txt" As "C:\tmp\joe.txt" 'Move the file to the tmp directory
Name "C:\logs" As "C:\bak\logs" 'Move the logs directory
TIP A common power-user trick is to use the Name command to move a file or directory from one location to
another.

8.4. File attributes, bitmasks, and binary numbers

It isn’t necessary to understand binary numbers and bitmasks to use either file attributes or bitmasks in OOo
Basic, so don’t panic; simply skip the parts that make your head spin. Understanding this material, however,
makes it simpler to understand what is happening with file attributes and how to use them.

172

The file and directory attributes in Table 60 were strategically chosen to have a nice property when written
in base 2 (see Table 62) — each attribute has only one bit set. Zero is a special case — it has no bits set.

Table 62. File and directory attributes.

Decimal Binary Description Comment
Attribute Attribute

00 0000 0000 Normal No bits set

01 0000 0001 Read-Only Bit 1 set

02 0000 0010 Hidden Bit 2 set

04 0000 0100 System Bit 3 set

08 0000 1000 Volume Bit 4 set

16 0001 0000 Directory Bit 5 set

32 0010 0000 Archive Bit 6 set

Use GetAttr to obtain the attributes of a file or path. If the file or path is a directory, then bit 5 is set. If the
file or path is read-only, then bit 1 is set. A returned attribute of 0 means that no bits are set and that this is a
normal file. Consider an attribute value of 33, which in binary is 0010 0001. Bit 1 is set, so this is read-only.
Bit 6 is set, so this file has changed since it was last archived. You can see that you don’t need to know how
to convert a decimal number into a binary number. However, you do need to know how to write a macro to
determine which bits are set and which bits are not set. Use the AND operator to determine which bits are
set. With AND, two things must both be true for the answer to be true. For example, my flashlight works if it
has a light bulb AND it has batteries.

The AND operator works with numbers by performing this logical operation on each of the bits. For
example, “3 AND 5 represented as base 2 is “0011 AND 0101 = 0001”. Bit 1 — the bit in the rightmost
position — in each number is equal to 1, so bit 1 in the result is also 1. All of the other bits do not have
corresponding 1s in the same position, so all of the other bits in the result equal zero.

Now I'’ll apply this idea to the problem at hand. If the numeric value of an attribute is not zero, then at least
one property is set. Given this, you can then check each attribute as illustrated by the example in Table 63.

Table 63. Check attribute value 33 (100001) for each file property.

Read-Only Hidden System Volume Directory Archive
10 0001 10 0001 10 0001 10 0001 10 0001 10 0001
AND 00 0001 AND 00 0010 AND 00 0100 AND 00 1000 AND 01 0000 AND 10 0000
(1) 00 0001 (0) 00 0000 (0) 00 0000 (0) 00 0000 (0) 00 0000 (32)10 0000

To do this in OOo Basic, use code similar to the following:

If TheAttribute = 0 Then
REM No attributes set

Else

If (TheAttribute AND 1) = 1 Then ... 'Read-Only file: bit 1 is set

If (TheAttribute AND 16) = 16 Then ... 'Directory: bit 5 is set.

If (TheAttribute AND 4) <> 0 Then ... 'Another way to code the same logic.
End If

Each file and directory has an attribute defined as these bit patterns. If a bit in the attribute that corresponds
to a particular property is set, then the file has that property. Performing the AND operator with the

173

individual bit positions determines if the file has that property. The function FileAttributeString in Listing
155 uses this method.

To set the archive bit and read-only bit on a file, combine the bits and call the function once. Use the OR
operator to combine bit patterns. With the OR operator, if either bit is set, the resulting bit is a 1. To set the
read-only and the archive bits, use “1 OR 32”. If you set the attributes to 1, then all of the other attributes
will be cleared and only the read-only bit will be set.

8.5. Obtaining a directory listing

Use the Dir function to obtain a directory listing. The first argument is a file specification. Although a file or
directory may be uniquely identified, file specs (also called wildcards) are allowed. For example, the
command Dir("C:\temp*.txt") returns a list of all files that have the extension TXT. The second argument
specifies attributes, for which there are two valid values: 0 (the default) returns files; set the second
argument to 16 to retrieve a list of directories.

TIP Most operating systems contain two special directory names, represented by a single period (.) and a
double period (..). A single period references the current directory, and two periods reference the parent
directory. These special directories are included in the directory list as returned by the Dir function. If you
write a macro that looks at each directory recursively but you don’t take these two into consideration, your
macro will erroneously run forever.

The first call to Dir starts reading a directory and returns the first file that matches. Each additional call,
which takes no arguments, returns the next file that matches.

sFileName = Dir (path, attribute) 'Get the first one

Do While (sFileName <> "") 'While something found
sFileName = Dir () 'Get the next one

Loop

If the path uniquely identifies a file or directory, only one entry is returned. For example, the command
Dir("C:\tmp\autoexec.bat") returns the single file “autoexec.bat”. Less obviously, the command
Dir("C:\tmp") returns the single directory “tmp”. To determine what a directory contains, the path must
either contain a file specifier (C:\tmp*.*) or the path must contain a trailing path separator (C:\tmp\). The
code in Listing 158 performs a simple listing of the current directory; it uses the function GetPathSeparator
to obtain the path separator in an operating-system-independent way.

Listing 158. List the files in the current directory.
Sub ExampleDir

Dim s As String 'Temporary string
Dim sFileName As String 'Last name returned from DIR
Dim i As Integer 'Count number of dirs and files
Dim sPath 'Current path with path separator at end
sPath = CurDir & GetPathSeparator () 'With no separator, DIR returns the
sFileName = Dir (sPath, 16) 'directory rather than what it contains
i=20 'Initialize the variable
Do While (sFileName <> ") 'While something returned

i=1+1 'Count the directories

= s & "Dir " & CStr(i) &_
" =" & sFileName & CHRS$ (10) 'Store in string for later printing

sFileName = Dir () 'Get the next directory name
Loop
i=20 'Start counting over for files

174

sFileName = Dir (sPath, 0) 'Get files this time!
Do While (sFileName <> "")

i=1+1

s =s & "File " & CStr(i) & " = " & sFileName & " " &
PrettyFileLen (sPath & sFileName) & CHRS$ (10)

sFileName = Dir ()

Loop
MsgBox s, 0, ConvertToURL (sPath)

End Sub

Sample output from Listing 158 is shown in Figure 58. First, the directories are listed. The first two
directories, “.” and “..”, represent the following:

file:///home/andy/My%20Documents/OpenOffice/
file:///home/andy/My%20Documents/

The inclusion of “.”” and “..” is a common source of problems. A listing of directories contains these two
directories, which should usually be ignored.

-~ file:fhome/andy/My%20Documents/OpenOffice/

Dir1 =.

Dir2 = ..

Dir 3 = MD Practice

Dir 4 = authorkit

Dir 5 = fitoo

File 1 = AM_de0629.sxw 278K

File 2 = AndrewMacro.sxw 176K

File 3 = AndrewMacroGerman.sxw 278K
File 4 = tutorial.pdf 1Mb

File 5 = update_german.btm S8bytes
File 6 = GetQuote.txt 5K

File 7 = link.txt 90bytes

File 9 = Dialogexample.sxc 9K

File 10 = update_dialog.btm S4bytes
File 11 = tameocow.pdf 1Mb

File 13 = Small Simple Book.stw 9K

'} L

Figure 58. Directory listing of the current directory.

8.6. Open a file

OpenOftice.org uses low-level, system-specific methods to manipulate files. The operating system maintains

a list of the open files and identifies them with a number, which is called a “file handle.” In the world of
Basic, this is usually called the “file number” or “data channel.”

To open a file, you must tell it what file number (file handle) to use. Use the FreeFile function to obtain an

unused file number, which will be used when opening a file, referencing the open file, and when closing the
file. The Open statement is used to open a file before it is usable for reading or writing. The Open statement
requires a file number, which should always be obtained from the FreeFile function. Use the Close statement
when you are finished with the file. You can close multiple files in a single statement by providing a comma-

separated list of numbers after the Close statement. Use the Reset function to close all of the open files at

one time without having to explicitly list the file numbers. All open file numbers are closed and their data is

flushed to disk.

= FreeFile()

175

Open FileName For Mode [Access ioMode] [Lock Mode] As #n [Len=Datalen]
Close #n

“FileName” is the name of the file that you want to open. If the file name does not include the path, the
current directory is assumed. “For Mode” specifies the state of the file when it is opened and how you intend
to use the file (see Table 64).

Table 64. Valid “For Mode’ values and the resulting configuration if Access is not used.

For Mode |File Pointer |File Exists |No File Read Write Comment

For Append |end Open Create Yes Yes Sequential access
For Input start Open error Yes No Sequential access
For Output start Delete Create Yes Yes Sequential access
For Binary start Delete Create Yes Yes Random access
For Random |start Delete Create Yes Yes Random access

Each mode has its own set of behaviors as shown in Table 64. Consider the row For Input, this can be read
to say: When a file is opened “For Input”:

1. The file pointer is positioned at the start of the file.
2. If'the file exists, it is opened (and not deleted).

3. Ifthe file does not exist, an error is generated.
4

The file is opened with read access, but not write access (assuming that Access is not explicitly
provided).

5. Sequential access is used for reading the file.

Unfortunately, the precise implementation is dependent on the operating system and even the compiler used
to create your version of OOo; for example, on some systems, you can write to a file opened for Input.

When a file is open, a pointer into the file is maintained. This pointer identifies where the next read or write
operation will occur. For example, if the file pointer is at the start of the file, the next “read” command will
read the first thing in the file. If the file pointer is at the end of the file, the next “write” command will
append data to the end of the file. You have some control over the initial position of the file pointer when the
file is opened, and you can move this file pointer around when the file is open. All of the “For” modes,
except “For Append,” position the file pointer at the start of the file.

You can access a file sequentially or randomly. A sequential file is similar to a video tape. Although you can
fast forward and rewind the tape to a specific location on the tape, the entire tape moves past the read/write
head. You then press Play or Record and the data is either sequentially read from or written to the tape. A
random file is similar to a music CD. Although you can play the CD sequentially, it isn’t required; you can
quickly jump to any song and play it. To make the analogy more accurate, however, each song on the CD
must be the same size. This is the disadvantage to the “For Random” mode.

Consider storing names of different lengths in a file on the disk. Storing one name per line in the file is
efficient with respect to space. You can use a new-line character between each name. To find a specific name
in the file, you start at the beginning and read until you find the person’s name. On the other hand, if you
know that the longest name is 100 characters, you can store each name on the disk, and store enough spaces
after the name to use a total of 100 characters for each name. This wastes space, but it allows you to quickly
move between names on the disk, because of the regular file structure. To read or write the 1000th name in
the file, you simply move directly to that record. You have wasted space in this design, but you have gained
speed performance. All of the “For” modes,” except “For Binary” and “For Random,” specify sequential file

176

access. Random files use this ability to fix the record length to the maximum size of interest in order to
permit very rapid file access and retrieval.

The access modes in Table 65 affect the default treatment of a file when it is opened. When an access mode
is specified, it also verifies that you have access to either read or write the file. If you do not have write
access to a file opened with “Access Write,” a run-time error occurs. The access mode affects every open
“For” mode except “For Append” — which never deletes an existing file when it is opened.

Table 65. Valid Access ioModes.

Access ioMode Description

Access Read Do not delete an existing file. Verify that you have read access.
Access Write Delete an existing file. Verify that you have write access.

Access Read Write Delete an existing file. Verify that you have read and write access.

Using “Access Write” while opening a file “For Input” allows you to write to the file after it is opened; first
the file is erased and then a new file is created. After the file is open, different operating systems enforce the
access rights differently. As of OOo version 1.1.1, opening a binary or random file with “Access Read”
allows you to write to the file when using Windows, but not on Linux. It is always safe to open a file “For
Append” and then move the file pointer to the start of the file manually.

TIP The only safe way to open a file for both reading and writing without erasing the contents of the file is to
open the file “For Append,” and then move the file pointer to the start of the file.

To limit access to a file while it’s open, use the “Lock™ modes (see Table 66). This prevents others from
reading and/or writing to the file while you have it open. This is primarily used in multi-user environments
because you can’t control what others might try to do while you are using the file.

Table 66. Valid protected keywords.

Lock Mode Description

Lock Read Others cannot read the file while it’s open, but they can write to it.
Lock Write Others cannot write the file while it’s open, but they can read from it.
Lock Read Write Others cannot read or write the file while it is open.

Use the Len keywords to specify the size of each record when the file is opened “For Random” (discussed
later).

8.7. Information about open files

OOo Basic has functions that return file information by using the file name (see Listing 157). It is also
possible to obtain information about open files from the file number. The FileAttr function returns how the
file associated with the given file number was opened. Table 67 lists the return values and their meanings.

FileAttr(n, 1) 'How the file was opened in BASIC using Open For ...

Table 67. Description of FileAttr() return values.

Return Value Description
1 Open For Input

2 Open For Output
4 Open For Random

177

Return Value Description

8 Open for Append
16 Open For Binary
32 Documentation incorrectly states that this is for open for binary.
TIP FileAttr is incorrectly documented. FileAttr(n, 2) does not return a system file handle, if the second

argument is not 1, the return value is always 0. Another problem is that the included help incorrectly states
that Binary has a return value of 32.

Use the EOF function to determine if the end of the file has been reached. A typical use is to read all of the
data until “End Of File.”

n = FreeFile 'Always find the next free file number
Open FileName For Input As #n 'Open the file for input
Do While NOT EOF (n) 'While NOT End Of File
Input #n, s 'Read some data!
REM Process the input here!
Loop

Use the LOF function to determine the length of an open file. This number is always in bytes.

LOF (n)

Use the Loc function to obtain the current location of the file pointer. This number is not always accurate
and the return value has a different meaning depending on how the file was opened. Loc returns the actual
byte position for files opened in Binary mode. For Random files, Loc returns the record number of the last
record read or written. For sequential files opened with Input, Output, or Append, however, the number
returned by Loc is the current byte position divided by 128. This is done to maintain compatibility with other
versions of BASIC.

Loc (n)

TIP If a file is opened in a mode other than Random, and OOo Basic considers the file a text file, Loc returns
the line number that will be read next. I cannot decide if this is a bug or just incomplete documentation.
Sometimes the return values from Loc are just wrong. For example, if you open a file for output and then
write some text, Loc returns 0.

The Seek function, when used with only one argument, returns the next position that will be read or written.
This is similar to the Loc function except that for sequential files, the absolute byte position is always
returned. If you want to save the position in a file and return to it later, use the Seek function to obtain the
current file pointer; then you can use the Seek function to return the file pointer to the original location.

position = Seek (n) 'Obtain and save the current position.
statements 'Do arbitrary stuff.
Seek (n, position) 'Move the file pointer back to the original position.

The argument for setting the file pointer using the Seek function is the same as the value returned by the
Seek function. For Random files, the position is the number of the object to read, not the byte position. For
sequential files, the position is the byte position in the file. The macro in Listing 159 returns information
about an open file from the file number, including the open mode, file length, and file pointer location.
Listing 160 uses Listing 159, and the result is shown in Figure 59.

178

Listing 159. Return information about an open file as a string.
Function GetOpenFileInfo(n As Integer) As String

Dim s As String

Dim iAttr As Integer

On Error GoTo BadFileNumber
iAttr = FileAttr(n, 1)

If iAttr = 0 Then

s = "File handle " & CStr(n) & " is not currently open" & CHRS$(10)
Else

s = "File handle " & CStr(n) & " was opened in mode:"

If (iAttr AND 1) = 1 Then s = s & " Input"

If (iAttr AND 2) = 2 Then s = s & " Output"

If (iAttr AND 4) = 4 Then s = s & " Random"

If (iAttr AND 8) = 8 Then s = s & " Append"

If (iAttr AND 16) = 16 Then s = s & " Binary"

iAttr = iAttr AND NOT (1 OR 2 OR 4 OR 8 OR 16)

If iAttr AND NOT (1 OR 2 OR 4 OR 8 OR 16) <> 0 Then

s = s & " unsupported attribute " & CStr (iAttr)
End If
s = s & CHRS(10)
s = s & "File length = " & nPrettyFileLen (LOF(n)) & CHRS$(10)
s = s & "File location = " & CStr(LOC(n)) & CHRS(10)
s = s & "Seek = " & CStr(Seek(n)) & CHRS(10)
s = s & "End Of File = " & CStr(EOF(n)) & CHRS(10)
End If
AllDone:

On Error GoTo 0
GetOpenFileInfo = s
Exit Function
BadFileNumber:
s = s & "Error with file handle " & CStr(n) & CHRS$(10) &
"The file is probably not open" & CHRS$(10) & Error()
Resume AllDone
End Function

TIP The position argument passed to the Seek function is one-based, not zero-based. This means that the first
byte or record is 1, not 0. For example, Seek(n, 1) positions the file pointer to the first byte or record in the
file.

The macro in Listing 160 opens a file for output. A large amount of data is written to the file to give it some
size. At this point, the Loc function returns 0 and EOF returns True. The Seek function is used to move the

file pointer to a position in the file that allows some data to be read. The Loc function still returns 0. One
hundred pieces of data are read from the file in order to advance the value returned by the Loc function.
Finally, the file is deleted from the disk. Figure 59 shows information based on a file number.

Listing 160. Create delme.txt in the current directory and print file information.
Sub WriteExampleGetOpenFileInfo

Dim FileName As String 'Holds the file name

Dim n As Integer 'Holds the file number

Dim i As Integer 'Index variable

Dim s As String 'Temporary string for input

FileName = ConvertToURL (CurDir) & "/delme.txt"

n = FreeFile () 'Next free file number

179

Open FileName For Output Access Read Write As #n 'Open for read/write

For 1 = 1 To 15032 'Write a lot of data
Write #n, "This is line ",CStr(i),"or",i 'Write some text

Next

Seek #n, 1022 'Move the file pointer to location 1022

For i = 1 To 100 'Read 100 pieces of data; this will set Loc
Input #n, s 'Read one piece of data into the variable s

Next

MsgBox GetOpenFileInfo(n), 0, FileName

Close #n

Kill (FileName) 'Delete this file, I do not want it

End Sub

File handle 1 was opened in mode: Output
File length = 492K

File location = 26

Seek = 1752

End Of File = False

Figure 59. Information based on a file number.

8.8. Reading and writing data

Files opened for Random and Binary data use the statements Put and Get for writing and reading data. Files
opened in any other mode use the Line Input, Input, Print, and Write statements for reading and writing. If
no expressions are entered, a blank line is written to the file. The Write statement accepts multiple
arguments to print to the file and it automatically adds delimiters as it writes. In the created file, each
expression is separated by a comma. Strings are enclosed in double quotation marks, numbers are not
enclosed in anything, and dates and Boolean values are enclosed between octothorpe (#) characters.

Write #n, expressionl, expression2, expression3,

Print #n, expressionl, expression2, expression3,

TIP The character “#” has many names, including number sign, pound sign, hash, sharp, crunch, hex, grid,
pigpen, tic-tac-toe, splat, crosshatch, and octothorpe, to name a few.

The Print statement does not write any useful delimiters. Instead, it writes spaces between each expression.
Numbers typically use 13 spaces.

Write #n, 1, "the time # is", Now, CDbl(1.221), CBool (0)
Print #n, 1, "the time # 1is", Now, CDbl(1.221), Cbool (0)
The code above produces the text below.

0,"the time # is",#07/01/2010 21:05:49#,1.221, #False#
0 the time # is 07/01/2010 21:05:49 1.221 False

Listing 161 demonstrates the difference between Write and Print.

Listing 161. Demonstrate Write versus Print.
Sub ExampleWriteOrPrint

Dim FileName As String 'Holds the file name

180

Dim n As Integer 'Holds the file number

Dim i As Integer 'Index variable

Dim s As String 'Temporary string for input

Dim sTemp$

FileName = ConvertToURL (CurDir) & "/delme.txt"

n = FreeFile () 'Next free file number
Open FileName For Output Access Read Write As #n 'Open for read/write

Write #n, i, "the time # is", Now, CDbl(1.221), CBool (0)
Print #n, i, "the time # 1is", Now, CDbl(1.221), CBool(0)

Seek #n, 1 'Move the file pointer to location 1

Line Input #n, s

Line Input #n, sTemp

s = s & CHR$(10) & sTemp

MsgBox s

Close #n

Kill (FileName) 'Delete this file, I do not want it
End Sub

As its name implies, the Line Input statement reads an entire line of text (see Listing 161), but it does not
return the delimiter. Each line is delimited by either a carriage return (ASCII value 13) or a line-feed
character (ASCII value 10). These two delimiters work to read lines on every operating system supported by
OpenOffice.org.

Line Input #n, stringVar 'Read an entire line but not the delimiter.

The Input statement reads text based on the following delimiters: comma, carriage return, or line-feed
characters. The Input statement can read multiple variables of differing types in a single command.
Changing Line Input to Input in Listing 161 causes only the first two items to be read rather than two lines.

Input #n, varl, var2, var3,

The Write command adds appropriate delimiters automatically so that you can read string and numeric data
into the appropriate variable types. The Input command automatically removes commas and double
quotation marks from the input when these characters are used as the delimiters. See Listing 162 and Figure
60 for input examples.

Listing 162. Use Input to read text written with Write.
Sub ExampleInput

Dim sFileName As String

Dim n As Integer

Dim t As String, d As Double, s As String
sFileName = ConvertToURL (CurDir) & "/delme.txt"

n = FreeFile ()

Open sFileName For Output Access Read Write As #n
Write #n, 1.33, Now, "I am a string"

Seek(n, 1)
Input #n, d, t, s
close #n
Kill (sFileName)
s = "string (" & s & ")" & CHRS$(10) &
"number (" & d & ")" & CHRS(10) &
"time (" & t & ") <== read as a string" & CHRS$(10)

MsgBox s, 0, "Example Input"

181

End Sub

’E@m Eik—- DIEEﬁ L1 83"
string (I am a string)

number (1.33)
time (#07/01/2010 21:14:07#) === read as a string

Figure 60. Input cannot read time delimited with “#”.

TIP A friend in Germany had different results, because the number 1.33 is written as 1,33. While reading the
values, the comma is seen as a delimiter rather than as part of the number.

Unfortunately, the delimiters produced by the Write statement are not supported by the Input statement.
Numbers and simple strings read with no problems. Date and Boolean values delimited with the # character,
however, fail. These values must be read into string variables and then parsed.

Do not use the Input statement if you do not have a lot of control over the input text file. Double-quotation
marks and commas in text strings are assumed to be text delimiters. The end result is that the text is not
properly parsed when it is read. If your input data may contain these characters, use the Line Input command
and then manually parse the text. If you must read the carriage return or line-feed characters, the file should
be read as a binary file.

A binary file is a random file with a block length of zero. Use the Put statement to write random and binary
files. The simplest case involves putting a simple variable directly to the file.

int var = 4 : long var = 2
Put #n,,int var '04 00 (two bytes written)
Put #n,,long var '02 00 00 00 (four bytes written)

The first argument is the file number and the third argument is the variable or data to write. The second
argument is the position in the file where the date should be written. If you omit the position, as shown in
the example, you must still include the comma.

Put #n,,variable 'Write to the next record or byte position
Put #n, position, variable 'Specify the next record or byte position

Random files assume that the position identifies a record number. Binary files assume that the position
identifies an absolute byte position. If the position is not specified, the data is written at the current file
pointer, which is advanced with the data that is written.

If the data variable is a Variant, an integer identifying the data type precedes the data. This integer is the
same integer returned by the VarType function, to be detailed later.

v =4 'A Variant variable
Put #n,,v '02 00 04 00 (first two bytes says type is 2)
Put #n,,4 '02 00 04 00 (first two bytes says type is 2)

Put #n,,CInt(4) '02 00 04 00 (first two bytes says type is 2)

A string stored as a Variant includes the VarType if it is “Put” to a file that was opened as any type other than
Binary. When an array is Put to a file, each element of the array is written. If the array contains a String
Variant, it includes the VarType even if the file type is Binary. When Put places a string as a Variant, it
actually writes the VarType, the string length, and then the string.

182

v () = Array("ABCD") 'ASCII in hexadecimal is 41 42 43 44
Put #n,,v() '08 00 04 00 41 42 43 44 (08 00 = type) (04 00 = length)

When data is Put to a file, the current file pointer is saved and then all of the data is written. If a non-zero
block length is used, the file pointer is positioned one block length past the saved file position regardless of
how much data was written. For example, if the block length is 32 and the current file position is 64, the file
pointer is positioned to byte 96 after the data is written. If more than 32 bytes are written, part of the next
record is overwritten. If fewer than 32 bytes are written, then the previous data is left unchanged. Because of
this, some people initialize every record that will be written when the file is created. Numeric values are
usually initialized to zero, and string values are usually initialized to spaces.

On the other hand, even though I don’t recommend it, you can use the Put statement with a file opened in a
sequential mode. Likewise, you can use the Write, Line Input, and Input statements for files opened in
Binary or Random mode. The actual bytes written for writing methods used for files of the “wrong” file
structure are not documented, and I had difficulty understanding the output. I finally read the source code to
determine what is written in each case, but undocumented behavior determined in this way should not be
assumed to be stable, reliable behavior for OOo Basic. If you want to use these methods for other file
structures than those documented, I recommend that you test the output for your specific data. When a piece
of data is written to a file, the specific context is used to determine what to write. See Table 68.

Table 68. Summary of what the Put statement writes.

Type Bytes Comment

Boolean 1 OOo Basic stores a Boolean in an integer. The True value has all of the bits set, which
incorrectly cast down to one byte, causing a run-time error. False writes with no problem.

Byte 3 Although the byte variable uses only one byte when writing the data, byte variables are
supported only when stored in a Variant, so the data is preceded by two bytes of type
information.

Currency 8 Internally stored as a Double.

Date 8 Internally stored as a Double.

Double 8

Integer 2

Long 4

Object Error Run-time error: Only the basic types are supported.

Single 4

String Len(s) Each character is one byte. Characters with an ASCII value larger than 255 are written with
incomplete data. In Binary mode, the Put statement will not write characters with an ASCII
value of zero. This is written fine in Random mode and the string is preceded by the string
length.

Variant Varies Two bytes of type information are written, followed by the data. A string also includes the
length of the string in two bytes.

Empty 4 An empty Variant variable writes two bytes of type information indicating an integer value,
and then it writes two bytes with zeros.

Null Error Only an object can contain the value Null, and the Put statement does not work with objects.

TIP 0Oo Basic only supports using Get and Put with the standard data types.

183

TIP Numbers written to binary files are written in reverse byte order.

TIP The Put statement cannot write a Boolean with a True value, and it doesn’t properly write strings with
Unicode values greater than 255; writing then trying to read the value causes OOo to crash.

TIP The Get statement fails for binary files if the position is not provided.

Use Get to read Binary data and Random files. The syntax for the Get statement is similar to the Put
statement.

Get #n,,variable 'Read from next record or byte position
Get #n, position, wvariable 'Specify the next record or byte position

If the argument to the Get statement is a Variant, the type information is always read, regardless of the
context. When a string is read, it is assumed to be preceded by an integer that contains the length of the
string. This required string length is not written automatically to binary files but it is to random files. Listing
163 shows an example of reading and writing a binary file. Also see Figure 61.

Listing 163. Create and then read a binary file.
Sub ExampleReadWriteBinaryFile

Dim sFileName As String 'File name from which to read and write

Dim n As Integer 'File number to use

Dim i As Integer 'Scrap Integer variable

Dim 1 As Long 'Scrap Long variable

Dim s As String 'Scrap String variable

Dim s2 As String 'Another scrap String variable
Dim v 'Scrap Variant variable

sFileName = ConvertToURL (CurDir) & "/delme.txt"
If FileExists (sFileName) Then
Kill (sFileName)
End If
n = FreeFile ()
Open sFileName For Binary As #n

i =10 : Put #n,,1 '0A 00
i = 255 : Put #n,,1 'FF 00
i = -2 : Put #n,,1i 'FE FF
1 =10 : Put #n,,1 '0A 00 00 00
1 = 255 : Put #n,,1 'FF 00 00 00
1 = =2 : Put #n,,1 'FE FF FF FF

REM Put string data, precede it with a length

i =38 : Put #n,,1 '08 00 (about to put eight characters to the file)
s = "ABCD"

Put #n,,s '41 42 43 44 (ASCII for ABCD)

Put #n,,s '41 42 43 44 (ASCII for ABCD)

REM Put data contained in a Variant

Put #n,,CInt(10) '02 00 0A 00

i = -2 : Put #n,,CInt(i) '02 00 FE FF (Functions return a Variant)
Put #n,,CLng(255) '03 00 FF 00 00 00 (Functions return a Variant)
v = 255 : Put #n,,v '02 00 FF 00 (This IS a Variant)

184

v = "ABCD" : Put #n,,v '41 42 43 44 (Not in an array)

v = Array (255, "ABCDE") 'The string contains type information and length
Put #n,,v() '02 00 FF 00 08 00 05 00 41 42 43 44 45
close #n

REM now, read the file.

g = "n

n = FreeFile ()

Open sFileName For Binary Access Read As #n

Get #n, 1, 1 s = s & "Read Integer " & 1 & CHRS$(10)
Get #n, 3, 1 s = s & "Read Integer " & 1 & CHRS$(10)
Get #n, 5, 1 s = s & "Read Integer " & 1 & CHRS$(10)
Get #n, 7, 1 s = s & "Read Long " & 1 & CHR$(10)
Get #n, 11, 1 s = s & "Read Long " & 1 & CHR$(10)
Get #n, 15, 1 s = s & "Read Long " & 1 & CHR$(10)
Get #n, 19, s2 s = s & "Read String " & s2 & CHRS(10)
close #n

MsgBox s, 0, "Read Write Binary File"
End Sub

F=)Read/Write Binaryj--- %!

Read Integer 10

Read Integer 255

Read Integer -2

Read Long 10

Read Long 255

Read Long -2

Read String ABCDABCD

Figure 61. Use Get and Put to read and write binary files.
Random files are usually used to store a user-defined data type, but this is not supported in OOo Basic; use
“Open FileName For Random” to open a file for random access. The code in Listing 164 writes numerous
types and sizes of data to the file with a block length of 8. If the Put statement had no bugs, then after
writing the first block, the file pointer would be positioned to the second block for writing. It is instead
positioned to the end of the file. To avoid this bug, explicitly include the position to write in the statement. If
the position points to a position beyond the end of the file, the file pointer is moved to the end of the file.
This is the primary reason why the code in Listing 164 initializes the file to all zeros before starting; the file
is initialized with locations for the subsequent operations. Notice that the string includes the string length
before the text when it is Put to the file. The output is essentially the same as Listing 163 shown in Figure
61.

Listing 164. Write and then read a random access file.
Sub ExampleReadWriteRandomFile

Dim sFileName As String 'File name from which to read and write

Dim n As Integer 'File number to use

Dim i As Integer 'Scrap Integer variable

Dim 1 As Long 'Scrap Long variable

Dim s As String 'Scrap String variable

Dim s2 As String 'Another scrap String variable

sFileName = ConvertToURL (CurDir) & "/delme.txt"

185

REM Now the file is initialized so it can be used!

REM Must use Access Read so that the file is not created new
REM I cannot write this as a binary file because then ASCII
REM zeros are not written.

n = FreeFile ()

Open sFileName For Random As #n Len = 8

REM First, create a file with all zeros with enough room

REM for 20 8-byte records.

s = String(8 * 20-2, 0) 'String has 158 characters with ASCII value O
Put #n,1,s 'Written as Random so Len(s) 1s written first
i =0 : Put #n,1,1 'Write over the length with zeros.

REM Now write the data

i =10 : Put #n,1,1i '0A 00
i = 255 : Put #n,2,1i 'FE 00
i =-2 : Put #n,3,1 'FE FF
1 =10 : Put #n,4,1 'OA 00 00 00
1 = 255 : Put #n,5,1 'FE 00 00 00
1 = =2 : Put #n,6,1 'FE FF FF FF

REM Put string data, precede it with a length (integer value) automatically
s = "ABCD" : Put #n,7,s '04 00 41 42 43 44 (Length, then ASCII for ABCD)
close #n

REM Now read the file.

5 = mn

n = FreeFile ()

Open sFileName For Random Access Read As #n Len=8

Get #n, 1, i : s = s & "Read Integer " & 1 & CHRS$(10)

Get #n, 2, 1 s = s & "Read Integer " & i & CHRS$(10)
Get #n, 3, 1 s = s & "Read Integer " & i & CHRS$(10)
Get #n, 4, 1 s = s & "Read Long " 1 & CHRS$ (10)
Get #n, 5, 1 s = s & "Read Long " 1 & CHRS(10)
Get #n, 6, 1 s = s & "Read Long " & 1 & CHRS(10)
Get #n, 7, s2 s = s & "Read String " & s2 & CHRS$(10)
close #n

MsgBox s, 0, "Read Write Random File"

End Sub

8.9. File and directory related services

Some of the OO methods for file manipulation are buggy and unreliable. You may want to consider some of

the built-in OO services; services are discussed later.

8.9.1. Path Settings

Most of the macros in this chapter use the CurDir function to choose a place to store files. The PathSettings
service provides read/write access (and the ability to register a listener) for the paths properties used by
OOo. Although the documentation is not clear on this, my examples indicate that the path is returned as a
URL. On the other hand, the PathSettings service uses the PathSubstitution service, which specifically states
that it returns URLS. OOMEWorkDir in Listing 165 demonstrates obtaining the Work directory.

186

Listing 165. Determine the work directory to use.
Function OOMEWorkDir () As String

Dim s$
Dim oPathSettings

oPathSettings = CreateUnoService ("com.sun.star.util.PathSettings")
s$ = oPathSettings.Work
If s = "" Then

s = GetPathSeparator ()
ElseIf Right(s,1) <> "/" AND Right(s,1) <> "\\" Then

If Left(s, 5) = "file:" Then
s =s&"/"
Else
s = s & GetPathSeparator()
End If
End If
OOMEWorkDir () = s & "OOMEWork" & GetPathSeparator()

End Function

A macro that creates temporary files or directories for example purposes will use Listing 166 to create and
remove the working directory.

Listing 166. Create and remove the OOME work directory.

Function CreateOOMEWorkDir () As Boolean

CreateOOMEWorkDir () = False

Dim s$

s = OOMEWorkDir ()

If NOT FileExists(s) Then

MkDir s

End If

CreateOOMEWorkDir () = FileExists (s)
End Function

Function RmOOMEWorkDir () As Boolean

RmOOMEWorkDir () = False

Dim s$

s = OOMEWorkDir ()

If FileExists(s) Then

RmDir s

End If

RmOOMEWorkDir () = NOT FileExists(s)
End Function

The documentation lists properties that are supported. By inspecting the object, I found more properties than
those that are documented.

Table 69. Documented PathSettings properties.
Property Number Which Directory

Addin Single Contains spreadsheet add-ins that use the old add-in APL.
AutoCorrect Multiple Contains the settings for the AutoCorrect dialog.
AutoText Multiple Contains the AutoText modules.

Backup Single Where automatic document backups are stored.

Basic Multiple Contains Basic files used by the AutoPilots.

187

Property
Bitmap
Config

Dictionary
Favorite
Filter
Gallery
Graphic
Help
Linguistic
Module
Palette

Plugin
Storage
Temp
Template
UlIConfig

UserConfig

UserDictionary
Work

Number
Single
Single

Single
Single
Single
Multiple
Single
Single
Single
Single
Single

Multiple
Single
Single
Multiple
Multiple

Single

Single
Single

Which Directory
Contains the external icons for the toolbars.

Contains configuration files. This property is not visible in the path options dialog
and cannot be modified.

Contains the OpenOffice.org dictionaries.

Contains the saved folder bookmarks.

Where the filters are stored.

Contains the Gallery database and multimedia files.

Displayed when the dialog for opening a graphic or saving a new graphic is used.
Contains the OOo help files.

Contains the OOo spellcheck files.

Contains the OO0 modules.

Contains the palette files that contain user-defined colors and patterns (*.SOB and
* SOF).

Contains the Plugins.

Where information about mail, news, and FTP servers is stored.
Contains the OOo temp-files.

Contains the OOo document templates.

Global directories for user interface configuration files. The user interface
configuration is merged with the user settings stored in the directory specified by
UserConfig.

Contains the user settings, including the user interface configuration files for menus,
toolbars, accelerators and status bars.

Contains the custom dictionaries.

The work folder. This path can be modified according to the user's needs and can be
seen in the Open or Save dialog.

To see the path settings on your computer, run the macro in Listing 167. On my computer, I find numerous
extra paths such as Work internal, Work user, Work writable. DisplayPathSettings demonstrates numerous
advanced techniques that are not explained in this chapter.

« Creating and using an OOo service.

« Creating a new document.

- Inserting text into a document.

- Setting paragraph style.

- Inserting paragraph breaks into a text object.

The following macro was originally written by Danny Brewer, who did much to advance the knowledge of
000 macros before he went on to other things. I modified the macro so that it declares all variables and
handles property types returned as array values.

Listing 167. Display the PathSettings in a new text document.
Sub DisplayPathSettings

Dim oPathSettings

' PathSettings service.

188

Dim oPropertySetInfo ' Access the service properties.

Dim aProperties ' Contains all of the service properties.
Dim oDoc ' Reference a newly created document.

Dim oText ' Document's text object.

Dim oCursor ' Cursor in the text object.

Dim oProperty ' A property of the service.

Dim cPropertyName$ ' Property name.

Dim cPropertyValue ' Property value may be an array or multiple strings.
Dim aPaths ' The paths as an array.

Dim cPath$ ' A single path from the array.

Dim j As Integer ' Index variable.

Dim i As Integer ' Index variable.

oPathSettings = CreateUnoService("com.sun.star.util.PathSettings")

' Example of how to get a single property you are after.
'oPathSettings.Work

' Get information about the properties of the path settings.
oPropertySetInfo = oPathSettings.getPropertySetInfo ()

' Get an array of the properties.
aProperties = oPropertySetInfo.getProperties()

' Create an output document.
oDoc = StarDesktop.loadComponentFromURL("private:factory/swriter", _
" blank", 0, Array()
oText = oDoc.getText ()
oCursor = oText.createTextCursor ()

oText.insertString(oCursor, "Path Settings", False)
oCursor.ParaStyleName = "Heading 1"
oText.insertControlCharacter(oCursor, _
com.sun.star.text.ControlCharacter.PARAGRAPH BREAK, False)

' Iterate over the array of properties,
' and write information about each property to the output.
For 1 = LBound(aProperties) To UBound(aProperties)

oProperty = aProperties(i)

cPropertyName = oProperty.Name

cPropertyValue = oPathSettings.getPropertyValue(cPropertyName)

oText.insertString(oCursor, cPropertyName, False)
oCursor.ParaStyleName = "Heading 3"
oText.insertControlCharacter (oCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH BREAK, False)

If IsArray(cPropertyValue) Then

' Multiple URLs are somtimes returned as an array.

aPaths = cPropertyValue
ElseIf Len(cPropertyValue) > 0 Then

' Multiple URLs are somtimes separated by a semicolon.

' Split them up into an array of strings.

aPaths = Split(cPropertyValue, ";")

189

Else
abPaths = Array()
End If
For 7 = LBound(aPaths) To UBound(aPaths)
cPath = aPaths(7)
oText.insertString(oCursor, cPath, False)
oText.insertControlCharacter(oCursor, _
com.sun.star.text.ControlCharacter.PARAGRAPH BREAK, False)
Next

oText.insertControlCharacter (oCursor, -
com.sun.star.text.ControlCharacter.PARAGRAPH BREAK, False)
Next i
End Sub

Setting a path value is trivially done using either direct assignment, or by using the property set information
object. OOo requires these values to be correct, so, if you write bad values, it will negatively affect OOo.

oPathSettings.Work = ConvertToUrl ("C:\MyWorkDir")
oPathSettings.setPropertyValue ("Work", "C:\MyWorkDir")

The properties supported by the PathSetting service are stored, at least on my computer, in the file:
openoffice.org/basis3.2/share/registry/schema/org/openoffice/Office/Common.xcs. The documentation still
references the old filename Common.xml, which caused me some level of consternation.

8.9.2. Path Substitution

My file Common.xcs contains entries such as $(userpath)/store and $(work), which are very different from
what is returned by the PathSettings service. This is because the path setting service changes shortcuts such
as $(userpath) to the real value before returning a string. Analogously, it substitutes the shortcuts back into
the string before storing the value. You can call the PathSubstitution service directly to make your own
substitutions.

Table 70. Path substitution variables.

Name Description

$(inst) Installation path of the OOo Basis layer.

$(prog) Program path of the OOo Basis layer.

$(brandbaseurl) Installation path of the the OOo Brand layer.

$(user) The user installation directory.

$(work) The work directory of the user;"MyDocuments" for Windows, the user's home-directory for
Linux.

$(home) The user's home directory; Documents and Settings for Windows, the user's home-directory for
Linux.

$(temp) The current temporary directory.

$(path) The value of PATH environment variable.

$(lang) The country code used by OOo; 01=english.

$(langid) The language code used by OOo; 1033=english us.

$(vlang) The language used by OOo as a string. Like "en-US" for a US English OOo.

190

Use getSubstituteVariableValue to convert one name at a time. If the name is not known, a run-time error
occurs.

Listing 168. Substitute one variable with PathSubstitution.
Sub UsePathSubstitution ()

Dim oPathSub ' PathSubstitution service.

Dim names ' List of names to substitute.

Dim subName$ ' Single name to check.

Dim i As Integer ' Index variable.

Dim s$ ' Accumulate the value to print.

names = Array("inst", "prog", "brandbaseurl", "user",
"work", "home", "temp", "path",
"lang", "langid", "vlang")

oPathSub = CreateUnoService("com.sun.star.util.PathSubstitution")

' Use getSubstituteVariableValue with a single variable.

v

Runtime error if the name is not know.

'Print oPathSub.getSubstituteVariableValue ("$ (inst)")

For 1 = LBound(names) To UBound (names)
subName = "$(" & names (i) & ")"
s = s & names (i) & " ="
s = s & oPathSub.getSubstituteVariableValue (subName) & CHRS$ (10)
Next
MsgBox s, 0, "Supported Names"
End Sub

Use substituteVariables to substitute multiple values at the same time. Use reSubstituteVariables to place the
variable names back into a regular string.

Listing 169. ReSubstitute variables.

Sub UsePathReSubstitution ()
Dim oPathSub ' PathSubstitution service.
Dim s$ ' Accumulate the value to print.
Dim sTemp$

oPathSub = CreateUnoService("com.sun.star.util.PathSubstitution")

' There are two variables to substitute.

' False means do not generate an error

' if an unknown variable is used.

s = "$(temp) /OOME/ or $ (work)"
sTemp = oPathSub.substituteVariables (s, False)
s =5 & " =" & sTemp & CHRS$ (10)

' This direction encodes the entire thing as though it were a single

' path. This means that spaces are encoded in URL notation.
s = s & sTemp & " = " & oPathSub.reSubstituteVariables (sTemp) & CHRS$ (10)
MsgBox s

End Sub

191

S(temp)/OOME/ or S(work) = file:/j/tmp/OOME/ or
file:/{/fandrew0/home/andy/

file://ftmp/OOME/ or file:///andrew0/home/andy/ = S({temp)/OOME,
%200r%20S(work)

Figure 62. PathSubstitution service.

8.9.3. Simple File Access

0OO0Oo uses the SimpleFileAccess service, rather than the file methods used by Basic, for file operations. The
methods supported by the SimpleFileAccess service are shown in the following table.

Table 71. Methods supported by SimpleFileAccess.
Method Description

copy(fromURL, toURL)
move(fromURL, toURL)
kill(url)

isFolder(url)
isReadOnly(url)
setReadOnly(url, bool)
createFolder(url)
getSize(url)
getContentType(url)

getDateTimeModified(url)

getFolderContents(url, bool)

exists(url)
openFileRead(url)
openFileWrite(url)
openFileReadWrite(url)

setInteractionHandler(handler)

writeFile(toUrl, inputStream)

Copy a file.

Move a file.

Delete a file or directory, even if the folder is not empty.

Return true if the URL represents a folder.

Return true if the file is read-only.

Set file as read-only if the boolean argument is true, otherwise, clear the read-only flag.
Creates a new Folder.

Returns the size of a file as a long integer.

Return the content type of a file as a string. On my computer, an odt file has type
application/vnd.sun.staroffice.fsys-file.

Return the last modified date for the file as a com.sun.star.util. DateTime structure, which
supports the properties: HundredthSeconds, Seconds, Minutes, Hours, Day, Month, and
Year.

Returns the contents of a folder as an array of strings. Each string is the full path as a URL.
If the bool is True, then files and directories are listed. If the bool is False, then only files
are returned.

Return true if a file or directory exists.
Open file to read, return an input stream.
Open file to write, return an output stream.
Open file to read and write, return a stream.

Set an interaction handler to be used for further operations. This is a more advanced topic
and I will not discuss this here.

Overwrite the file content with the given data.

8.9.4. Streams

A stream supports reading and writing data from some input source to some output source that may go
beyond a file system. As an example, [use streams to transfer entire files between the regular file system and
a field in a database. In other words, streams are powerful and worth knowing and understanding. This

192

section does not cover all of the stream capabilities and does not even touch on Markable streams and
Object streams. Streams support all sorts of fancy things such as listeners that are automatically called when
specific events occur. A motivated reader will read the streams document:

« http://www.openoffice.org/udk/common/man/concept/streams.html
« http://www.openoffice.org/api/docs/common/ref/com/sun/star/io/module-ix.html
- http://api.libreoffice.org/docs/common/ref/com/sun/star/io/module-ix.html

TIP The readLine() method does not remove the end of line character if the end of file is reached.

Table 72. Stream methods.

Method Stream Description

available() InputStream Returns the number of available bytes as a long.

closelnput() InputStream Close the input stream.

closeOutput() OutputStream Close the stream.

flush() OutputStream Flush buffers.

getLength() XSeekable Get length of the stream.

getPosition() XSeekable Return the stream offset as a 64-bit integer.

isSEOF() TextInputStream Returns true if the end of file has been reached.

readBoolean() DatalnputStream Read an 8 bit value and return a byte. 0 means FALSE; all other
values mean TRUE.

readByte() DatalnputStream Read and return an 8 bit value and return a byte.

readBytes(byteArray, long) InputStream Read the specified number of bytes and return the number of
bytes read. If the number of bytes requested was not read, then
the end of file has been reached.

readChar() DatalnputStream Read and return a 16-bit Unicode character.

readDouble() DatalnputStream Read and return a 64-bit IEEE double.

readFloat() DatalnputStream Read and return a 32-bit IEEE float.

readHyper() DatalnputStream Read and return a 64-bit big endian integer.

readLine() TextInputStream Read text until a line break (CR, LF, or CR/LF) or EOF is
found and returns it as string (without CR, LF).

readLong() DatalnputStream Read and return a 32-bit big endian integer.

readShort() DatalnputStream Read and return a 16-bit big endian integer.

readSomeBytes(byteArray, long) InputStream Read up to the specified number of bytes and return the number
of bytes read. If the number of bytes read is zero, then the end
of file has been reached.

readString(charArray, boolean) TextInputStream Read text until one of the given delimiter characters or EOF is
found and returns it as string. The boolean argument determines
if the delimiter is returned (false) or removed (true).

readUTF() DatalnputStream Read and return a string of UTF encoded characters.

seek (INT64) XSeekable Change the stream pointer to the specified location.

setEncoding(string) TextInputStream Set the character encoding (see

http://www.iana.org/assignments/character-sets).

193

http://www.iana.org/assignments/character-sets
http://api.libreoffice.org/docs/common/ref/com/sun/star/io/module-ix.html
http://www.openoffice.org/api/docs/common/ref/com/sun/star/io/module-ix.html
http://www.openoffice.org/udk/common/man/concept/streams.html

Method Stream Description

skipBytes(long) InputStream Skips the specified number of bytes.
truncate() XTruncate Set the size of the file to zero.
writeBoolean(boolean) DataOutputStream Write a boolean as an 8 bit value. 0 means FALSE; all other
values mean TRUE.
writeByte(byte) DataOutputStream Write an 8 bit value and return a byte.
writeBytes(byteArray()) OutputStream Write all bytes to the stream.
writeChar(char) DataOutputStream Write a 16-bit Unicode character.
writeDouble(double) DataOutputStream Write a 64-bit IEEE double.
writeFloat(float) DataOutputStream Write a 32-bit IEEE float.
writeHyper(INT64) DataOutputStream Write a 64-bit big endian integer.
writeLong(long) DataOutputStream Write a 32-bit big endian integer.
writeShort(short) DataOutputStream Write a 16-bit big endian integer.

There are many different types of stream services and interfaces (see Table 72). A simple stream returned by
SimpleFileAccess only supports reading and writing raw bytes and you must convert the data to an array of
bytes. It is more common to manually create an appropriate stream (such as DataOutputStream or
TextInputStream) and use that to wrap the simple stream returned by SimpleFileAccess.

Listing 170. Using SimpleFileAccess to read and write text files.
Sub ExampleSimpleFileAccess

Dim oSFA ' SimpleFileAccess service.

Dim sFileName$ ' Name of file to open.

Dim oStream ' Stream returned from SimpleFileAccess.
Dim oTextStream ' TextStream service.

Dim sStrings ' Strings to test write / read.

Dim sInput$ ' The string that is read.

Dim s$ ' Accumulate result to print.

Dim 1% ' Index variable.

sStrings = Array("One", "UTF:A&", "1@3")
' File to use.

sFileName = CurDir() & "/delme.out"

' Create the SimpleFileAccess service.

OSFA = CreateUnoService ("com.sun.star.ucb.SimpleFileAccess")

'Create the Specialized stream.
oTextStream = CreateUnoService ("com.sun.star.io.TextOutputStream")

'Tf the file already exists, delete it.
If oSFA.exists (sFileName) Then
OSFA.kill (sFileName)

End If

' Open the file for writing.

194

oStream = oSFA.openFileWrite (sFileName)

' Attach the simple stream to the text stream.
' The text stream will use the simple stream.
oTextStream.setOutputStream(oStream)

' Write the strings.

For 1 = LBound(sStrings) To UBound (sStrings)
oTextStream.writeString(sStrings (i) & CHRS$ (10))

Next

' Close the stream.
oTextStream.closeOutput ()

oTextStream = CreateUnoService ("com.sun.star.io.TextInputStream")
oStream = oSFA.openFileRead(sFileName)
oTextStream.setInputStream(oStream)
For 1 = LBound(sStrings) To UBound (sStrings)

sInput = oTextStream.readLine ()

s = s & CStr (i)

' If the EOF is reached then the new line delimiters are
' not removed. I consider this a bug.
If oTextStream.isEOF () Then

If Right(sInput, 1) = CHR$(10) Then
sInput = Left(sInput, Len(sInput) - 1)
End If
End If

' Verify that the read string is the same as the written string.
If sInput <> sStrings (i) Then

s =s & " : BAD "
Else
s =s & " : OK "
End If
s =s & "(" & sStrings(i) & ")"
s =s & "(" & sInput & ")" & CHRS$(10)
Next
oTextStream.closeInput ()
MsgBox s
End Sub

0 : OK (One){One)
1: 0K (UTF:A3)(UTF:AZ)
2:0K(1@3)(1@3)

Figure 63. Text files with SimpleFileAccess.

195

8.9.5. Pipes

A pipe is an output stream and an input stream. Data written to the outputstream is buffered until it is read
from the input stream. The Pipe service allows an outputstream to be converted into an input stream at the
cost of an additional buffer. It is simple to create and close a pipe. Although CreatePipe in Listing 171
creates data streams, a very simple change would use a text stream instead.

Listing 171. Create and close a pipe.

Function CreatePipe () As Object

Dim oPipe ' Pipe Service.

Dim oDataInp ' DatalnputStream Service.

Dim oDataOut ' DataOutputStream Service.

oPipe = createUNOService ("com.sun.star.io.Pipe")

oDatalnp = createUNOService ("com.sun.star.io.DatalInputStream")
oDataOut = createUNOService ("com.sun.star.io.DataOutputStream")

oDatalnp.setInputStream(oPipe)
oDataOut.setOutputStream (oPipe)

CreatePipe = oPipe

End Function

Sub ClosePipe (oPipe)
oPipe.Successor.closelnput
oPipe.Predecessor.closeOutput
oPipe.closelnput
oPipe.closeOutput

End Sub

TestPipes in Listing 172 uses a pipe to convert a byte array to a double and a double to a byte array.

Listing 172. Convert a byte array to a double and a double to a binary array.
Sub TestPipes

Dim oPipe ' Pipe service.
Dim d As Double

Dim i As Integer

Dim s$

oPipe = CreatePipe()

' First, write a series of bytes that represents 3.1415
oPipe.Predecessor.writeBytes (Array (64, 9, 33, -7, -16, 27, -122, 110))
d= 2.6 '4004cCccceeecceeeb

oPipe.Predecessor.writeDouble (d)

' Now, read the pipe.

(o
|

= oPipe.Successor.readDouble ()
s = "Read the array of bytes as: " & CStr(d) & CHRS$(10) & CHRS(10)
' Now read the double that was written as a series of bytes.
s =s & "2.6 ="
Do While oPipe.Successor.available() > 0

i = oPipe.Successor.readByte()

REM In case the byte was negative

i = 1 AND 255

196

If i < 16 Then s = s & "0O"
s = s & Hex (i) &« " "
Loop
ClosePipe (oPipe)
MsgBox s
End Sub

8.10. Conclusion

The file and directory functions in OOo Basic are able to manipulate directories and files. With the
exception of reading and writing binary and random files, the directory and file manipulation functions work
with few surprises. On the other hand, some of the functions are broken and have been broken for years; you
may need to use more advanced methods, such as Streams and SimpleFileAccess for anything other than
simple file reading and writing.

197

9. Miscellaneous Routines

This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that do not easily
fit into another larger category — for example, routines related to flow control, user input, user output, error
handling, inspecting variables, color, and display — as well as a few routines that you should not use.

I was tempted to call this chapter “Leftovers” because it contains the routines that were left over after I
grouped the others into chapters. Although the word “leftovers” frequently has a negative connotation, this is
certainly not the case for the routines discussed in this chapter. The eclectic mix of routines includes some of
the more interesting and useful routines that are varied enough to prevent boredom from lulling you off to
sleep.

9.1. Display and color

The OOo Basic functions related to color manipulations and determining screen metrics are shown in Table
73. The screen metrics provide the size of each pixel so that you can write macros to create objects at a
given size and position objects more precisely.

Table 73. Display- and color-related functions in OOo Basic.

Function Description

Blue(color) Get the blue component

GetGuiType Get the GUI type: Mac, Windows, Unix
Green(color) Get the green component
QBColor(dos_color) Return RGB for standard color
Red(color) Get the red component

RGB(red, green, blue) RGB to colorNumber

TwipsPerPixelX Width of each pixel in twips
TwipsPerPixel Y Height of each pixel in twips

9.1.1. Determine the GUI type

The GetGuiType function returns an integer corresponding to the graphical user interface (GUI). In other
words, you can find out what type of computer is running the macro ... well, sort of. This function only
mentions the GUI type, not the operating system — for example, just Windows, not Windows 98 or
Windows XP. The function GetGuiType is only included for backward compatibility with previous versions
of OOo Basic.

One of my associates runs OpenOffice.org as a server on his computer at home. He then connects to his
home computer from work as a client. The value returned by GetGuiType is not defined while OOo is
running in a client/server environment.

Table 74 shows the return values, as documented by the OOo help and seen in the source code as of version
3.2.1.

198

Table 74. Return values from GetGuiType.

OOo Help Source Code

1 Windows Windows (sometimes OS/2, which runs Windows)
2 Not mentioned 0S/2

3 Not mentioned Used to be Mac, not returned.

4 Unix Unix

-1 Mentioned as an undefined value Unsupported OS

The macro in Listing 173 demonstrates the GetGuiType function.

Listing 173. Display the GUI type as a string.
Sub DisplayGUIType ()

Dim s As String
Select Case GetGUIType ()
Case 1
s = "Windows"
Case 2
s = "0s/2" ' Set in the source code, but no longer documented.
Case 3
s = "Mac OS" ' Used to be documented, never supported, I expect Mac to return 4.
Case 4
s = "UNIX"
Case Else
s = "Unknown value " & CStr(GetGUIType()) & CHRS(10) &
"Probably running in Client/Server mode"
End Select
MsgBox "GUI type is " & s, 0, "GetGUIType()"
End Sub

The value -1 is returned if the type is not known, but that is not specifically documented. This probably
means that you are running in a client / server mode, but, I have not checked that.

9.1.2. Determine pixel size (in twips)

OOo Basic has two functions to determine the size of each display pixel (dot) in twips: TwipsPerPixelX and
TwipsPerPixelY. The word “twip” is short for “twentieth of a PostScript point.” There are 72 PostScript
points in an inch, thus 1440 twips in an inch.

In 1886, the American Typefounders Association proposed a unit of measure for typesetting called the
“American Printer’s Point.” There are approximately 72.27000072 Printer’s Points in an inch. Years later
while developing the PostScript page description language for Adobe Systems, Jim Warnock and Charles
Geschke defined the PostScript point as exactly 72 points to an inch. When dot-matrix printers were
released, they could print at either 10 or 12 characters per inch. Twips were created as a unit of measure that
worked well for both dot-matrix printers and PostScript points.

TIP There are 1440 twips in an inch. This number is important because OOo uses twips for many
measurements.

Twips are the standard on which all Microsoft Windows graphics routines are based. Twips are used in the
Rich Text Format, printer drivers, screen drivers, and many other products and platforms — including

199

OpenOffice.org. The macro in Listing 174 obtains the number of twips per pixel in both the X and Y
direction (horizontal and vertical) and displays the number of pixels per inch.

Listing 174. Determine how many pixels per inch.
Sub DisplayPixelSize

Dim s As String
s = s & TwipsPerPixelX() & " Twips per X-Pixel or " &

CStr (1440 \ TwipsPerPixelX()) & " X-Pixels per Inch" & CHRS$(10)
s = s & TwipsPerPixelY () & " Twips per Y-Pixel or " &
CStr (1440 \ TwipsPerPixelY()) & " Y-Pixels per Inch"
MsgBox s, 0, "Pixel Size"
End Sub
=)PixellSize &

15 Twips per X-Pixel or 96 X-Pixels per Inch
15 Twips per Y-Pixel or 96 Y-Pixels per Inch

| i o |

Figure 64. Number of pixels per inch on my computer.
Unfortunately, it is not clear to me what is returned when there are multiple monitors with different values.
The source code returns values from the “Default Device”.

9.1.3. Use color functions

Colors on computer monitors, digital cameras, scanners — and those seen by the human eye — are produced
by adding the three primary colors of light: red, green, and blue (RGB). When printing or painting, color is
produced by absorbing some colors and reflecting others. Color printing uses a different set of colors, called
primary pigments: cyan, magenta, yellow, and black (CMYK). These two different systems are based on real
physical models. The RGB model is based on how light combines to form colors. The CMYK model is
based on what happens when you mix paint of different colors.

OOo Basic uses the RGB model, allowing for 256 different shades of each of the primary colors. This
number is stored as a Long Integer. Use the functions Red, Green, and Blue to extract the red, green, and
blue components from a color in OOo. Use the RGB function to combine the individual color components
and obtain the long integer used by OOo. The RGB function accepts three arguments, each representing one
of the primary colors. Each of the color components must be a value from 0 through 255. The RGB function
performs no validity checking, so consider the results undefined if you break the rules. In summary, OOo
Basic represents RGB colors as a single integer; the functions Red, Green, and Blue extract the red, green
and blue components; and the function RGB accepts the red, green, and blue components and returns the
0Oo Basic representation of the RGB color.

Dim nRed As Integer 'Can only be 0 through 255

Dim nGreen As Integer 'Can only be 0 through 255

Dim nBlue As Integer 'Can only be 0 through 255

Dim nOOoColor As Long 'Can only be 0 through 16,581,375
nOOoColor = RGB (128, 3, 101) '8,389,477

nRed = Red (nOOoColor) '128

nGreen = Green (nOOoColor) '3

nBlue = Blue (nOOoColor) '101

In the old days of DOS, BASIC supported 16 colors. In Table 75, which shows the color name and the DOS
the number used by DOS to represent the color. The OOo Color column contains the corresponding number

200

as represented by OOo. The Red, Green, and Blue columns contain the values returned by the corresponding
OOo Basic functions. The QBColor function is designed to accept the DOS Color as an argument and return
the corresponding OOo Color.

Listing 175. Demonstrate QBColor values.
Sub DisplayQBColor

Dim 1%
Dim s$
For i = 0 To 15
s =s &1 & " =" & QOBColor(i) & " = ("
s = s & Red(QBColor(i)) & ", "
s = s & Green(QBColor(i)) & ", "
s = s & Blue(QBColor(i)) & ")"
s = s & CHRS(10)
Next
MsgBox s
End Sub
[=)soffice 573
0=0=(0,0 0]
1= 8388608 = (128, 0, 0)
2=32768 = (0, 128, 0)
3 =8421376 = (128, 128, 0)
4=128 = (0, 0, 128)
5 = 8388736 = (128, 0, 128)
6 = 32896 = (0, 128, 128}
7 =12632256 = (192, 192, 192)
8 = 8421504 = (128, 128, 128)

9 = 16711680 = (255, 0, 0)

10 = 65280 = (0, 255, 0)

1 = 16776960 = (255, 255, 0)
12 = 255 = (0, 0, 255)

13 = 16711935 = (255, 0, 255)
14 = 65535 = (D, 255, 255)

15 = 16777215 = (255, 255, 255)

et

Figure 65. Results from QGColor.

201

Table 75. Color representation in OpenOlffice.org.

DOS Color OOo Color Red
0 0

4 128

2 32768

6 32896

1 8388608 128
5 8388736 128
3 8421376 128
8 8421504 128
7 12632256 192
12 255

10 65280

14 65535

9 16711680 255
13 16711935 255
11 16776960 255
15 16777215 255

Green Blue
0 0

0 128
128 0
128 128
0 0

0 128
128 0
128 128
192 192
0 255
255 0
255 255
0 0

0 255
255 0
255 255

9.2. Flow control

The flow-control functions listed in Table 76 either direct flow or provide functionality similar to flow
control. For example, the IIF (immediate if) function provides functionality that would otherwise require an

If-Then-Else statement.

Table 76. OOo Basic functions related to flow control.

Function

Choose(number, argument _list)
[IF(condition, TrueExpression, FalseExpression)
Stop

Wait(milliseconds)

WaitUntil(aTime)

Declare

DDEExecute(nDDEChannel, command)
DDElInitiate(Server, Topic)
DDEPoke(nDDEChannel, item, data)
DDERequest(nDDEChannel, item)
DDETerminateAll()

FreeLibrary

Shell

Description

Flow control

Flow control

Stop execution now

Pause the macro for a short time

Wait until a time has been reached.
Declare a DLL that you want to call
Execute a DDE command

Open a DDE channel

Set data on the DDE server through the channel
Post a DDE request over an open channel
Close all DDE connections

Free a DLL library

Run a command through the command shell

202

9.2.1. Return an argument

The IIF function (Immediate If) and the Choose function both return an argument based on the value of the
first argument. The IIF function returns one of two values based on a conditional expression. This works as a
great one-line If-Then-Else statement.

max age = IIF(johns age > bills age, johns age, bills age)

The IIF function takes three arguments. The first argument is a Boolean value, which determines what
argument to return; one of the next two arguments is returned. Listing 176 shows how you can write the IIF
function yourself.

Listing 176. The IIF function, if you wrote it yourself.

Function myIIF (conditional, true arg, false arg) As Variant
If CBool (conditional) Then
nyITF = true arg
Else
myIIF = false arg
End If
End Function

All arguments to a routine are evaluated before the routine is called. Because IIF is a function, all arguments
are evaluated when the function runs. With an If statement, the conditional code runs only if necessary. See
Listing 177.

Listing 177. If the denominator is zero, the division does not occur.
If denominator <> 0 Then

result = numerator / denominator
else

result = 0
End If

In Listing 177, if the denominator is zero, the division is not done and zero is returned instead. In case your
mathematical skills are a little rusty, it is not valid to divide a number by zero; a run-time error occurs. On
the other hand, if your mathematical skills are not rusty, you know that returning zero when the denominator
is zero isn’t really correct, either. The macro in Listing 178 demonstrates that the functions f1 and 2 are
both called, even though only the value from f2 is returned. In other words, IIF(x <> 0, 1/x, 0) causes a
division-by-zero error if X is zero.

Listing 178. All IIF arguments are called.

Sub ExampleIIF
REM This demonstrates that ALL expressions are evaluated
REM This prints
REM "I am in function f£1"
REM "I am in function £f2"
REM "f2"
Print IIF(1>2, f1(), £2())
End Sub
Function f1$
Print "I am in function f1"
f1 = "f1"
End Function
Function £2$
Print "I am in function f2"
f2 = "f2"

203

End Function

The Choose function is similar to the IIF function in that it returns an argument based on the value in the
first argument. However, it differs because it can have more than two possible return values, and the first
argument is an integer, rather than a Boolean, that indicates which of those possibly many arguments to
return.

Choose (expression, Select 1[, Select 2, ... [,Select n]])

The Choose statement returns a null if the expression is less than 1 or greater than the number of selection
arguments. Choose returns Select 1 if the expression evaluates to 1 and Select 2 if the expression evaluates
to 2. The result is similar to storing the selections in an array with a lower bound of 1 and then indexing into
the array. Each argument is evaluated regardless of which one is returned. See Listing 179.

Listing 179. Demonstrate the Choose statement.
Sub ExampleChoose

Dim 1%, v
i% = CStr (InputBox ("Enter an integer 1-4 (negative number is an error)"))
v = Choose (i, "one", "two", "three", "four")
If IsNull(v) Then
Print "V is null"
Else
Print CStr (v)
End If
End Sub

9.2.2. Pause or end the macro

The Stop command causes the macro to stop running. That’s it, it is done, finished! You must start again.
The Wait statement, on the other hand, only pauses macro execution (see Listing 180). After the specified
number of milliseconds, the macro starts running again. A run-time error occurs if the number of
milliseconds to wait is negative.

Listing 180. Demonstrate the wait function.
Sub ExampleWait

On Error Goto BadInput

Dim nMillis As Long

Dim nStart As Long

Dim nEnd As Long

Dim nElapsed As Long

nMillis = CLng(InputBox ("How many milliseconds to wait?"))
nStart = GetSystemTicks ()

Wait(nMillis)

nEnd = GetSystemTicks ()

nElapsed = nEnd - nStart

MsgBox "You requested to wait for " & nMillis & " milliseconds" &
CHRS (10) & "Waited for " & nElapsed & " milliseconds™, 0, "Example Wait"
BadInput:
If Err <> 0 Then
Print Error() & " at line " & Erl
End If
On Error Goto 0
End Sub

204

In all of my experiments, the Wait statement has been accurate. The macro waits and then starts when it
should. In previous versions of OOo, the Wait statement was inefficient and it used a lot of CPU time while
running. This problem has been fixed in the current versions of OOo.

WaitUntil is new and provides more compatibility with VB. The following code waits two seconds.

WaitUntil Now + TimeValue ("00:00:02")

9.2.3. Dynamic Link Libraries

While a macro runs, it may directly call numerous subroutines and functions. A macro can also call routines
and applications that are not related to OpenOffice.org. A Dynamic Link Library (DLL) is a collection of
routines, or programs, that can be called when required. Each DLL is packaged into a single file with the
extension DLL — the file does not always have the suffix “.dIl”, but it usually does. There are two very nice
things about DLL files: Many programs can share a single DLL, and they are not usually loaded into
memory until they are needed. The usage of DLLs promotes code reuse and does not waste memory. To tell
OOo Basic about a routine in a DLL, use the Declare statement.

TIP DLLs are not supported on Linux.

Declare Sub Name Lib "LibName" (arguments)
Declare Function Name Lib "LibName" (arguments) As Type

LibName is the name of the DLL that contains the routine named Name. It is common to use a DLL that you
did not write, so you often have no control over the name of the routine that you call. Naming can be a
problem if your macro already contains a routine with the same name or if you call another routine by the
same name in another DLL. As a result, the Declare statement supports the Alias keyword, which you can
use to overcome this hurdle. In this case, the RealName is the name used by the DLL, and myName is the
name used by your macro.

Declare Sub myName Lib "LibName" Alias "RealName" (arguments)
Declare Function myName Lib "Libname" Alias "RealName" (arguments) As Type

For functions, the type declaration should use the standard types. You must, of course, know the type so that
you can declare it. The argument list contains the arguments that are passed to the external routine. You must
use the keyword ByVal if an argument is passed by value rather than by reference. Listing 181 calls a DLL.

TIP By default OOo Basic passes arguments by reference. This means that if the called subroutine changes the
argument, it is also changed in the calling program. The ByVal keyword causes an argument to be passed
by value rather than by reference.

Listing 181. Call a DLL. This will only work on windows (and if the DLL is present).

Declare Sub MyMessageBeep Lib "user32.dl11" Alias "MessageBeep" (Long)
Declare Function CharUpper Lib "user32.d11" Alias "CharUpperA"
(ByVal lpsz As String) As String

Sub ExampleCallDLL
REM Convert a string to uppercase
Dim strIn As String
Dim strOut As String
strIn = "i Have Upper and Lower"

strOut = CharUpper (strin)
MsgBox "Converted:" & CHR$(10) & strIn & CHRS(10) &

205

"To:" & CHRS$(10) & strOut, 0, "Call a DLL Function"
REM On my computer, this plays a system sound
Dim nBeepLen As Long
nBeepLen = 5000
MyMessageBeep (nBeeplen)
FreelLibrary ("user32.d11")
End Sub

A DLL is not loaded until a routine in the DLL is called. To remove the DLL from memory, use the
FreeLibrary statement. The FreeLibrary statement accepts one argument: the name of the DLL to unload.

9.2.4. Calling external applications

Use the Shell statement to run an external application. The Shell command is disabled for users connecting
by a virtual portal unless they happen to be the same user that started OOo in the first place. This statement
does not obtain any information from an application; it simply runs another application or command.

Shell (Pathname, Windowstyle, Param, bSync)

TIP The Shell command is a potential security hole.

The only required argument is the first; the rest are optional. The first argument is the full path name of the
external application. The application path may be in URL notation, but need not be. The Shell statement has
problems if the path or application name contains a space. You can solve this problem the same way that
your Web browser solves it: Substitute “%20” for each space. The ASCII value of a space is 32, which is 20
in hexadecimal. This technique can also be used to substitute other characters if they cause you problems.

Shell("file:///C|/Andy/My%20Documents/oo/tmp/h.bat",2) 'URL notation uses /
Shell ("C:\Andy\My%20Documents\oo\tmp\h.bat",2) 'Windows notation uses \

The second argument (optional) indicates the window style of the started application. Table 77 lists valid
values for the Shell window style argument.

Table 77. Window styles for the Shell statement.

Style Description

0 Focus is on the hidden program window.

1 Focus is on the program window in standard size.

2 Focus is on the minimized program window.

3 Focus is on the maximized program window.

4 Standard size program window, without focus.

6 Minimized program window, but focus remains on the active window.
10 Full-screen display.

The third argument (optional) is a string that is passed to the application. Each space in the argument string
is read by the called application as delimiting a separate argument. To pass an argument with an embedded
space, place an extra set of double quotation marks around the arguments.

Shell ("/home/andy/foo.ksh", 10, """one argument"" another") ' two arguments

TIP The string """one argument"" another" is correct and as intended; think about it!

206

The final optional argument determines if the Shell command returns immediately while the application is
running (the default behavior) or if it waits until the application is finished. Setting the final argument to
True causes the Shell statement to wait.

Sub ExampleShell
Dim rc As Long
rc = Shell ("C:\andy\TSEProWin\g32.exe", 2, "c:\Macro.txt")
Print "I just returned and the returned code is " & rc ' rc =0
Rem These two have spaces in their names
Shell ("file:///C|/Andy/My%20Documents/oo/tmp/h.bat", 2)
Shell ("C:\Andy\My%20Documents\oo\tmp\h.bat", 2)
End Sub

The Shell function returns a long with the value zero. If the program does not exist, a run-time error occurs
and nothing is returned. When some applications run, they return a value that can be used to indicate an
error. This value is not available from the Shell command. Intuitively, it isn’t possible to obtain the final
return value from an application when the Shell function returns before the application is finished running.

TIP In Visual Basic, the arguments for the Shell function are different: Shell(path, window_style, bsync,
Timeout). The Timeout value indicates how long to wait for the external application to finish. Arguments
follow the application name as part of the same string, delimited by spaces.

VB does not use a separate argument to specify the arguments to send to the application launched by the
Shell command. Instead, the arguments follow the name of the application, separated by spaces, inside the
same quotation marks that contain the function path and name. This method also works with OOo Basic, as
an alternative way to specify the Shell command arguments. If only function, arguments, and window style
are required, this alternative way to write the Shell command allows you to have identical statements for VB
or OOo routines. If you want to specify bsync or Timeout arguments, the VB and OOo environments are not
compatible.

Shell ("/home/andy/foo.ksh hello you") ' two arguments, "hello" and "you"

9.2.5. Dynamic Data Exchange

Dynamic Data Exchange (DDE) is a mechanism that allows information to be shared between programs.
Data may be updated in real time or it may work as a request response.

Although the DDE commands accepted by a DDE server are specific to the individual server, the general
syntax is the same. Most DDE commands require a Server, Topic, and Item. The Server is the DDE name for
the application that contains the data. The Topic, usually a file name, contains the location of the referenced
Item. The example in Listing 182 uses the DDE function in a Calc spreadsheet to extract data in cell Al
from an Excel spreadsheet.

Listing 182. Use DDE as a Calc function to extract cell Al from a document.
=DDE ("soffice";"/home/andy/tstdoc.x1s";"al") 'DDE in Calc to obtain a cell

='file:///home/andy/TST.sxc'#$sheetl.Al 'Direct reference to a cell

The second line shows how a cell can be directly referenced in another Calc spreadsheet without using DDE.
000 Basic supports DDE commands directly (see Table 78).

207

Table 78. DDE commands supported by OOo Basic.
Command Description

DDEExecute(nDDEChannel, command) Execute a DDE command.

DDEInitiate(Server, Topic) Open a DDE channel and return the channel number.
DDEPoke(nDDEChannel, item, data) Set data on the DDE server.
DDERequest(nDDEChannel, item) Post a DDE request over an open channel.
DDETerminateAll() Close all DDE connections.

First, the DDElInitiate function makes a connection to the DDE server. The first argument is the name of the
server — for example, “soffice” or “excel”. The second argument specifies the channel to use. A common
value for a channel is a file name. The opened channel is identified by an integer, which is returned by the
DDElnitiate command. A channel number of 0 indicates that the channel was not opened. Attempting to
establish a DDE connection to OOo for a file that is not currently open returns O for the channel. See Listing
183.

Listing 183. Use DDE to access a Calc document.
Sub ExampleDDE

Dim nDDEChannel As Integer
Dim s As String
REM 00Oo must have the file open or the channel will not be opened
nDDEChannel = DDEInitiate("soffice", "c:\TST.sxc")
If nDDEChannel = 0 Then
Print "Sorry, failed to open a DDE channel"
Else
Print "Using channel " & nDDEChannel & " to request cell Al"
s = DDERequest (nDDEChannel, "Al1l")

Print "Returned " & s
DDETerminate (nDDEChannel)
End If
End Sub

The usable commands and syntax for each server are server dependent, so a complete coverage of DDE is
beyond the scope of this book.

TIP Listing 183 runs and returns a value, but it crashes OOo when I run it.

9.3. User input and output

OO0 Basic provides a very simple mechanism for presenting information to the user and obtaining
information from the user at run time (see Table 79). These routines aren’t used to access files; they’re used
strictly for user input from the keyboard and output to the screen.

Table 79. User input and output functions.

Function Description

InputBox(Msg, Title, Default, X _pos, y_pos) Request user input as a String.
MsgBox (Message, Type, Title) Display a message in a nice dialog.
Print expressionl; expression2, expression3;... Print expressions.

208

9.3.1. Simple output

Use the Print statement for simple, single-line output. A list of expressions follows the Print statement. If
two expressions are separated by a semicolon, the expressions are printed adjacent to each other. If two
expressions are separated by a comma, the expressions are printed with a tab between them; you cannot
change the size of the tabs.

Print expressionl, expression2, ... ' Print with tabs between expressions
Print expressionl; expression2; ... ' Print with nothing between expressions
Print 1,Now;"hello","again";34.3 ' Mixing semicolons and commas is fine

Arguments are converted to a locale-specific string representation before they are printed. In other words,
dates and numbers appear as you expect based on the locale set in your configuration (Tools | Options |
Language Settings | Languages). Boolean values, however, always print the text True or False.

The help included with OOo lists two special expressions that work with the Print statement: Spc and Tab.
In OOo Basic, the Spc function works the same as the Space function. It accepts one numeric argument and
returns a string composed completely of spaces. The Tab function, although documented, does not exist. See
Listing 184 for a Print example.

TIP Although the Tab function has been documented since OOo version 1, as of version 3.2, the Tab function
still does not exist and it is still documented.

Listing 184. Demonstrate the Spc() function.
Sub ExamplePrint

Print "It is now";Spc(12) ;Now ()
End Sub

The Print statement is usually used for simple, single-line output while debugging, because it allows you to
stop a macro from running by clicking the Cancel button (see Figure 66). This is a great tool for debugging.
Place a Print statement before or after lines that may cause a problem. If the values don’t appear to be
correct, you can click the Cancel button to stop the macro.

TIP The print statement is nice because you can cause a macro to stop running by clicking Cancel. An
advantage, and a disadvantage, however, is that it leaves the user in the IDE at the print statement.

=)]Open0fficerorg)3:2 £3)

It is now 07/12/2010 19:58:00

| | cancel

Figure 66. The Spc function returns a string with spaces.
When using many Print statements for debugging purposes, print explanatory information with the data to
remind yourself what it is.

Print "Before the loop, x= ";x
For i=0 To 10
Print "In the loop, i = ";i;" and x = ";x

When you print a string that contains a new-line character (ASCII 10 or 13), a new dialog is displayed for
each new line. The code in Listing 185 displays three consecutive dialogs with text that reads “one”, “two”
and “three”. The Print dialog is able to print using more than one line. If a single line of text becomes too

5

209

long, the line wraps and appears on more than one line. In other words, although Print will wrap by itself,
the user has no way to force a new line in the dialog.

Listing 185. New lines print in their own dialog.
Print "one" & CHRS$(10) & "two" & CHRS(13) & "three" ' Displays three dialogs

The Print statement uses a simple, defined protocol for numeric formatting. Positive numeric expressions
contain a leading space. Negative numeric expressions contain a leading minus sign. Numbers with a
decimal are printed in exponential notation if they become too large.

The Print statement displays a print dialog each time, unless the statement ends with either a semicolon or a
comma. In this case it stores the text from each Print statement and adds to it until it encounters a Print
statement that doesn’t end with a semicolon or a comma.

Print "one", 'Do not print yet, ends with a comma
Print "two" 'Print "one two"

Print "three", 'Do not print yet, ends with a comma
Print "four"; 'Do not print yet, ends with a semicolon
Print 'Print "three four"

9.3.2. Multi-line output

The MsgBox statement provides more control over the dialog that is displayed than does the Print statement,
but can print only one string expression at a time. String expressions that contain a new-line character
(ASCII 10 or 13) are printed in the same dialog. Each new-line character starts a new line in the dialog.

Listing 186. Display a simple message box with a new line.
Sub ExampleMsgBoxWithReturn

MsgBox "one" & CHRS$ (10) & "two"
End Sub

Figure 67. This simple MsgBox dialog contains only an OK button.
The dialog in Figure 67 is very simple. The MsgBox function accepts two new arguments, as shown in
Listing 187. The DialogTitle is displayed as the title line of the dialog. Valid values for DialogType are
shown in Table 80. The DialogType determines which buttons are displayed in the dialog, which button is
the default button, and which icon is displayed on the dialog.

Listing 187. The MsgBox function can accept a type and a dialog title.
MsgBox (Message)

MsgBox (Message, DialogType)
MsgBox (Message, DialogType, DialogTitle)

210

Table 80. Valid values for DialogType.

Value Description

0 Display OK button only.

1 Display OK and Cancel buttons.

2 Display Abort, Retry and Ignore buttons.

3 Display Yes, No, and Cancel buttons.

4 Display Yes and No buttons.

5 Display Retry and Cancel buttons.

16 Add the Stop icon to the dialog.

32 Add the Question icon to the dialog.

48 Add the Exclamation Point icon to the dialog.
64 Add the Information icon to the dialog.

128 First button in the dialog is the default button. This is the default behavior.
256 Second button in the dialog is the default button.
512 Third button in the dialog is the default button.

Listing 188. Demonstrate the MsgBox type behavior.

Sub MsgBoxExamples ()
Dim 1%
Dim values
values = Array(0, 1, 2, 3, 4, 5)

For 1 = LBound(values) To UBound(values)
MsgBox ("Dialog Type: " + wvalues(i), values(i))
Next
values = Array(le6, 32, 48, 64, 128, 256, 512)
For i = LBound(values) To UBound(values)
MsgBox ("Yes, No, Cancel, with Type: " + values (i), values(i) + 3)
Next
End Sub

You can use more than one DialogType at the same time to achieve your desired buttons, icon, and default
behavior. The display choices are encoded in the first four bits (values 0-15 are binary 0000-1111); the icons
and default behavior are encoded in higher bits (for example, 64 is 01000000 in binary). To combine
attributes, use OR or add the values together. (This is similar to the behavior described for file attributes.)

Although you can display a dialog with a Cancel button, this won’t cause the macro to stop running, as
happens with the Print statement. Instead, the MsgBox function returns an integer that identifies the selected
button (see Table 81). Clicking the Cancel button returns the value 2, and the Abort button returns a 3, which
can then be tested by your code; then you (in your code) can decide whether or not you really want to cancel
the macro.

Table 81. Return values from MsgBox.

Description
1 OK
2 Cancel
3 Abort

211

Description

In other words, if you want the macro to stop when a user clicks the Cancel button, you must check the
return value, as demonstrated in Listing 189. The message contains a new-line character so the message
contains two lines of text. The dialog type requests three buttons and an icon, and sets the second button to
be default (see Figure 68). The macro does different things based on the selected button.

Listing 189. Demonstrate how MsgBox works.
Sub ExampleMsgBox

Dim nReturnCode As Integer
Dim nDialogType As Integer
Dim sMessage As String
sMessage = "An error occurred!"™ & CHRS$(10) & "Do the important work anyway?"
REM 3 means Yes, No, Cancel
REM 48 displays an Exclamation Point icon
REM 256 second button is default.
nDialogType = 3 OR 48 OR 256
nReturnCode = MsgBox (sMessage, nDialogType, "My Title")
If nReturnCode = 2 Then
Print "Stopping the macro now!"
Stop
ElseIf nReturnCode = 6 Then
Print "You chose Yes"
ElseIf nReturnCode = 7 Then
Print "You chose No"

Else
Print "I will never get here!",nReturnCode
End If
Print "Ready to exit the subroutine"
End Sub

,} An error occurred!
s Do the important work anyway?

Cancel |

Figure 68. Fancy MsgBox with an icon and multiple buttons.

9.3.3. Prompting for input

Use the InputBox function to prompt users for input. You can specify the dialog title. If a Default value is
provided, it’s displayed in the input box. The displayed dialog contains a text-input box, an OK button, and a
Cancel button. The InputBox function returns a string to the calling statement. Clicking Cancel returns a
zero-length string.

InputBox (Message)

212

InputBox (Message, Title)
InputBox (Message, Title, Default)
InputBox (Message, Title, Default, x pos, y pos)

The position arguments are in twips and are relative to the upper-left corner of the current window; one inch
is 1440 twips. If the position is not specified, the dialog is centered both horizontally and vertically over the
current window. The example in Listing 190 displays the input box two inches from the left edge of the
window and four inches from the top. The size of the InputBox is defined automatically from the Message
and buttons; OOo configures the layout of this box, as it does for the other basic input and output dialogs.

Listing 190. Demonstrate InputBox.
Sub ExampleInputBox

Dim sReturn As String 'Return value

Dim sMsg As String 'Holds the prompt

Dim sTitle As String 'Window title

Dim sDefault As String 'Default value

Dim nXPos As Integer 'Twips from left edge

Dim nYPos As Integer 'Twips from top edge

nXPos = 1440 * 2 'Two inches from left edge of the window
nYPos = 1440 * 4 'Four inches from top of the window
sMsg = "Please enter some meaningful text"

sTitle = "Meaningful Title"

sDefault = "Hello"

sReturn = InputBox(sMsg, sTitle, sDefault, nXPos, nYPos)

If sReturn <> "" Then

REM Print the entered string surrounded by double quotes

Print "You entered """;sReturn;""""
Else
Print "You either entered an empty string or chose Cancel"
End If
End Sub

Figure 69 shows the dialog when it is first displayed. Pressing any key replaces the default text, because this
text is highlighted when the dialog first opens. The macro in Listing 190 inspects the return value and
checks for a zero-length string. A zero-length string could mean that the Cancel button was used to close the
dialog, or it could mean that the user entered a zero-length string and then used the OK button to close the
dialog. These two cases are not distinguishable from each other.

Please enter some meaningful text oK

Cancel

o]

Figure 69. InputBox with default text selected.

213

9.4. Error-related routines

The error-related routines (see Table 82) in OOo Basic return information related to the last error. These
routines are used to determine what happened and where. The error information is reset when the error
handler is cleared, so save the error information if your macro program will require it later.

Table 82. Error functions in OOo Basic.
Function Description

CVErr
Erl
Err

Error

Error(error_number)

Convert an expression to an error object.
Line number of last error.
Error number of last error.

Get error message either for the last error or for the specified error
message.

The macro in Listing 191 checks for an error before the error handler is reset. Error information is then
saved. Although the macro in Listing 191 does not save the error message, the Error function accepts an
error number as an optional argument for which the error message is returned. Also see Figure 70.

Listing 191. Demonstrate error related statements.
Sub ExampleError

On Error Goto BadError 'Set up the error handler
Print 1/ CInt(0.2) 'Do a division by zero
BadError: '"Error handler starts here

Dim s As String 'Accumulate the message

Dim oldError As Integer 'Save the error number

Dim lineNum As Integer 'Save the line number

If Err <> 0 Then 'If an error occurred
oldError = Err 'Save the error number
lineNum = Erl 'Save the error line number

S

= "Before clearing the error handler" & CHRS$(10) &

"Error number " & Err & " Occurred at line number " & Erl & CHRS$(10)

"Err message: " & Error() & CHRS(10)
End If
On Error Goto O 'Reset the error handler
REM There is now no information to print

s & CHR$(10) & "After clearing handler:" & CHR$S (10) &
"Error number " & Err & " Occurred at line number " & Erl & CHRS(10)
Use the saved information

s & CHR$(10) & "Error info was saved so:" & CHRS(10) &

"Error number " & oldError & " Occurred at line number " &

lineNum & CHRS$ (10) & "Err message: " & Error (oldError)

MsgBox s, 0, "Error Handling"
End Sub

214

&

~

I=JError]Handling %

Before clearing the error handler
Error number 11 Occurred at line number 182
Err message: Division by zero.

After clearing handler:
Error number 0 Occurred at line number 0

Error info was saved so:
Error number 11 Qccurred at line number 182
Err message: Division by zero.

Figure 70. Error information must be saved if it is used after resetting the error handler.

9.5. Miscellaneous routines

The miscellaneous routines described in this section are general-purpose routines that aren’t necessarily
related to each other (see Table 83).

Table 83. Miscellaneous functions in OOo Basic.

Function Description

Beep Make a system-dependent beep.
CBool(expression) Convert an integer or string to Boolean.
Environ(string) Return an environment variable.
GetSolarVersion Internal running version.
CreateObject(obj_type) Dynamic version of “Dim As New”.
Erase(obyj) Free an objects memory.

The Beep statement generates a system-dependent beep. You can’t change the pitch or the length of the
generated beep. On some systems, this plays a configurable sound file through the built-in speaker, and on
others it generates a system event that plays a system-defined sound through low-level internal hardware.

Beep 'Generate a noise
Wait (500) 'Wait 1/2 second
Beep 'Generate a noise

Use the CBool function to convert a string or a number to a Boolean value. Any numeric expression that
evaluates to 0 returns False. Numeric expressions that are not O return True. String expressions that evaluate
to “True” or “False” return True or False respectively; case does not matter. A string that does not evaluate
exactly to True or False is evaluated as a number. If the string doesn’t contain a number or the text “true” or
“false”, a run-time error occurs.

Print CBool (False) 'False

Print CBool (13) 'True

Print CBool ("13") 'True

Print CBool ("trUe") 'True

Print CBool ("&hl™) 'True

Print CBool ("13xx") 'run-time error
Print Cbool ("Truee™) 'run-time error

215

Use the Environ function to retrieve environment variables. If the environment variable does not exist, an
empty string is returned. No method is provided to set or change environment variables.

Print Environ ("PATH")
Print Environ ("TEMP")

Use getSolarVersion to obtain the integer internal build number of OOo. You can write your macro to work
around known issues, based on release documentation or discovered bugs for different versions of OOo.

Print GetSolarVersion

The CreateObject function allows objects to be created dynamically. If an object can be created using “Dim
v As New”, it can be created with the CreateObject function. In other words, if an object can be created as a
user-defined type, CreateObject can create one. The OOo underlying special data objects, which are covered
in depth later, are called Universal Network Objects (UNO). These objects cannot be created using
CreateObject. OOo does define structures that are not UNO objects that can be created using Dim As New
and CreateObject (see Listing 192).

Listing 192. Create an object using CreateObject or Dim As New.

Dim oProp As New com.sun.star.beans.PropertyValue
Dim o As Object
o = CreateObject ("com.sun.star.beans.PropertyValue")

Listing 192 demonstrates creating a variable type defined by OOo that is like a user-defined type. The actual
type name of the object is “com.sun.star.beans.PropertyValue”. Many of the objects in OOo have similarly
long and cumbersome names. While writing about or discussing variable types such as this, it’s common to
abbreviate the type name as the last portion of the name. For example, set the Name property of the
PropertyValue variable (see Listing 193). Objects of type PropertyValue have two properties: Name as a
String and Value as a Variant.

Listing 193. Dim a PropertyValue and use CreateObject to create a new one.
Dim aProp As New com.sun.star.beans.PropertyValue

aProp.Name = "FirstName" 'Set the Name property
aProp.Value = "Paterton" 'Set the Value property
Erase aProp

Print IsNull (aProp) 'True

REM Create a new one!

Dim aPropr

aPropr = CreateObject ("com.sun.star.beans.PropertyValue")
Erase aProp

Print IsNull (aProp) 'True
Print IsEmpty (aProp) 'False
Dim a

a = array("hello", 2)

Erase a
Print IsNull (a) 'False
Print IsEmpty(a) 'True

Dim b () As String

ReDim b (0 To 1) As String

b(0) = "Hello" : b(l) = "You"

'"b() = "hello" 'Runtime error, variable not set (Expected)

'"Print b () 'Runtime error, variable not set (Expected)

216

'Erase b() 'Syntax Error, not too surprised

Erase b 'I did not expect this to work.

Print IsNull(b()) 'False

Print IsEmpty(b()) 'False

Print IsArray(b()) 'False, This is probably bad.

'"Print LBound(b()) 'Error, variable not set.

b() = "hello" '0dd, now I can treat b() as a string variable
Print b () 'hello

Listing 193 demonstrates the Erase statement, introduced with OOo version 2.0. Use the Erase statement to
free memory that will no longer be used. Do not use Erase unless you are finished with the variable.

Use the CreateObject function to create an object dynamically — in other words, when you don’t want to
create the object when it’s declared. You can use CreateObject to create only one object at a time. Use the
Dim As New construction to create an array of a particular type (see Listing 194). You can even change the
dimension of the array and preserve the data. It is more cumbersome to declare an array and then fill it with
the appropriate values individually (see Listing 195).

Listing 194. Demonstrate ReDim with Preserve
Sub ExampleReDimPreserveProp

REM this is easy to create this way

Dim oProps(2) As New com.sun.star.beans.PropertyValue

oProps (0) .Name = "FirstName" : oProps(0).Value = "Joe"
oProps (1) .Name = "LastName" : oProps(l) .Value = "Blather"
oProps (2) .Name = "Age" : oProps(l).Value = 53
ReDim Preserve oProps(3) As New com.sun.star.beans.PropertyValue
oProps (3) .Name = "Weight" : oProps(3).value = 97
Print oProps(2) .Name 'Age

End Sub

Listing 195. You can add PropertyValue variables to a declared array.

REM This is more cumbersome, but you can still do it...
Dim oProps (2)

oProps (0) = CreateObject ("com.sun.star.beans.PropertyValue")
oProps (1) = CreateObject ("com.sun.star.beans.PropertyValue")
oProps (2) = CreateObject ("com.sun.star.beans.PropertyValue")
oProps (0) .Name = "FirstName" : oProps(0).Value = "Joe"
oProps (1) .Name = "LastName" : oProps (1) .Value = "Blather"
oProps (2) .Name = "Age" : oProps(l).Value = 53

Assigning one array to another assigns a reference so that both arrays reference the same array object. With
variable types such as Integer and PropertyValue, assignment makes a copy. Failure to understand which
types copy by value and which types copy by reference is a common source of errors. Structures and integral
types (such as Integer and String) copy as a value, but arrays and UNO variables, as will be discussed later,
copy as a reference. Copying by value is demonstrated in an obvious way in Listing 196.

Listing 196. Properties copy by value.
Sub ExampleCopyAsValue

Dim aPropl
Dim aProp2

aPropl = CreateObject ("com.sun.star.beans.PropertyValue")
aPropl.Name = "Age" 'Set Name Property on one
aPropl.Value = 27 'Set Value Property on one

aProp2 = aPropl 'Make a copy

aProp2.Name = "Weight"'Set Name Property on two

217

aProp2.Value = 97 'Set Value Property on two
Print aPropl.Name, aProp2.Name 'Age Weight
End Sub

TIP Standard object variables copy by value, and UNO variables copy by reference.

When one integer variable is assigned to another, it is understood that the value was copied and nothing
more. The two variables are still independent of each other. This is also true for structures. Text cursors,
discussed later, contain a property called CharLocale, which specifies the country and language for the text
selected by the text cursor. The common, incorrect method to set the locale is to access the variable directly.
This sets the language and country on a copy of the CharLocale property rather than on the copy used by the
text cursor. I see this type of error often.

oCursor.CharLocale.Language = "fr" 'set language to French on a copy

oCursor.CharLocale.Country = "CH" 'set country to Switzerland on a copy

One correct method to set the locale is to create a new Locale structure, modify the new structure, and copy
the new structure to the text cursor.

Dim alocale As New com.sun.star.lang.Locale

alocale.Language = "fr" 'Set Locale to use the French language
alocale.Country = "CH" 'Set Locale to use Switzerland as the country
oCursor.CharLocale = alocale 'Assign the value back

You can also obtain a copy of the structure, modify the copied structure, and copy the modified structure to
the text cursor.

Dim aLocale

alocale = oCursor.CharLocale 'Or use a copy

alocale.Language = "fr" 'Set Locale to use the French language
alocale.Country = "CH" 'Set Locale to use Switzerland as the country
oCursor.CharLocale = alocale 'Assign the value back

9.6. Partition

Partition is not documented and was likely added for VB compatibility. Partition return a Variant (String)
indicating where a number occurs in a calculated series of ranges.

Partition (number, start value, stop value, interval)

Consider the following values:

start value = 0
stop value = 17
interval = 5

The following “partitions” are assumed:

) “:-17 Everything before 0

2) “0:4” Five numbers from 0 to 4.

3) “5:9” Five numbers from 5 to 9.

4) “10:14” Five numbers from 10 to 14.
5) “15:17” Three numbers from 15 to 17.

218

6) “18:” Everything after 17.

The example in Listing 197 tests numbers before and after the interval. As expected, values before the first
interval run from “ :-1”. Values that fall into an interval are nicely identified. The only tricky part is that the
final interval claims to include values from “15:19” even though 18 and 19 are not in the interval.

Listing 197. Run partition through a series of values.
Sub ExamplePartition

Dim 1%
Dim s$
For 1 = -2 To 20
s = s & "Partition(" & 1 & ", 0, 17, 5) =" &
Partition(i, 0, 17, 5) & CHRS(10)
Next
MsgBox s
End Sub

[=]soffice) 2.3

Partition(-2, 0, 17, 5
Partition(-1, 0, 17, 5
Partition(0, 0, 17, 5)
Partition(1, 0, 17, 5)
Partition(2, 0, 17, 5)
Partition(3, 0, 17, 5)
Partition(4, 0, 17, 5)
Partition(5, 0, 17, 5)
Partition(s, 0, 17, 5)

)

)

(e

SRR LR e i e

Partition(7, 0, 17, 5
Partition(8, 0, 17, 5
Partition(9, 0, 17, 5)
Partition{10, 0, 17, 5) = 10:14
Partition(11, 0, 17, 5) = 10:14
Partition(12, 0, 17, 5) = 10:14
Partition(13, 0, 17, 5) = 10:14
Partition(14, 0, 17, 5) = 10:14
Partition(15, 0, 17, 5) = 15:19
Partition(16, 0, 17, 5) = 15:19
Partition(17, 0, 17, 5) = 15:19
Partition(18, 0, 17, 5) = 18:

Partition(19, 0, 17, 5) = 18:

Partition(20, 0, 17, 5) = 18:

(1< QT T TV T S ST N Y T

r,

Figure 71. Partition shows the interval containing a number.

219

The values returned by Partition are carefully formatted. The lower value and upper value have the same
number of characters, which means that they will sort properly if you choose to do so. This also helps if you
want to parse the returned values.

9.7. Inspection and identification of variables

0Oo Basic contains numerous functions to inspect and identify variables (see Table 84). These routines are
frequently used when you call a function and aren’t certain of the return type. These routines are also useful
for debugging. For example, you could use these functions to verify that a return type is valid.

Table 84. Variable inspection functions in OOo Basic.

Function Description

IsArray Is the variable an array?

IsDate Does the string contain a valid date?
IsEmpty Is the variable an empty Variant variable?
IsMissing Is the variable a missing argument?
IsNull Is the variable an unassigned object?
IsNumeric Does the string contain a valid number?
IsObject Is the variable an object?

IsUnoStruct Is the variable a UNO structure?
TypeLen Space used by the variable type.
TypeName Return the type name of the object as a String.
VarType Return the variable type as an Integer.

Use [sArray to see if a variable is an array (see Listing 198). If IsArray returns True, it does not imply that
the variable has data or even that it is dimensioned — merely that it exists and is defined as an array. The
UBound and LBound functions, as already discussed, return the upper and lower bounds of the array.

Listing 198. Use IsArray to see if a variable is an array.
Dim n As Long 'This is NOT an array

Dim a() As String 'This is an array

Dim b (5) 'This is an array

Dim v As Variant 'This is not an array yet
Print IsArray(v) 'False

Print IsArray(n) 'False

Print IsArray(a) 'True

Print IsArray(b()) 'True

ReDim v (3) 'It is an array now!
Print IsArray(v()) 'True

Use the IsDate function to test if a string contains a valid date (see Listing 199). The arguments are
converted to a string before they are used, so numeric arguments return False. The IsDate function tests more
than just syntax; it checks to see if the string contains a valid date. The same check is not made on the time
component of the string.

Listing 199. IsDate verifies that a string contains a valid date.
Print IsDate("December 1, 1582 2:13:42") 'True

Print IsDate("2:13