

OpenOffice.org Macros Explained

OOME Third Edition

Last Modified

Saturday, April 30, 2016 at 09:05:51 AM

Document Revision: 567

General Information
The contents of this document is Copyright 2011 - 2014 by Andrew D. Pitonyak. I will make
a final license decision when I am finished.

I created a second edition that was never released, which is why I refer to this book as the
third edition.

I have been repeatedly asked about the cover page so.... I am neither an artist nor a designer,
the cover was created by Amanda Barham (see http://www.amandabarham.com). She did an
awesome job.

Many people contributed to this document in one form or another. Feedback from community
members helps greatly. For reasons I don't understand, my wife allows me to take time away
from my family to work on this document, so, I suppose that the person to really thank is her
(send her enough money that she can get a fully body massage and she may force me to work
on this document).

While taking this document to the latest version, many errors, corrections, and suggestions
were provided by Volker Lenhardt who is providing a full translation into German. This
document has been greatly improved based on his work.

Thank you Volker Lenhardt (https://www.uni-due.de/~abi070/ooo.html).

http://www.amandabarham.com/
https://www.uni-due.de/~abi070/ooo.html

Table of Contents
General Information...1
Table of Contents..i
 1. Introduction and housekeeping...13

 1.1. Comments from the author..13
 1.2. Environment and comments..13

 2. Getting Started..14
 2.1. Macro storage..14

 2.1.1. Library container...14
 2.1.2. Libraries...15
 2.1.3. Modules and dialogs..16
 2.1.4. Key points..16

 2.2. Creating new modules and libraries..16
 2.3. Macro language...18
 2.4. Create a module in a document...18
 2.5. Integrated Debugging Environment..21
 2.6. Enter the macro...24
 2.7. Run a macro..25
 2.8. Macro security...25
 2.9. Using breakpoints..28
 2.10. How libraries are stored..28
 2.11. How documents are stored..29
 2.12. Conclusion...30

 3. Language Constructs...31
 3.1. Compatibility with Visual Basic...32
 3.2. Compiler options and directives..33
 3.3. Variables...33

 3.3.1. Constant, subroutine, function, label, and variable names..................................33
 3.3.2. Declaring variables..34
 3.3.3. Assigning values to variables..36
 3.3.4. Boolean variables are True or False..36
 3.3.5. Numeric variables..37

Integer variables...38
Long Integer variables...39
Currency variables...39
Single variables..40
Double variables..40

 3.3.6. String variables contain text..40
 3.3.7. Date variables..41
 3.3.8. Create your own data types...42
 3.3.9. Declare variables with special types..43
 3.3.10. Object variables...44

i

 3.3.11. Variant variables..44
 3.3.12. Constants...45

 3.4. The With statement...46
 3.5. Arrays..47

 3.5.1. Changing the dimension of an array..49
 3.5.2. The unexpected behavior of arrays..51

 3.6. Subroutines and functions...53
 3.6.1. Arguments...54

Pass by reference or by value..54
Optional arguments..57
Default argument values..58

 3.6.2. Recursive routines...58
 3.7. Scope of variables, subroutines, and functions...59

 3.7.1. Local variables defined in a subroutine or function..60
 3.7.2. Variables defined in a module...60

Global..61
Public...61
Private or Dim..62

 3.8. Operators...62
 3.8.1. Mathematical and string operators..63

Unary plus (+) and minus (­)...64
Exponentiation (^)...64
Multiplication (*) and Division (/)..65
Remainder after division (MOD)...65
Integer division (\)...66
Addition (+), subtraction (­), and string concatenation (& and +).............................67

 3.8.2. Logical and bit­wise operators..67
AND...70
OR..70
XOR...71
EQV...71
IMP..72
NOT...73

 3.8.3. Comparison operators..73
 3.9. Flow control..74

 3.9.1. Define a label as a jump target..74
 3.9.2. GoSub..74
 3.9.3. GoTo..75
 3.9.4. On GoTo and On GoSub...75
 3.9.5. If Then Else...76
 3.9.6. IIf...77

ii

 3.9.7. Choose...77
 3.9.8. Select Case...78

Case expressions..78
If Case statements are easy, why are they frequently incorrect?...............................79
Writing correct Case expressions..80

 3.9.9. While ... Wend...82
 3.9.10. Do ... Loop...82

Exit the Do Loop...83
Which Do Loop should I use?...83

 3.9.11. For ... Next...84
 3.9.12. Exit Sub and Exit Function..85

 3.10. Error handling using On Error..86
 3.10.1. CVErr..87
 3.10.2. Ignore errors with On Error Resume Next..88
 3.10.3. Clear an error handler with On Error GoTo 0...88
 3.10.4. Specify your own error handler with On Error GoTo Label.............................89
 3.10.5. Error handlers — why use them?..91

 3.11. Conclusion...93
 4. Numerical Routines..94

 4.1. Trigonometric functions..95
 4.2. Rounding errors and precision..97
 4.3. Mathematical functions...100
 4.4. Numeric conversions...101
 4.5. Number to string conversions...107
 4.6. Simple formatting..107
 4.7. Other number bases, hexadecimal, octal, and binary..108
 4.8. Random numbers..111
 4.9. Conclusion...112

 5. Array Routines..113
 5.1. Array() quickly builds a one­dimensional array with data..114
 5.2. DimArray creates empty multi­dimensional arrays..116
 5.3. Change the dimension of an array...117
 5.4. Array to String and back again..118
 5.5. Array inspection functions..119
 5.6. Conclusion...122

 6. Date Routines..123
 6.1. Compatibility issues..124
 6.2. Retrieve the current date and time..124
 6.3. Dates, numbers, and strings..124
 6.4. Locale formatted dates..126
 6.5. ISO 8601 dates..126

iii

 6.6. Problems with dates..127
 6.7. Extract each part of a date...131
 6.8. Date arithmetic..135
 6.9. Assembling dates from components...136
 6.10. Measuring elapsed time over short intervals...137
 6.11. How fast does this run? A real­world example!..139
 6.12. Long time intervals and special dates...142
 6.13. Conclusion...143

 7. String Routines..144
 7.1. ASCII and Unicode values..146
 7.2. Standard string functions...149
 7.3. Locale and strings...153
 7.4. Substrings..153
 7.5. Replace..154
 7.6. Aligning strings with LSet and RSet...155
 7.7. Fancy formatting with Format..157
 7.8. Converting data to a string..162
 7.9. Advanced searching..163
 7.10. Conclusion...164

 8. File Routines...166
 8.1. Using URL notation to specify a file..167
 8.2. Directory manipulation functions...168
 8.3. File manipulation functions...169
 8.4. File attributes, bitmasks, and binary numbers...172
 8.5. Obtaining a directory listing..174
 8.6. Open a file...175
 8.7. Information about open files...177
 8.8. Reading and writing data..180
 8.9. File and directory related services...186

 8.9.1. Path Settings..186
 8.9.2. Path Substitution..190
 8.9.3. Simple File Access..192
 8.9.4. Streams..192
 8.9.5. Pipes..196

 8.10. Conclusion...197
 9. Miscellaneous Routines..198

 9.1. Display and color..198
 9.1.1. Determine the GUI type..198
 9.1.2. Determine pixel size (in twips)..199
 9.1.3. Use color functions..200

 9.2. Flow control..202

iv

 9.2.1. Return an argument...203
 9.2.2. Pause or end the macro..204
 9.2.3. Dynamic Link Libraries..205
 9.2.4. Calling external applications...206
 9.2.5. Dynamic Data Exchange...207

 9.3. User input and output..208
 9.3.1. Simple output...209
 9.3.2. Multi­line output..210
 9.3.3. Prompting for input...212

 9.4. Error­related routines..214
 9.5. Miscellaneous routines..215
 9.6. Partition...218
 9.7. Inspection and identification of variables...220
 9.8. Routines you should not use and other curiosities..225
 9.9. Routines I do not understand...226
 9.10. Conclusion...227

 10. Universal Network Objects...228
 10.1. Base types and structures..229
 10.2. UNO interface...231
 10.3. UNO service..232

 10.3.1. Setting a Read­Only Value..236
 10.4. Context..237
 10.5. Inspecting Universal Network Objects...237
 10.6. Using the type description manager..242
 10.7. Use Object or Variant..245
 10.8. Comparing UNO variables..246
 10.9. Built­in global UNO variables..247
 10.10. Creating UNO values for OOo internals...250
 10.11. Finding objects and properties..251
 10.12. UNO listeners..252

 10.12.1. Your first listener...253
 10.12.2. A complete listener: selection change listener..254

 10.13. Creating a UNO dialog..256
 10.14. Conclusion...260

 11. The Dispatcher..261
 11.1. The environment...261

 11.1.1. Two different methods to control OOo...261
 11.1.2. Finding dispatch commands..263

Use the WIKI...263
Probe the interface...263
Read source code...266

v

 11.2. Writing a macro using the dispatcher..266
 11.3. Dispatch failure – an advanced clipboard example...266
 11.4. Conclusion...267

 12. StarDesktop...268
 12.1. The Frame service...268

 12.1.1. The XIndexAccess interface..269
 12.1.2. Find frames with FrameSearchFlag constants...269

 12.2. The XEventBroadcaster interface...271
 12.3. The XDesktop interface..271

 12.3.1. Closing the desktop and contained components..271
 12.3.2. Enumerating components using XEnumerationAccess...................................272
 12.3.3. Current component..273
 12.3.4. Current component (again)..274
 12.3.5. Current frame...274

 12.4. Load a document...275
 12.4.1. Named arguments..279
 12.4.2. Loading a template..281
 12.4.3. Enabling macros while loading a document..282
 12.4.4. Importing and exporting..283
 12.4.5. Filter names...283
 12.4.6. Loading and saving documents...289
 12.4.7. Error handling while loading a document...291

 12.5. Conclusion...291
 13. Generic Document Methods...292

 13.1. Service Manager..292
 13.2. Services and interfaces..293
 13.3. Getting and setting properties...294
 13.4. Document properties...296

 13.4.1. Document properties from a closed document..298
 13.4.2. Custom properties..298
 13.4.3. Deprecated document information object...299

 13.5. List events...300
 13.5.1. Registering your own listener..301
 13.5.2. Intercepting dispatch commands...302

 13.6. Link targets..304
 13.7. Accessing view data: XViewDataSupplier...306
 13.8. Close a document: XCloseable...307
 13.9. Draw Pages: XDrawPagesSupplier...308

 13.9.1. Draw and Impress..308
 13.9.2. Draw lines with arrows in Calc...311
 13.9.3. Writer...312

vi

 13.10. The model..313
 13.10.1. Document arguments...314

 13.11. Saving a document..316
 13.12. Manipulating styles...319

 13.12.1. Style utilities..324
 13.13. Dealing with locale...329
 13.14. Enumerating printers...337
 13.15. Printing documents..337

 13.15.1. Printing Writer documents..341
 13.15.2. Printing Calc documents..343
 13.15.3. A Calc example with a Print listener...344
 13.15.4. Print examples by Vincent Van Houtte...346

 13.16. Creating services...356
 13.17. Document settings...357
 13.18. The coolest trick I know..359
 13.19. Converting to a URL in other languages...359
 13.20. Conclusion...359

 14. Writer Documents...360
 14.1. Basic building blocks..361

 14.1.1. Primary text content: the XText interface...361
 14.1.2. Text ranges: the XTextRange interface...362
 14.1.3. Inserting simple text..364
 14.1.4. Text content: the TextContent service...364

 14.2. Enumerating paragraphs..366
 14.2.1. Paragraph properties..366

Insert a page break...370
Set the paragraph style...371

 14.2.2. Character properties...371
 14.2.3. Enumerating text sections (paragraph portions)..376

 14.3. Graphics..378
 14.4. Paste HTML then embed linked graphics...381
 14.5. Cursors..383

 14.5.1. View cursors..383
 14.5.2. Text (non­view) cursors..385
 14.5.3. Using cursors to traverse text..386

Keep the view cursor and text cursor in sync..388
 14.5.4. Accessing content using cursors..389

 14.6. Selected text..391
 14.6.1. Is text selected?..392
 14.6.2. Selected text: Which end is which?...393
 14.6.3. Selected text framework..394

vii

 14.6.4. Remove empty spaces and lines: A larger example..396
What is white space?...396
Rank characters for deletion..397
Use the standard framework..398
The worker macro..398

 14.6.5. Selected text, closing thoughts..400
 14.7. Search and replace...400

 14.7.1. Searching selected text or a specified range..401
Searching for all occurrences...402
 14.7.2. Searching and replacing..403
 14.7.3. Advanced search and replace..403

 14.8. Text content...406
 14.9. Text tables...407

 14.9.1. Using the correct text object..409
 14.9.2. Methods and properties...410
 14.9.3. Simple and complex tables..412
 14.9.4. Tables contain cells...415
 14.9.5. Using a table cursor...417
 14.9.6. Formatting a text table...420

 14.10. Text fields..421
 14.10.1. Text master fields..430
 14.10.2. Creating and adding text fields..432

 14.11. Bookmarks..435
 14.12. Sequence fields, references, and formatting...436

 14.12.1. Formatting numbers and dates...436
List formats known to the current document...437
Find or create a numeric format...437
Default formats..438

 14.12.2. Create a field master..439
 14.12.3. Insert a sequence field...439
 14.12.4. Replace text with a sequence field..440
 14.12.5. Create a GetReference field...441
 14.12.6. Replace text with a GetReference field...442
 14.12.7. The worker that ties it all together...444

 14.13. Table of contents...445
 14.14. Conclusion...451

 15. Calc Documents..452
 15.1. Accessing sheets..453
 15.2. Sheet cells contain the data...455

 15.2.1. Cell address...456
 15.2.2. Cell data...456

viii

 15.2.3. Cell properties...458
 15.2.4. Cell annotations...463

 15.3. Uninterpreted XML Attributes..464
 15.4. Sheet cell ranges..466

 15.4.1. Sheet cell range properties...466
Validation settings...467
Conditional formatting...470

 15.4.2. Sheet cell range services..470
Retrieving cells and ranges..470
Querying cells..471
Finding non­empty cells in a range...472
Using complex queries..473

Query Precedents and Dependents..474
Query Column Differences...475

 15.4.3. Searching and replacing..475
 15.4.4. Merging cells...476
 15.4.5. Retrieving, inserting, and deleting columns and rows....................................476
 15.4.6. Retrieving and setting data as an array..478
 15.4.7. Computing functions on a range..479
 15.4.8. Clearing cells and cell ranges..480
 15.4.9. Automatic data fill...480
 15.4.10. Array formulas...481
 15.4.11. Computing multiple functions on a range...483
 15.4.12. Cells with the same formatting..485
 15.4.13. Sorting...487

 15.5. Sheets..490
 15.5.1. Linking to an external spreadsheet..491
 15.5.2. Finding dependencies by using auditing functions...493
 15.5.3. Outlines..495
 15.5.4. Copying, moving, and inserting cells..495
 15.5.5. Copy data between documents..497

Data functions..497
Clipboard...497
Transferable content..498

 15.5.6. Data pilot and pivot tables...498
A data pilot example..498

Generating the data...499
Creating the data pilot table..500

Manipulating data pilot tables...502
Data pilot fields...502
Filtering data pilot fields...503

ix

Tables..504
 15.5.7. Sheet cursors..504

 15.6. Calc documents...506
 15.6.1. Named range..507
 15.6.2. Database range...509
 15.6.3. Filters...510
 15.6.4. Protecting documents and sheets...513
 15.6.5. Controlling recalculation...513
 15.6.6. Using Goal Seek..513

 15.7. Write your own Calc functions...514
 15.8. Using the current controller..516

 15.8.1. Selected cells...516
Enumerating the selected cells...517
Selecting text...518
The active cell..518

 15.8.2. General functionality...519
 15.9. Control Calc from Microsoft Office...521
 15.10. Accessing Calc functions..522
 15.11. Finding URLs in Calc...522
 15.12. Importing and Exporting XML Files Using Calc...523

 15.12.1. Read an XML file..523
 15.12.2. Write XML File...531

 15.13. Charts..541
 15.14. Conclusion...547

 16. Draw and Impress Documents..548
 16.1. Draw pages..549

 16.1.1. Generic draw page...550
 16.1.2. Combining shapes...552

 16.2. Shapes...554
 16.2.1. Common attributes..557

Drawing text service..563
MeasureShape..565
Drawing line properties...566
Filling space with a ClosedBezierShape..567
Shadows and a RectangleShape...570
Rotation and shearing..571

 16.2.2. Shape types..572
Simple lines...572
PolyLineShape...573
PolyPolygonShape...575
RectangleShape and TextShape...575

x

EllipseShape..576
Bezier curves...578
ConnectorShape...581

Creating your own glue points..584
Adding arrows by using styles..584

Insert a TableShape..586
 16.3. Forms...587
 16.4. Presentations...589

 16.4.1. Presentation draw pages..591
 16.4.2. Presentation shapes..592

 16.5. Conclusion...594
 17. Library Management...595

 17.1. Accessing libraries using OOo Basic..595
 17.2. Libraries contained in a document..599
 17.3. Writing an installer..599
 17.4. Conclusion...601

 18. Dialogs and Controls...602
 18.1. My first dialog...602

 18.1.1. The Properties dialog...605
 18.1.2. Starting a dialog from a macro..607
 18.1.3. Assign an event handler...608

 18.2. Dialog and control paradigm...611
 18.2.1. Dialog and control similarities..611
 18.2.2. Dialog­specific methods..613
 18.2.3. The dialog model...614

 18.3. Controls...616
 18.3.1. Control button..617
 18.3.2. Check box..620
 18.3.3. Radio button..621
 18.3.4. Group box..622
 18.3.5. Fixed line control...623
 18.3.6. Combo box..623
 18.3.7. Text edit controls...624

Currency control..626
Numeric control...627
Date control...627
Time control...630
Formatted control...632
Pattern control..635
Fixed text control...637
File control...637

xi

 18.3.8. Image control...639
 18.3.9. Progress control...639
 18.3.10. List box control..640
 18.3.11. Scroll bar control...641

 18.4. Using the Step property for multi­page AutoPilot dialogs......................................644
 18.5. The object inspector example..644

 18.5.1. Utility subroutines and functions...644
Identifying and removing white space from a string...645
Convert a simple object to a string..646
Object inspection using Basic methods...649
Sort an array...650

 18.5.2. Creating a dialog at run time...651
 18.5.3. Listeners..655

Radio buttons...655
Inspect selected..656
Inspect previous...657

 18.5.4. Obtaining the debug information...657
 18.5.5. Getting property values...662

 18.6. Conclusion...664
 19. Sources of Information...665

 19.1. Help pages included with OpenOffice.org..665
 19.2. Macros included with OpenOffice.org..665
 19.3. Web sites...666

 19.3.1. Reference material...666
 19.3.2. Macro examples...666
 19.3.3. Miscellaneous..666

 19.4. http://www.openoffice.org/api/ or http://api.libreoffice.org...................................667
 19.5. Mailing lists and newsgroups..668
 19.6. How to find answers..669
 19.7. Conclusion...669

xii

 1. Introduction and housekeeping
First, there was the first edition of OpenOffice.org Macros Explained (OOME). A few years later I produced
the second edition, updated to match OpenOffice.org (OOo) version 2.x, but the second edition was never
released. Now, I feel that it is time for a third edition.

Most of the content from previous editions is still here. The initial chapters dealing with language syntax are
mostly unchanged except for new features added to the language.

The number of services supported by OOo has more than doubled since I last published, and there is
significant new capability. There is, unfortunately, more capability than I have time or room to document.
Unfortunately, as extensive as this book is, much is missing. You should use this book, therefore, as a
reference with numerous examples, but, always remember that OOo is constantly changing and supporting
more features.

The document contains buttons that trigger the macros in the text. This is fabulous while reading the original
source, but it provides for undesirable artifacts in printed form; sorry about that.

 1.1. Comments from the author

I am the primary author of this document. I do not make a living working with OOo, and nothing in here is
related to my primary day job. In other words, I am simply another member of the OOo community who
does this without remuneration.

I receive numerous requests for help because I am highly visible in the OOo community. Unfortunately, I am
over-time-committed, and it is difficult to provide personal help to all. I enjoy helping people in my non-
existent spare time, but, be certain to use existing material, mailing lists, and forums if possible. I
occasionally provide solutions on a commission basis, but I lack the time for large tasks.

I appreciate comments and bug reports. If you have something interesting that you think should be included,
let me know. If you want to write an entire section or chapter, do so. I will likely highly edit what you
produce. Please, provide feedback and suggestions by sending an email to andrew@pitonyak.org.

 1.2. Environment and comments

My primary work is performed using 64-bit Fedora Linux with the en-US locale. Gnome is my desktop
environment, which affects screen shots. Little to no testing has been done by me in other environments. I
use both LibreOffice (LO) and Apache OpenOffice (AOO) and I use the term OpenOffice, OO, or OOo to
generically refer to either product.

AOO and LO are changing independently, and as time passes, the APIs, features, and user interfaces become
less similar. The result is a macro that works in LO may fail in AOO, and vice versa. Also, rapid
development means that changes occur faster than time permits me to produce documentation; I receive no
renumeration for my time spent on this document.

The best way to find out what works on your chosen platform is testing and inspection. By inspection, I
mean that you should inspect object instances to determine the supported properties, methods, constants,
enumerations, structures, services, and interfaces.

13

mailto:andrew@pitonyak.org

 2. Getting Started
In OpenOffice.org (OOo), macros and dialogs are stored in documents and libraries. The included integrated
development environment (IDE) is used to create and debug macros and dialogs. This chapter introduces the
basic concepts of starting the IDE and creating macros by showing the steps to produce a simple macro,
which displays the text “Hello World” on the screen.

A macro is a saved sequence of commands or keystrokes stored for later use. An example of a simple macro
is one that “types” your address. Macros support commands that allow a variety of advanced functions, such
as making decisions (for example, if the balance is less than zero, color it red; if not, color it black), looping
(while the balance is greater than zero, subtract 10), and even interacting with a person (asking the user for a
number). Some of these commands are based on the BASIC programming language. (BASIC is an acronym
for Beginner’s All-purpose Symbolic Instruction Code.) It is common to assign a macro to a keystroke or
toolbar icon so that it can be quickly started.

A dialog – or dialog box – is a type of window used to have a “dialog” with a user. The dialog may present
information to the user, or obtain input from the user. You can create your own dialogs and store them in a
module with your macros.

The OpenOffice.org macro language is very flexible, allowing automation of both simple and complex tasks.
Although writing macros and learning about the inner workings of OpenOffice.org can be a lot of fun, it is
not always the best approach. Macros are especially useful when you have to do a task the same way over
and over again, or when you want to press a single button to do something that normally takes several steps.
Once in a while, you might write a macro to do something you can’t otherwise do in OpenOffice.org, but in
that case you should investigate thoroughly to be sure OOo cannot do it. For instance, a common request on
some of the OpenOffice.org mailing lists is for a macro that removes empty paragraphs. This functionality is
provided with AutoFormat (select Tools > AutoCorrect Options > Options tab and check Remove blank
paragraphs). It is also possible to use regular expressions to search for and replace empty space. There is a
time and a purpose for macros, and a time for other solutions. This chapter will prepare you for the times
when a macro is the solution of choice.

 2.1. Macro storage

In OpenOffice.org, routines that are logically related are stored in a module. For example, a module might
contain routines for finding common mistakes that require editing. Logically related modules are stored in a
library, and libraries are stored in library containers. The OpenOffice.org application can act as a library
container, as can any OOo document. Simply stated, the OpenOffice.org application and every
OpenOffice.org document can contain libraries, modules, and macros.

Container A library container contains zero or more libraries.
Library A library contains zero or more modules and dialogs.
Module A module contains zero or more subroutines or functions.

 2.1.1. Library container

An OOo document is a library container, as is the application itself. If a specific document requires a macro,
it is useful to store that macro in the document. The advantage is that the macro stays with the document.
This is also an easy way to send macros to others.

If several documents use the same macros, however, then every document will have a copy, and, if you
change the macro, then you must change it in every document that contains the macro. Macros contained in

14

a document are visible only to that document. It is not easy, therefore, to call a macro in a document from
outside of that document.

TIP Do not (except in rare exceptions) store macros that will be called from outside a document in a document;
because macros contained in a document are visible only to that document.

The application library container has two primary components, macros distributed with OOo, and macros
that you create. The OOo macro dialog shows your macros in a container named “My Macros”, and those
distributed as “OpenOffice.org Macros” (see Figure 1). OpenOffice.org Macros are stored in a directory with
the application, and My Macros are stored in your user directories.

Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open the OOo Basic Macros dialog
(see Figure 1). The library containers are the highest level objects shown in the “Macro from” area.

Figure 1. Use the OOo Macros dialog to create new macros and organize libraries.

 2.1.2. Libraries

A library container contains one or more libraries, and a library contains one or more modules and dialogs.
Double-click on a library container in Figure 1 to see the contained libraries. Double-click on a library to
load the library and see the contained modules and dialogs.

The OOo Macros dialog uses a different icon to distinguish loaded libraries; in Figure 2, Standard and
XrayDyn are loaded, the other libraries are not.

TIP The icons and colors that you see on your computer may be different than those shown in the screen shots.
Different versions of OOo may use different icons and colors. and more than one icon set is supported. Use
Tools > Options > OpenOffice.org > View to change the icon size and style.

15

Figure 2. Loaded libraries are shown differently.

 2.1.3. Modules and dialogs

A module is typically used to group similar functionality at a lower level than a library. The macros are
stored in the modules. To create a new module, select a library and click New.

 2.1.4. Key points

Things to consider:

• You can import libraries from one library container to another.

• Import a module by importing the library that contains the module. It is not possible to simply import
a single module using the GUI.

• Use descriptive names for libraries, modules, and macros. Descriptive names reduce the likelihood
of a name collision, which hampers library import.

• The Standard library is special; it is automatically loaded so the contained macros are always
available.

• The Standard library is automatically created by OOo and cannot be imported.

• Macros contained in a library are not available until after the library is loaded.

• The Macro organizer dialog allows you to create new modules, but not new libraries.

The key points listed above have certain consequences; for example, I rarely store macros in the Standard
library because I cannot import the library to another location. My usual usage for the standard library is for
macros called from buttons in a document. The macros in the standard library then load the actual work
macros in other libraries, and call them.

 2.2. Creating new modules and libraries

The New button on the Macros dialog always creates a new subroutine in the selected library (see Figure 1
and Figure 2). A new module is created if the library does not yet contain a module.

16

From the Macros dialog, click the Organizer button to open the OOo Macro Organizer dialog (see Figure 3).
The Modules and Dialogs tabs are almost identical. Use the Modules or Dialogs tab to create, delete, and
rename modules or dialogs.

Figure 3. Modules tab of the OOo Macro Organizer dialog.
Use the Libraries tab (see Figure 4) to create, delete, rename, import, and export libraries.

Figure 4. Libraries tab of the OOo Macro Organizer dialog.
The first step is to select the desired library container from the Location drop-down. To rename a library,
double click on the library and then edit the name in place.

17

TIP I find renaming modules and libraries in the Macro Organizer dialogs to be frustrating. For renaming
libraries, double or triple click on the library name then wait a few seconds. Try again. Try one more time.
Click on another library. Double or triple click on the library name; you get the idea.

The easiest method to change a module name is to right click on the module name in the tabs at the bottom
of the IDE and choose rename (see Figure 11).

 2.3. Macro language

The OpenOffice.org macro language is based on the BASIC programming language. The standard macro
language is officially titled StarBasic, but, it is also referred to as OOo Basic, or Basic. Many different
programming languages can be used to automate OOo. OOo provides easy support for macros written in
Basic, JavaScript, Python, and BeanShell. In this document, my primary concern is Basic.

 2.4. Create a module in a document

Each OOo document is a library container able to contain macros and dialogs. When a document contains
the macros that it uses, possession of the document implies possession of the macros. This is a convenient
distribution and storage method. Send the document to another person or location, and the macros are still
available and usable.

1) To add a macro to any OOo document, the document must be open for editing. Start by opening a
new text document, which will be named “Untitled 1” — assuming that no other untitled document
is currently open.

2) Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open the OOo Basic Macros
dialog (see Figure 1).

3) Click the Organizer button to open the OOo Macro Organizer dialog, then click on the Libraries tab
(see Figure 4).

4) Select “Untitled 1” from the location drop-down.

Figure 5. Libraries tab of the OOo Macro Organizer dialog.
5) Click New to open the New Library dialog.

18

Figure 6. New library dialog.
6) The default name is Library1, which is not very descriptive. Choose a descriptive name and click

OK. The new library is shown in the list. For this example, I named the library “HelloWorld”.

Figure 7. The new library is shown in the list.
7) In the Modules tab, select the HelloWorld library. OOo created the module named “Module1” when

the library was created.

Tip Although Module1 is created when the library is created, a bug in OOo 3.2 may prevent the module from
displaying without closing and re-opening the dialog.

19

Figure 8. The new library is shown in the list.
8) Click New to open the New Module dialog. The default name is Module2, because Module1 already

exists.

Figure 9. New module dialog.
9) Use a descriptive name and click OK. Module1 is finally displayed (bug in 3.2.0), as is the newly

created module.

20

Figure 10. The new module is shown in the list.
10) Select HelloModule and click Edit.

11) At this point, I saved the document and named it “DelMeDoc” because I intended to delete the
document when I was finished with the example. Select a name that works well for you. If you
reopen the dialog shown in Figure 10, the document name will be shown rather than “Untitled 1”.

At this point, the Integrated Debugging Environment (IDE) is opened to edit the macro.

 2.5. Integrated Debugging Environment

Use the Basic Integrated Debugging Environment (IDE) to create and run macros (see Figure 11). The IDE
places significant functionality in a little space. The toolbar icons are described in Table 1. The top left

corner just above the editing window contains a drop-down list that
shows the current library. The portion in the square brackets identifies the library container, and the portion
following identifies the library. This provides a quick method to choose a library.

21

Figure 11. Basic Integrated Debugging Environment.
Rest your mouse cursor on a toolbar icon for a few seconds to read the text that appears; this provides a hint
at what that icon does.

Table 1. Toolbar icons in the Basic IDE.
Icon Key Description

Ctrl+N Create a new OOo document.

Ctrl+O Open an existing OOo document.

Ctrl+S Save the current library. If the library is in a document, then the document is saved.

Ctrl+P Print the macro to the printer.

Ctrl+V Paste the clipboard.

Ctrl+Z Undo the last operation.

Ctrl+Y Redo the last operation that was undone.

Open the Object catalog (see Figure 12). Select the macro and double-click on the macro.

Open the OOo Macros dialog (see Figure 2). Select a macro and click edit or run. This is a short-
cut for Tools > Macros > Organize Macros > OpenOffice.org Basic.

Select a module. This opens the OOo Macro Organizer dialog with the Modules tab selected (see
Figure 3). Select a module and click Edit.

22

Icon Key Description

Open the OOo help, which contains numerous useful examples for Basic.

Click the Compile icon to check the macro for syntax errors. No message is displayed unless an
error is found. The Compile icon compiles only the current module.

F5 Run the first macro in the current module. While stopped (from a breakpoint, or single stepping,

this continues the execution). To run a specific macro, use to open the OOo Basic Macros
dialog, select the desired macro, and click Run.

Shift+F5 Stop the currently running macro.

Shift+F8 Step over the current statement. When a macro stops at a breakpoint, this executes the current
statement. Can also be used to start a macro running in single step mode.

F8 Step into. This is the same as Step over except if the current statement calls another macro, it
single steps into that macro so that you can watch that macro execute.

Step out runs the macro to the end of the current subroutine or function.

Shift+F9 Toggles a breakpoint on / off at the current cursor position in the IDE. An icon () is displayed to
the left of the line to show that a breakpoint is set for that line. You can also double-click in the
breakpoint area to toggle a breakpoint on / off.

Open the manage breakpoints dialog (see Figure 17), which allows you to selectively turn
breakpoints on or off, and also, to prevent a breakpoint from triggering until it has been reached a
certain number of times.

F7 Select a variable and click the Watch icon to add the variable to the watch window. You can also
enter the variable name into the Watch input line and press enter.

Find parentheses.

Insert Basic source. Open a dialog to select a previously saved basic file and insert it.

Save the current module as a text file on disk. OOo stores modules on disk in a special encoded
format. Files saved using this method are standard text files. This is an excellent way to create a
backup of a macro or to create a text file that can be easily sent to another person. This is different
from the Disk icon, which is used to save the entire library or document that contains the module.

Import a dialog from another module.

Module names are listed along the bottom of the IDE. Module navigation buttons are to the left of
the module names. The buttons display the first, previous, next, and last module in the current library. Right
click on a module name to:

• Insert a new module or dialog.

• Delete a module or dialog.

• Rename a module; this is the easiest way that I know to rename a module or dialog.

• Hide a module or dialog.

• Open the OOo Basic Organization dialog.

Use to open the Objects catalog (see Figure 12), select a macro and double-click on the macro to edit
that macro.

23

Figure 12. Objects catalog.

 2.6. Enter the macro

Change the text in the IDE to read as shown in Listing 1. Click the run icon.

Listing 1. Hello World macro
REM ***** BASIC *****
Option Explicit

Sub Main
 Print "Hello World"
End Sub

Table 2. Line by line description of Listing 1.
Line Description

REM ***** BASIC ***** Basic comment, this line is ignored. A comment may also begin with a single quote
character.

Option Explicit Tells the basic interpreter that it is an error to use a variable that is not explicitly
defined. Misspelled variables are likely to be caught as an error at compile time.

Sub Main Indicates that this is the beginning of the definition of a subroutine named Main.

 Print "Hello World" The Print command.

End Sub End the Main subroutine.

The macro in Listing 1 is text that a human can read. The computer must translate macro text into something
that the computer can use. The process of converting the human readable macro into something that the
computer can read is called compiling. In other words, a macro is written as lines of text that are compiled to
prepare a runnable program.

24

 2.7. Run a macro

The Run icon always runs the first macro in the current module. As a result, a different approach is required
if more than one macro is in a module. The following options can be used:

• Place the macro first in the module, and click the Run icon.

• Use the first macro to call the desired macro. I like this method during development. I keep a main
macro as the first thing that does nothing. During development, I change the main macro to call the
macro of interest. For general use, I let the main macro at the top call the most frequently run macro.

• Use the Macro dialog (see Figure 2) to run any routine in the module.

• Add a button to your a document or toolbar that calls the macro.

• Assign the macro to a keystroke. Use Tools > Customize to open the Customize dialog. Select the
Keyboard tab. Macro libraries are at the bottom of the Category list. This is also available with Tools
> Macros > Organize Macros > OpenOffice.org Basic, select the macro, and click the Assign
button to launch the Customize dialog. Various tabs in this dialog allow you to assign the macro to
execute as a menu item, from a toolbar icon, or a system event.

To use the Macro dialog to run any subroutine in a module, follow these steps:

1. Select Tools > Macros > Organize Macros > OpenOffice.org Basic to open the Macro dialog (see
Figure 2).

2. Find the document that contains the module in the “Macro from” list.

3. Double­click a library to toggle the display of the contained modules.

4. Select the module to display the contained subroutines and functions in the “Existing macros in:
<selected module name>” list.

5. Select the desired subroutine or function to run — for example, HelloWorld.

6. Click the Run button to run the subroutine or function.

 2.8. Macro security

Depending on how OOo is configured, you may not be able to run macros in a document. When I open a
document containing a macro, the warning in Figure 13 is displayed. If you do not expect a macro or do not
trust the source, then choose to disable macros. Remember, I am able to write a macro that destroys your
computer.

25

Figure 13. The opened document contains a macro.
Use Tools > Options > OpenOffice.org > Security to open the Security tab of the Options dialog.

Figure 14. Options dialog, security tab.
Click the Macro Security button to open the Macro Security dialog. Choose a level that fits your comfort
level. Medium security uses the confirmation dialog in Figure 13, which is relatively quick and unobtrusive.

26

Figure 15. Macro Security dialog, Security Level tab.
You can set trusted locations and certificates that allow documents to load without confirmation based on
either where they are stored, or the certificate used to sign a document.

Figure 16. Macro Security dialog, Trusted Sources tab.

27

 2.9. Using breakpoints

If you set a breakpoint in the code, the macro stops running at that point. You can then inspect variables,
continue running the macro, or single-step the macro. If a macro fails and you don’t know why, single-
stepping (running one statement at a time) allows you to watch a macro in action. When the macro fails,
you’ll know how it got there. If a large number of statements run before the problem occurs, it may not be
feasible to run one statement at a time, so you can set a breakpoint at or near the line that causes the
problem. The program stops running at that point, and you can single-step the macro and watch the behavior.

The breakpoint On/Off icon sets a breakpoint at the statement containing the cursor. A red stop sign marks
the line in the breakpoint column. Double-click in the breakpoint column to toggle a breakpoint at that
statement. Right-click a breakpoint in the Break-point column to activate or deactivate it.

Use the Manage Breakpoints icon to load the Manage Breakpoints dialog. All of the active breakpoints
in the current module are listed by line number. To add a breakpoint, enter a line number in the entry field
and click New. To delete a breakpoint, select a breakpoint in the list and click the Delete button. Clear the
Active check box to disable the highlighted breakpoint without deleting it. The Pass Count input box
indicates the number of times a breakpoint must be reached before it is considered active. If the pass count is
four (4), then the fourth time that the statement containing the breakpoint is to be run, it will stop rather than
run. This is extremely useful when a portion of the macro does not fail until it has been called multiple
times.

Figure 17. Manage Breakpoints dialog.
There are two things that cause a breakpoint to be ignored: a pass count that is not zero, and explicitly
marking the breakpoint as “not active” in the Manage breakpoints dialog. Every breakpoint has a pass count
that is decremented toward zero when it is reached. If the result of decrementing is zero, the breakpoint
becomes active and stays active because the pass count stays at zero thereafter. The pass count is not
restored to its original value when the macro is finished or restarted.

 2.10. How libraries are stored

Macro libraries are stored as XML files that are easily editable using any text editor. In other words, it is
easy for you to poke around and damage your files. This is advanced material that you may want to ignore. If
you do not understand XML and why the file contains > rather than >, perhaps you should not edit the
files. Although manually editing your external libraries is generally considered foolish, I have had at least
one instance where this was required, because OOo was unable to load a module that contained a syntax
error.

28

Each library is stored in a single directory, and each module and dialog is contained in a single file. The
global libraries that are included with OpenOffice.org are stored in a shared basic directory under the
directory in which OOo is installed. Examples:

C:\Program Files\OpenOffice3.2\share\basic 'A Windows installation
/opt/openoffice.org/basis3.2/share/basic 'A Linux installation

OpenOffice.org stores user-specific data in a directory under the user’s home directory. The location is
operating system specific. Use Tools > Options > OpenOffice.org > Paths to view where other
configuration data is stored. Here are some examples where my basic macros are stored:

C:\Documents and Settings\andy\Application Data\OpenOffice.org\3\user\basic 'Windows XP
C:\Users\pitonyaka\AppData\Roaming\OpenOffice.org\3\user\basic 'Windows 7
/home/andy/OpenOffice.org/3/user/basic 'Linux

User macros are stored in OpenOffice.org\3\user\basic. Each library is stored in its own directory off the
basic directory. The user directory contains two files and one directory for each library (see Table 3).

Table 3. Files and some directories in my user/basic directory.
Entry Description

dialog.xlc XML file that references every dialog file known to this user in OpenOffice.org.

script.xlc XML file that references every library file known to this user in OpenOffice.org.

Standard Directory containing the Standard library.

Pitonyak Directory containing a the library named Pitonyak.

PitonyakDialogs Directory containing the library named PitonyakDialogs.

The files dialog.xlc and script.xlc contain a reference to all of the dialogs and libraries known to OOo. If
these two files are overwritten, OOo will not know about your personal libraries even if they exist. You can,
however, either manually edit the files, or, even easier, use the OOo Macro Organizer dialog to import the
libraries (because you can import a library based on the directory).

The directory containing a library contains a single file for each module and dialog in the library. The
directory also contains the files dialog.xlb and script.xlb, which references the modules.

 2.11. How documents are stored

The standard OOo formats use a standard ZIP file to store all of the components. Any program that can view
and extract ZIP files can be used to inspect an OOo document — however, some programs will require you
to change the file extension to end with ZIP.

After unzipping an OOo document, you will find files that contain the primary content, styles, and settings.
The extracted document also contains three directories. The META-INF directory references all of the other
files, embedded pictures, code libraries, and dialogs. The Dialogs directory contains all of the embedded
dialogs, and the Basic directory contains all of the embedded libraries.

The point to all this is that in an emergency, you can manually inspect a document’s XML and potentially fix
problems.

29

 2.12. Conclusion

Macros and dialogs are stored in modules, modules are stored in libraries, and libraries are stored in library
containers. The application is a library container, as is every document. The IDE is used to create and debug
macros and dialogs.

You have just completed one of the most difficult steps in writing macros for OpenOffice.org: writing your
first macro! You are now ready to explore, try other macro examples, and create a few of your own.

30

 3. Language Constructs
The OpenOffice.org macro language is similar to the one in Microsoft Office because they are both based on
BASIC. Both macro languages access the underlying implementation structures, which differ significantly
and are therefore incompatible. This chapter emphasizes the portions of the language that do not access the
underlying implementation.

This chapter shows how to assemble different components to produce an OOo macro that will compile and
run. In a word: syntax. Correct syntax does not imply that the macro does what you want, only that the
pieces are put together in a correct way. The phrases “Can I drive?” and “May I drive?” are both
syntactically correct. The first phrase is about ability, and the second phrase is about permission. In speech,
these two questions may be understood to have the same meaning. The computer, on the other hand, does
exactly what you ask, rather than what you mean.

The primary components that syntactically constitute an OpenOffice.org macro are statements, variables,
subroutines, and functions, and flow-control constructs. A statement is a small, runnable portion of code that
is usually written as a single line of text. Variables are containers that hold values that can change during
macro execution. Subroutines and functions separate a macro into functional named groups of statements,
allowing for better organization. Flow control directs which statements run and how many times.

OOo runs one line of a macro at a time. Each line of a macro is delimited exactly the way it sounds; by a
new line (see Listing 2).

Listing 2. Two line macro
Print "This is line one"
Print "This is line two"

Lines that are too long may use more than one line by appending an underscore (_) to the end of the line (see
Listing 3). The underscore must be the last character on the line for it to act as a line-continuation character.
The underscore has no special meaning when it isn’t the last character of a line, allowing it to be used inside
strings and in variable names. When used as a continuation character, spaces may precede the underscore
and are in some cases required to separate the underscore from what precedes it. For example, splitting the
line “a+b+c” after the b requires a space between the b and the underscore, or the underscore is considered
part of the variable name. Spaces that inadvertently follow a continuation character may cause a compile-
time error. Unfortunately, the error does not state that something follows the underscore, but that the next
line is invalid.

Listing 3. Append an underscore to the end of a line to continue on the next line.
Print "Strings are concatenated together " & _
 "with the ampersand character"

TIP When anything follows a line-continuation character, the next line is not taken as its continuation.
Sometimes, when I copy code listings from web sites and paste them into the IDE, an extra space is added
at the end of a line, which breaks line continuation.

You can place multiple statements on a single line by separating them with colons. This is usually done for
improved code readability. Each of the combined statements act as a single line of code while debugging the
macro in the Integrated Development Environment (IDE). Listing 4, therefore, acts like three separate
statements while using the IDE to single-step through the macro.

Listing 4. Set the variables x, y, and z to zero.
x = 0 : y = 0 : z = 0

31

You should liberally add remarks, which are also called comments, to all of the macros that you write. While
writing a macro, remember that what is clear today may not be clear tomorrow, as time passes and new
projects arise and memory fades all too quickly. You can start a comment with either the single quotation
character, or the keyword REM. All text on the same line following a comment indicator is ignored.
Comments are not considered runnable statements; they are ignored while single-stepping a macro.

Listing 5. Add comments to all of the macros that you write.
REM Comments may start with the keyword REM.
ReM It is not case-sensitive so this is also a comment.
' All text following the start of the comment is ignored
X = 0 ' A comment may also start with a
 ' single quote
z = 0 REM All text following the start of the comment is ignored

TIP Keywords, variables, and routine names in OOo Basic are not case-sensitive.

Therefore, REM, Rem, and rEm all start a comment.

Nothing can follow a line-continuation character, and this includes comments. All text following a comment
indicator is ignored — even the continuation character. The logical result from these two rules is that a line-
continuation character can never occur on the same line as a comment.

 3.1. Compatibility with Visual Basic

With respect to syntax and BASIC functionality, OOo Basic is very similar to Visual Basic. The two Basic
dialects are nothing alike when it comes to manipulating documents, but the general command set is very
similar. Steps were taken to improve the general compatibility between the two dialects. Many
enhancements were released with OOo 2.0. Many of the changes are not backward compatible with existing
behavior. To help resolve these conflicts, a new compiler option and a new run-time mode were introduced
to specify the new compatible behavior.

The compiler option “Option Compatible” directs some features. This option affects only the module in
which it is contained. Because a macro calls different modules during its execution, both the old and new
behavior may be used, depending upon the existence of “Option Compatible” in each called module. Setting
the option in one module and then calling another module has no effect in the called module.

A run-time function, CompatibilityMode(True/False), allows the behavior of run-time functions to be
modified during the execution of a macro. This provides the flexibility to enable the new run-time behavior,
perform some operations, and then disable the new run-time behavior. CompatibilityMode(False) overrides
Option Compatible for the new runtime behavior. Hopefully, some method of probing the current mode will
be provided.

Visual basic allows any Latin-1 (ISO 8859-1) character as a valid variable name, OOo does not. Setting
“Option Compatible” allows “ä” to be considered a valid variable name. This is just one of many changes
that use “Option Compatible.” The CompatibilityMode() function neither enables nor disables the new
extended identifier names because CompatibilityMode() is not called until run time and variable names are
recognized at compile time.

Both Visual Basic and OOo Basic support the rmdir() command to remove a directory. VBA can remove
only empty directories, but OOo Basic can recursively remove an entire directory tree. If
CompatibilityMode(True) is called prior to calling rmdir(), OOo Basic will act like VBA and generate an
error if the specified directory is not empty. This is just one of many changes that use CompatibilityMode().

32

StarBasic is much more forgiving than VBA. It is easier, therefore, to convert simple macros from VBA to
OOo Basic. A few examples, in OOo Basic, “set” is optional during assignment. Therefore, “set x = 5”
works in both VBA and OOo Basic, but “x = 5” fails in VBA and works with OOo Basic.

Another example is that array methods are far more stable and forgiving in OOo than in VBA; for example,
the functions to determine array bounds (LBound and UBound) work fine with empty arrays, whereas VBA
crashes.

 3.2. Compiler options and directives

A compiler converts a macro into something that the computer is able to run. Compiler behavior can be
controlled through commands such as “Option Explicit” at the top of a module before all variables,
subroutines, and functions. A compiler option controls the compilers behavior for the module containing the
option.

Table 4. Compiler options and directives.
Option Description

Def Give a default type to undeclared variables based on the variables name.

Option Base Control whether the first array index is 0 or 1; assuming it is not specified.

Option Compatible Cause Star Basic to act more like VB.

Option Explicit Force all variables to be defined. While the macro runs, if a variable that has not yet been
defined is used, an error occurs.

 3.3. Variables

Variables are containers that hold values. OpenOffice.org supports different types of variables designed to
hold different types of values. This section shows how to create, name, and use variables. Although OOo
Basic does not force you to declare variables, you should declare every variable that you use. The reasons for
this are developed throughout this section.

 3.3.1. Constant, subroutine, function, label, and variable names

Always choose meaningful names for your variables. Although the variable name “var1” requires little
thought during creation, “FirstName” is more meaningful. Some variable names are not particularly
descriptive but are commonly used by programmers anyway. For example, “i” is commonly used as a
shortened version of “index,” for a variable that is used to count the number of times a repetitive task is
executed in a loop. OOo Basic imposes restrictions on variable names, including the following:

• A variable name cannot exceed 255 characters in length. Well, officially a variable name cannot
exceed 255 characters. I tested names with more than 300 characters with no problems, but I don’t
recommend this!

• The first character of a variable name must be a letter: A­Z or a­z. If Option Compatible is
used, then all characters defined as letters in the Latin­1 (ISO 8859­1) character set are accepted as
part of an identifier name.

• The numbers 0­9 and the underscore character (_) may be used in a variable name, but not as the
first character. If a variable name ends with an underscore, it won’t be mistaken for a line­
continuation character.

33

• Variable names are not case sensitive, so “FirstName” and “firstNAME” both refer to the same
variable.

• Variable names may contain spaces but must be enclosed in square brackets if they do. For example,
[First Name]. Although this is allowed, it is considered poor programming practice.

TIP These restrictions also apply to constant, subroutine, function, and label names.

 3.3.2. Declaring variables

Some programming languages require that you explicitly list all variables used. This process is called
“declaring variables.” OOo Basic does not require this. You are free to use variables without declaring them.

Although it is convenient to use variables without declaring them, it is error-prone. If you mistype a variable
name, it becomes a new variable rather than raising an error. Place the keywords “Option Explicit” before
any runnable code in every module to cause OOo Basic to treat undeclared variables as run-time errors.
Comments may precede Option Explicit because they are not runnable. Although it would be even better if
this became a compile-time error, OOo Basic does not resolve all variables and routines until run time.

Listing 6. Use Option Explicit before the first runnable line in a module.
REM ***** BASIC *****
Option Explicit

TIP Use “Option Explicit” at the top of every module that you write; it will save you a lot of time searching for
errors in your code. When I am asked to debug a macro, the first thing I do is add “Option Explicit” at the
top of each module.

The scope for options is the module which contains the option. In other words, setting option explicit in one
module, then calling another module, will not cause undeclared variables in the called module to cause a
runtime error; unless the called module also has “option explicit”.

You can declare a variable with or without a type. A variable without an explicit type becomes a Variant,
which is able to take on any type. This means that you can use a Variant to hold a numeric value and then, in
the next line of code, overwrite the number with text. Table 5 shows the variable types supported by OOo
Basic, the value that each type of variable contains immediately after declaration (“initial value”), and the
number of bytes that each type uses. In OOo Basic, a variable's type can be declared by appending a special
character to the end of the name when it is declared. The Post column in Table 5 contains the supported
characters that can be post-fixed to a variable's name when the variable is declared.

Table 5. Supported variable types and their initial values.
Type Post Initial Bytes Convert Description

Boolean False 1 CBool True or False

Currency @ 0.0000 8 CCur Currency with 4 decimal places

Date 00:00:00 8 CDate Dates and times

Double # 0.0 8 CDbl Decimal numbers in the range of
+/-1.79769313486232 x 10E308

Integer % 0 2 CInt Integer from -32,768 through 32,767

Long & 0 4 CLng Integer from -2147483648 through
2147483647

34

Type Post Initial Bytes Convert Description

Object Null varies Object

Single ! 0.0 4 CSng Decimal numbers in the range of
+/-3.402823 x 10E38

String $ "" varies CStr Text with up to 65536 characters

Variant Empty varies CVar May contain any data type

Although OOo Basic supports a Byte variable type, you can’t directly declare and use one. The function
CByte, as discussed later, returns a Byte value that may be assigned to a variable of type Variant. With OOo
version 2.0, you can declare a variable of type Byte, but the variable is assumed to be an externally defined
object of type Byte rather than an internally defined Byte variable.

Use the DIM keyword to explicitly declare a variable before use (see Table 6). You can declare multiple
variables on a single line, and you can give each variable a type when it is declared. Variables with no
declared type default to type Variant.

Table 6. Declaring simple variables.
Declaration Description

Dim Name Name is type Variant because no type is stated.

Dim Name As String Name is type String because the type is explicitly stated.

Dim Name$ Name$ is type String because Name$ ends with a $.

Dim Name As String, Weight As Single Name is type String and Weight is type Single.

Dim Width, Length Width and Length are type Variant.

Dim Weight, Height As Single Weight is type Variant and Height is type Single.

TIP When multiple variables are declared in a single line, the type for each variable must be

listed separately. In the last line of Table 5, Weight is a Variant, even though it looks like it may be of type
Single.

Much of the available literature on OOo macro programming uses a variable naming scheme based on
Hungarian notation. With Hungarian notation, you can determine a variable’s type from its name. In
practice, everyone does this differently and with differing levels of adherence. This is a stylistic decision that
some people love and some people hate.

OOo Basic uses Def<type> statements to facilitate the use of Hungarian notion. The Def statements, which
are local to each module that uses them, provide a default type for an undeclared variable based on its name.
Normally, all undeclared variables are of type Variant.

The Def statement is followed by a comma-separated list of character ranges that specify the starting
characters (see Listing 7).

Listing 7. Declare untyped variables starting with i, j, k, or n to be of type Integer.
DefInt i-k,n

Table 7 contains an example of each supported Def statement. Def statements, like Option statements, are
placed in the module before any runnable line or variable declaration. The Def statement does not force a
variable with a specific first letter to be of a certain type, but rather provides a default type other than Variant

35

for variables that are used but not declared. I have never seen the Def statement used and I recommend that
you do not use the Def statement.

TIP If you use “Option Explicit,” and you should, you must declare all variables. This renders the Def<type>
statements useless because they affect only undeclared variables.

Table 7. Examples of supported Def statements in OpenOffice.org.
Def Statement Type

DefBool b Boolean

DefDate t Date

DebDbl d Double

DefInt i Integer

DefLng l Long

DefObj o Object

DefVar v Variant

 3.3.3. Assigning values to variables

The purpose of a variable is to hold values. To assign a value to a variable, type the name of the variable,
optional spaces, an equals sign, optional spaces, and the value to assign to the variable, like so:

X = 3.141592654
y = 6

The optional keyword Let may precede the variable name but serves no purpose other than readability. A
similar optional keyword, Set, meant for Object variables, serves no purpose other than readability. These
keywords are rarely used.

 3.3.4. Boolean variables are True or False

Boolean variables have two valid values: True or False. They are internally represented by the Integer values
-1 and 0, respectively. Any numeric value assigned to a Boolean that does not precisely evaluate to 0 is
converted to True. The macro in Listing 8 introduces a few new concepts. A string variable, s, accumulates
the results of the calculations, which are displayed in a dialog (see Figure 18). Adding CHR$(10) to the
string causes a new line to be printed in the dialog. Unfortunately, accumulating the results in a string
provides a more complicated macro than using simple statements such as “Print CBool(5=3)”, but the
results are easier to understand (see Figure 18). In the OOo version of the document, a button is frequently
available that allows you to run the macro immediately.

Listing 8. Demonstrate conversion to type boolean.
Sub ExampleBooleanType
 Dim b as Boolean
 Dim s as String
 b = True

 b = False
 b = (5 = 3) REM Set to False
 s = "(5 = 3) => " & b
 b = (5 < 7) REM Set to True

36

 s = s & CHR$(10) & "(5 < 7) => " & b
 b = 7 REM Set to True because 7 is not 0
 s = s & CHR$(10) & "(7) => " & b
 MsgBox s
End Sub

Figure 18. The dialog displayed by Listing 8.
The internal binary representation of True as -1 has all of the bits set to 1. The internal binary representation
of False as 0 has all of the bits set to 0.

 3.3.5. Numeric variables

Numeric variables contain numbers. OOo Basic supports integers, floating-point, and currency numbers.
Integers may be expressed as hexadecimal (base 16), octal (base 8), or the default decimal numbers (base
10). In common practice, OOo users almost always use decimal numbers, but the other types are presented
here as well, for completeness.

A discussion of other number bases is important because internally, computers represent their data in binary
format. It is easy to convert between the binary, hexadecimal, and octal number bases; and for humans it
may be easier to visualize binary numbers when represented in other number bases.

Decimal numbers, base 10, are composed of the 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Add 1 to 9 in decimal
and the result is 10. Binary (base 2), octal (base 8), and hexadecimal (base 16) numbers are also commonly
used in computing. Octal numbers are composed of the numbers 0, 1, 2, 3, 4, 5, 6, and 7. In octal, add 1 to 7
and the result is 10 (base 8). Hexadecimal numbers are composed of the 16 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, and F. Binary numbers are composed of the two digits 0 and 1. Table 8 contains the numbers
from 0 through 18 in decimal, and their corresponding values in binary, octal, and hexadecimal bases.

Table 8. Numbers in different bases.
Decimal Binary Octal Hexadecimal

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

37

Decimal Binary Octal Hexadecimal

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

17 10001 21 11

18 10010 22 12

Integers are assumed to be expressed as decimal numbers. Commas are not allowed. Hexadecimal numbers
are preceded by “&H” and octal numbers are preceded by “&O” (letter O, not a zero). Unfortunately, there is
no easy method to enter binary numbers. Table 9 presents a few simple guidelines for entering numbers.

Table 9. A few guidelines for entering numbers in OOo Basic.
Example Description

Use 1000 not 1,000 Write numbers without a thousands separator; do not use commas.

+ 1000 A space is permitted between a leading plus or minus sign and the number.

&HFE is the same as 254 Precede a hexadecimal number with &H.

&O11 is the same as 9 Precede an octal number with &O.

Use 3.1415 not 3,1415 Do not use commas for the decimal.

6.022E23 In scientific notation, the “e” can be uppercase or lowercase.

Use 6.6e-34 not 6.6e -34 Spaces are not allowed in a number. With the space, this evaluates as 6.6 - 34 = -27.4.

6.022e+23 The exponent may contain a leading plus or minus sign.

1.1e2.2 evaluates as 1.1e2 The exponent must be an integer. The fractional portion is ignored.

In general, assigning a String to a numeric variable sets the variable to zero and does not generate an error. If
the first characters in the string represent a number, however, then the string is converted to a number and
the non-numeric portion of the string is ignored — numeric overflow is possible.

Integer variables

An integer is a whole number that may be positive, negative, or equal to zero. Integer variables are a good
choice for numbers representing non-fractional quantities, such as age or number of children. In OOo Basic,
Integer variables are 16-bit numbers supporting a range from -32768 through 32767. Floating-point numbers
assigned to an integer are rounded to the nearest Integer value. Appending a variable name with “%” when it
is declared is a shortcut to declaring it as type Integer.

Listing 9. Demonstrate integer variables.
Sub ExampleIntegerType
 Dim i1 As Integer, i2% REM i1 and i2 are both Integer variables
 Dim f2 As Double
 Dim s$
 f2= 3.5

38

 i1= f2 REM i1 is rounded to 4

 s = "3.50 => " & i1
 f2= 3.49
 i2= f2 REM i2 is rounded to 3
 s = s & CHR$(10) & "3.49 => " & i2
 MsgBox s
End Sub

Figure 19. Demonstrating integer variables in Listing 9.

Long Integer variables

“Long” is an integer type that has a greater range than type Integer. Long variables are 32-bit numbers
supporting a range from -2,147,483,648 through 2,147,483,647. Long variables use twice as much memory
as Integer variables but they can hold numbers that are much larger in magnitude. Floating-point numbers
assigned to type Long are rounded to the nearest Long value. Appending a variable name with “&” when it
is declared is a shortcut to declaring it as type Long. The output from Listing 10 is the same as Listing 9 (see
Figure 19).

Listing 10. Demonstrate long variables.
Sub ExampleLongType
 Dim NumberOfDogs&, NumberOfCats As Long ' Both variables are Long
 Dim f2 As Double
 Dim s$
 f2= 3.5
 NumberOfDogs = f2 REM round to 4
 s = "3.50 => " & NumberOfDogs
 f2= 3.49
 NumberOfCats = f2 REM round to 3
 s = s & CHR$(10) & "3.49 => " & NumberOfCats
 MsgBox s
End Sub

Currency variables

Currency variables, as the name implies, are designed to hold financial information. The Currency type was
originally introduced to avoid the rounding behavior of the floating-point types Single and Double. Visual
Basic .NET removed the Currency type in favor of the Decimal type.

Currency variables are 64-bit, fixed-precision numbers. Calculations are performed to four decimal places
and 15 non-decimal digits accuracy. This yields a range from -922,337,203,658,477.5808 through
+922,337,203,658,477.5807. Appending a variable name with “@” when it is declared is a shortcut to
declaring it as type Currency.

Listing 11. Demonstrate currency variables.
Sub ExampleCurrencyType
 Dim Income@, CostPerDog As Currency

39

 Income@ = 22134.37
 CostPerDog = 100.0 / 3.0
 REM Prints as 22134.3700
 Print "Income = " & Income@
 REM Prints as 33.3333
 Print "Cost Per dog = " & CostPerDog
End Sub

Single variables

Single variables, unlike Integer variables, can have a fractional portion. They are called “floating-point
numbers” because, unlike Currency variables, the number of decimals allowed is not fixed. Single variables
are 32-bit numbers that are accurate to about seven displayed digits, making them suitable for mathematical
operations of average precision. They support positive or negative values from 3.402823 x 10E38 to
1.401298 x 10E-45. Any number smaller in magnitude than 1.401298 x 10E-45 becomes zero. Appending a
variable name with “!” when it is declared is a shortcut to declaring it as type Single.

Listing 12. Demonstrate single variables.
Sub ExampleSingleType
 Dim GallonsUsed As Single, Miles As Single, mpg!
 GallonsUsed = 17.3
 Miles = 542.9
 mpg! = Miles / GallonsUsed
 Print "Fuel efficiency = " & mpg!
End Sub

Double variables

Double variables are similar to Single variables except that they use 64 bits and have about 15 significant
digits. They are suitable for high-precision mathematical operations. Double variables support positive or
negative values from 1.79769313486232 x 10E308 to 4.94065645841247 x 10E-324. Any number smaller
in magnitude than 4.94065645841247 x 10E-324 becomes zero. Appending a variable with “#” when it is
declared is a shortcut to declaring it as type Double.

Listing 13. Demonstrate double variables.
Sub ExampleDoubleType
 Dim GallonsUsed As Double, Miles As Double, mpg#
 GallonsUsed = 17.3
 Miles = 542.9

 mpg# = Miles / GallonsUsed
 Print "Fuel efficiency = " & mpg#
End Sub

 3.3.6. String variables contain text

String variables are used to hold text. In OOo, text is stored as Unicode version 2.0 values, which provides
good support for multiple languages. Each String variable can hold up to 65,535 characters. Appending a
variable with “$” when it is declared is a shortcut to declaring it as type String.

Listing 14. Demonstrate string variables.
Sub ExampleStringType
 Dim FirstName As String, LastName$
 FirstName = "Andrew"

40

 LastName$ = "Pitonyak"
 Print "Hello " & FirstName & " " & LastName$
End Sub

Figure 20. Demonstrating string variables in Listing 14.
Always remember that strings are limited to 65,535 characters. A macro counted the number of characters in
a text document by converting the document to a string and then taking the length. The macro worked until
the document contained more than 65,535 characters. In Visual Basic .NET, String variables may contain
approximately 2 billion Unicode characters.

Place two double quote characters in a row to insert a double quotation character into a string.

S = "She said ""Hello""" REM She said "Hello"

Visual Basic string constants are available when using “Option Compatible” (see Table 10). You must use
Option Compatible for the module rather than using CompatibilityMode(True) because the string constant is
recognized at compile time rather than run time.

Table 10. Visual Basic-compatible string constants.
Constant Value Description

vbCr CHR$(13) Carriage return

vbCrLf CHR$(13) &
CHR$(10)

Carriage return/linefeed combination

vbFormFeed CHR$(12) Form feed

vbLf CHR$(10) Line feed

vbNewLine CHR$(13) &
CHR$(10) or
CHR$(10)

Platform-specific newline character — whatever is
appropriate

vbNullChar CHR$(0) Character with ASCII value 0

vbNullString "" Empty string. This is a string with a terminating null.

vbTab CHR$(9) Horizontal tab

vbVerticalTab CHR$(11) Vertical tab

The string constants in Table 10 allow you to define constant strings with special characters. Previously, you
had to define the string by using code that called the CHR$() function.

Option Compatible
Const sGreeting As String = "Hello" & vbCr & "Johnny" ' This contains a CR.

 3.3.7. Date variables

Date variables contain date and time values. OOo Basic stores dates internally as a Double. Dates, like all
numerical types, are initialized to zero, which corresponds to December 30, 1899 at 00:00:00. Adding or
subtracting 1 to/from a date corresponds to adding or subtracting a day. One hour, one minute, and one

41

second correspond to the numbers 1/24, 1/(24 * 60), and 1/(24 * 60 * 60), respectively. The date functions
supported by OOo Basic are introduced in Table 11 and fully discussed later.

Listing 15. Demonstrate date variables.
Sub ExampleDateType
 Dim tNow As Date, tToday As Date
 Dim tBirthDay As Date
 tNow = Now()
 tToday = Date()
 tBirthDay = DateSerial(1776, 7, 4)
 Print "Today = " & tToday
 Print "Now = " & tNow
 Print "A total of " & (tToday - tBirthDay) &_
 " days have passed since " & tBirthDay
End Sub

Negative numbers are valid and correspond to dates before December 30, 1899. January 1, 0001,
corresponds to the floating-point number -693,595. Continuing backward produces dates that are B.C.
(Before Christ, sometimes also referred to as B.C.E., meaning Before the Christian Era, or Before the
Common Era) rather than A.D. (Anno Domini). A thorough discussion of date handling is presented later.

Table 11. Functions and subroutines related to dates and times.
Function Type Description

CDate(expression) Date Convert a number or string to a date.

CDateFromIso(string) Date Convert to a date from an ISO 8601 date representation.

CDateToIso(date) String Convert a date to an ISO 8601 date representation.

Date() String Return the current date as a String.

DateSerial(yr, mnth, day) Date Create a date from component pieces: Year, Month, Day.

DateValue(date) Date Extract the date from a date/time value by truncating the decimal portion.

Day(date) Integer Return the day of the month as an Integer from a Date value.

GetSystemTicks() Long Return the number of system ticks as a Long.

Hour(date) Integer Return the hour as an Integer from a Date value.

IsDate(value) Boolean Is this a date?

Minute(date) Integer Return the minute as an Integer from a Date value.

Month(date) Integer Return the month as an Integer from a Date value.

Now() Date Return the current date and time as a Date object.

Second(date) Integer Return the seconds as an Integer from a Date value.

Time() String Return the time as a String.

Timer() Date Return the number of seconds since midnight as a Date. Convert to a Long.

TimeSerial(hour, min, sec) Date Create a date from component pieces: Hours, Minutes, Seconds.

WeekDay(date) Integer Return the integer 1 through 7, corresponding to Sunday through Saturday.

Year(date) Integer Return the year as an Integer from a Date value.

 3.3.8. Create your own data types

In most implementations of the BASIC programming language, you can create your own data types. OOo
Basic allows you to define and use your own data types.

42

Listing 16. Demonstrate user defined types.
Type PersonType
 FirstName As String
 LastName As String
End Type

Sub ExampleCreateNewType
 Dim Person As PersonType
 Person.FirstName = "Andrew"
 Person.LastName = "Pitonyak"
 PrintPerson(Person)
End Sub

Sub PrintPerson(x)
 Print "Person = " & x.FirstName & " " & x.LastName
End Sub

TIP Although user-defined types cannot directly contain an array, you can manage them in a variant type.

In OOo version 3.2, there are three ways that you can instantiate an instance of a user defined type. In the
following example, the colon (:) is used to place two statements on the same line.

Dim x As New PersonType ' The original way to do it.
Dim y As PersonType ' New is no longer required.
Dim z : z = CreateObject("PersonType") ' Create the object when desired.

When you create your own type, you create a structure (frequently called a struct). OOo has many predefined
internal structures. A commonly used structure is “com.sun.star.beans.PropertyValue”. The internal OOo
structures can be created in the same way as user defined types, and also using CreateUnoStruct (see
10Universal Network Objects on page 228).

 Dim a As New com.sun.star.beans.PropertyValue
 Dim b As New com.sun.star.beans.PropertyValue
 Dim c : c = CreateObject("com.sun.star.beans.PropertyValue")
 Dim d : d = CreateUnoStruct("com.sun.star.beans.PropertyValue")

Although the structure's type is “com.sun.star.beans.PropertyValue”, it is common to abbreviate the type
name as the last portion of the name — in this case, “PropertyValue”. Many of the objects in OOo have
similar, long, cumbersome names, which are similarly abbreviated in this book.

Most variables copy by value. This means that when I assign one variable to another, the value from one is
placed into the other. They do not reference the same data; they contain their own copy of the data. This is
also true of user-defined types and internal OOo structures. Variables that can be defined in this way are
copied by value. Other types used internally by OOo, called Universal Network Objects, are copied by
reference. Although these are discussed later, it is important to start thinking about what happens when one
variable is assigned to another. If I assign one variable to another and it is copied by reference, then both
variables refer to the same data. If two variables refer to the same data, and if I change one variable, then I
change both.

 3.3.9. Declare variables with special types

You can use the keywords “As New” to define a variable as a known UNO struct. The word “struct” is an
abbreviated form of the word “structure” that is frequently used by computer programmers. A struct has one

43

or more data members, each of which may have different types. Structs are used to group associated data
together.

Option Compatible provides a new syntax to define variables of known and unknown types. A simple
example is declaring a variable of a specific type even if the type is not known to OOo Basic.

Option Compatible 'Supported in OOo 2.0
Sub Main
 Dim oVar1 As Object
 Dim oVar2 As MyType
 Set oVar1 = New MyType 'Supported in OOo 2.0
 Set oVar2 = New MyType 'Supported in OOo 2.0
 Set oVar2 = New YourType 'Error, declared as MyType not YourType.

A new OLE object factory was introduced with OOo 2.0, which allows new types to be created. The new
functionality allows OOo Basic to manipulate Microsoft Word documents on Microsoft Windows operating
systems if Microsoft Office is also installed on the computer.

Sub Main
 Dim W As Word.Application
 Set W = New Word.Application
 REM Dim W As New Word.Application 'This works in OOo 2.0
 REM W = CreateObject("Word.Application") 'This works in OOo 2.0
 W.Visible = True
End Sub

The use of CreateObject() does not rely on “Option Compatible” because this functionality is provided by
the new OLE object factory released with OOo 2.0.

 3.3.10. Object variables

An Object is a complex data type that can contain more than a single piece of data. The code in Listing 16
shows an example of a complex data type. In OpenOffice.org, Object variables are intended to hold complex
data types created and defined by OOo Basic. When a variable of type Object is first declared, it contains the
special value Null, which indicates that no valid value is present.

Use the Variant type, not Object, to refer to OpenOffice.org internals. This is discussed later.

 3.3.11. Variant variables

Variant variables are able to hold any data type. They take on the type of whatever is assigned to them. When
a variable of type Variant is first declared, it contains the special value Empty, which indicates that no value
has been assigned to the variable. A Variant may be assigned an integer in one statement and then assigned
text in the next. No typecasting occurs when assigning data to a Variant; it simply becomes the appropriate
type.

The chameleon-like behavior of Variant variables allows them to be used as any other variable type.
However, this flexibility comes with a cost: time. One final problem is that it isn’t always obvious what type
a Variant will become after making some assignments.

Listing 17. Demonstrate variant types.
Sub ExampleTestVariants
 DIM s As String
 DIM v As Variant
 REM v starts Empty

44

 s = s & "1 : TypeName = " & TypeName(v) & " Value = " & v & CHR$(10)
 v = "ab217" : REM v becomes a String
 s = s & "2 : TypeName = " & TypeName(v) & " Value = " & v & CHR$(10)
 v = True : REM v becomes a Boolean
 s = s & "3 : TypeName = " & TypeName(v) & " Value = " & v & CHR$(10)
 v = (5=5) : REM v becomes an Integer rather than a Boolean
 s = s & "4 : TypeName = " & TypeName(v) & " Value = " & v & CHR$(10)
 v = 123.456 : REM Double
 s = s & "5 : TypeName = " & TypeName(v) & " Value = " & v & CHR$(10)
 v =123 : REM Integer
 s = s & "6 : TypeName = " & TypeName(v) & " Value = " & v & CHR$(10)
 v = 1217568942 : REM This could be a Long but it turns into a Double
 s = s & "7 : TypeName = " & TypeName(v) & " Value = " & v & CHR$(10)
 MsgBox s, 0, "The Variant Takes Many Types"
End Sub

Visual Basic .NET does not support type Variant. Undeclared variables are of type Object.

Figure 21. Variant takes the assigned type.
When data is assigned to a Variant, the data is not converted to an appropriate type, but rather the Variant
becomes the type of the data. In line 6 of Figure 21, the Variant is an Integer. In line 7, the number is too
large to be an Integer, but it is small enough to be a Long. OOo Basic chooses to convert whole numbers
larger than an integer and all floating-point numbers into a Double, even if they can be expressed as a Single
or a Long.

 3.3.12. Constants

A constant is a variable with no type, and that cannot change value. The variable is defined to be a
placeholder that is substituted by the expression that defines the constant. Constants are defined with the
keyword Const. The constant name can be any valid variable name.

Const ConstName=Expression

Constants improve macros in many ways. Consider a Gravity constant frequently used in physics. Physics
scholars will recognize this as the acceleration due to gravity in meters per second squared.

Const Gravity = 9.81

Here are some specific benefits of using constants:

• Constants improve the readability of a macro. The word Gravity is easier to recognize than the value
9.81.

45

• Constants are easy to manage. If I require greater precision or if the gravitational pull changes, I
have to change the value in only one location.

• Constants help prevent difficult-to-find errors by changing run-time errors into compile-time errors.
Typing “Grevity” rather than “Gravity” is a compile-time error, while mistyping “9.81” as “9.18” is
not.

• While a value like 9.81 may be obvious to you, it may not be as obvious to others reading your code
later. It becomes what programmers call a “magic number,” and experienced programmers try to
avoid magic numbers at all costs. Their unexplained meanings make for difficulties in maintaining
code later, when the original programmer is not available to explain — or has forgotten the details
entirely.

TIP OpenOffice.org defines the constant Pi. This is a mathematical constant with a value of approximately
3.1415926535897932385.

 3.4. The With statement

The With statement is used to simplify accessing complex data types. Listing 16 defines a data type that
contains two different variables: FirstName and LastName. You can access these variables by placing a
period between the variable name and the data item.

Sub ExampleCreateNewType
 Dim Person As PersonType
 Person.FirstName = "Andrew"
 Person.LastName = "Pitonyak"
 ...
End Sub

Or... the With statement provides a shortcut for accessing multiple data elements from the same variable.

Sub ExampleCreateNewType
 Dim Person As PersonType
 With Person
 .FirstName = "Andrew"
 .LastName = "Pitonyak"
 End With
 ...
End Sub

Similarly:

Dim oProp As New com.sun.star.beans.PropertyValue
oProp.Name = "Person" 'Set Name Property
oProp.Value = "Boy Bill" 'Set Value Property

Using With:

Dim oProp As New com.sun.star.beans.PropertyValue
With oProp
 .Name = "Person" 'Set Name Property
 .Value = "Boy Bill" 'Set Value Property
End With

46

 3.5. Arrays

An array is a data structure in which similar elements of data are arranged in an indexed structure — for
example, a column of names or a table of numbers. See Table 12. An array allows you to store many
different values in a single variable, and uses parentheses to define and access array elements. OOo Basic
does not support the use of square brackets as used by other languages such as C and Java.

Array variables are declared using the Dim statement. Think of a one-dimensional array as a column of
values and a two-dimensional array as a table of values. Higher dimensions are supported but difficult to
visualize. An array index may be any Integer value from -32,768 through 32,767.

Table 12. Declaring an array is easy!
Definition Elements Description

Dim a(5) As Integer 6 From 0 through 5 inclusive.

Dim b(5 To 10) As String 6 From 5 through 10 inclusive.

Dim c(-5 To 5) As String 11 From -5 through 5 inclusive.

Dim d(5, 1 To 6) As Integer 36 Six rows with six columns from 0 through 5 and 1
through 6.

Dim e(5 To 10, 20 To 25) As Long 36 Six rows with six columns from 5 through 10 and 20
through 25.

TIP You must declare array variables before using them, even if you don’t use “Option Explicit.”

If the lower dimension of an array is not specified, the default lower bound of an array is zero.
(Programmers call these arrays “zero-based.”) Thus, an array with five elements will have elements
numbered a(0) through a(4). Use the keywords “Option Base 1” to change the default lower bound of an
array to start at 1 rather than 0. This must be done before any other executable statement in the program.

Option Base { 0 | 1 }

TIP Specify the lower bound of an array rather than relying on the default behavior. This is more portable and it
will not change when the Option Base statement is used.

Dim a(3) allows for four elements: a(0), a(1), a(2), and a(3). Option Base does not change the number of
elements that an array can store; it changes only how they are indexed. Using Option Base 1, the same
statement still allows for four elements: a(1), a(2), a(3), and a(4). I consider this behavior unintuitive and
recommend against using Option Base. If you want specific array bounds, the preferred option is to
explicitly declare the array bounds. For example, Dim a(1 To 4). Option Base has risks in terms of
communicating clear documentation and ensuring portability.

Visual Basic handles Option Base 1 differently from OOo Basic; VB changes the lower bound to 1 but does
not change the upper bound. Visual Basic .NET no longer supports Option Base. With “Option Compatible,”
“Option Base 1” does not increase the upper bound by 1. In other words, OOo Basic acts like VB.

Accessing and changing the values in an array is easy. Initializing an array this way is tedious.

Listing 18. Demonstrate simple array.
Sub ExampleSimpleArray1
 Dim a(2) As Integer, b(-2 To 1) As Long
 Dim m(1 To 2, 3 To 4)

47

 REM Did you know that multiple statements can be placed
 REM on a single line if separated by a colon?
 a(0) = 0 : a(1) = 1 : a(2) = 2
 b(-2) = -2 : b(-1) = -1 : b(0) = 0 : b(1) = 1
 m(1, 3) = 3 : m(1, 4) = 4
 m(2, 3) = 6 : m(2, 4) = 8
 Print "m(2,3) = " & m(2,3)
 Print "b(-2) = " & b(-2)
End Sub

To quickly fill a Variant array, use the Array function (see Listing 19), which returns a Variant array with the
included data. The functions LBound and Ubound return the lower bound and upper bound of an array.
Routines supported by OOo Basic are summarized in Table 13, and discussed thoroughly later.

Listing 19. Use Array() to quickly fill an array.
Sub ExampleArrayFunction
 Dim a, i%, s$
 a = Array("Zero", 1, Pi, Now)
 Rem String, Integer, Double, Date
 For i = LBound(a) To UBound(a)
 s$ = s$ & i & " : " & TypeName(a(i)) & " : " & a(i) & CHR$(10)
 Next
 MsgBox s$, 0, "Example of the Array Function"
End Sub

Figure 22. Different variable types in the same array.
A variable defined as an array but not dimensioned, such as Dim a(), is called an empty array. Test for an
empty array by comparing the upper bound of the array to the lower bound. If the upper bound is less than
the lower bound, the array is empty and no dimensions have been set. An array that has been dimensioned,
such as Dim a(5), is not empty.

The behavior for LBound and UBound has changed over time. Some releases of OOo produce an error for
UBound(b) and some do not. All versions should work correctly with UBound(b()). At the time of this
writing, the upper and lower array bounds for c (in Listing 20) fails because c is an empty object.

Listing 20. Parentheses are not always required but are always allowed.
Sub ArrayDimensionError
 On Error Goto ErrorHandler
 Dim a(), b(1 To 2), c
 Dim iLine As Integer
 Dim s$
 REM Valid constructs
 iLine = 1 : s = "a = (" & LBound(a()) & ", "
 iLine = 2 : s = s & UBound(a) & ")"d

48

 iLine = 3 : s = s & CHR$(10) & "b = (" & LBound(b()) & ", "
 iLine = 4 : s = s & UBound(b) & ")"
 iLine = 5 : s = s & CHR$(10) & "c = (" & LBound(c()) & ", "
 iLine = 6 : s = s & UBound(c) & ")"
 MsgBox s, 0, "LBound and UBound"
 Exit Sub
 ErrorHandler:
 s = s & CHR$(10) & "Error " & Err & ": " & Error$ & " (line : " & iLine & ")"
 Resume Next
End Sub

Table 13. Summary of subroutines and functions related to arrays.
Function Description

Array(args) Return a Variant array that contains the arguments.

DimArray(args) Return an empty Variant array. The arguments specify the dimension.

IsArray(var) Return True if this variable is an array, False otherwise.

Join(array)

Join(array, delimiter)

Concatenate the array elements separated by the optional string delimiter and return
as a String. The default delimiter is a single space.

LBound(array)

LBound(array, dimension)

Return the lower bound of the array argument. The optional dimension specifies
which dimension to check. The first dimension is 1.

ReDim var(args) As Type Change the dimension of an array using the same syntax as the DIM statement. The
keyword Preserve keeps existing data intact — ReDim Preserve x(1 To 4) As Integer.

Split(str)

Split(str, delimiter)

Split(str, delimiter, n)

Split the string argument into an array of strings. The default delimiter is a space. The
optional argument “n” limits the number of strings returned.

UBound(array)

UBound(array, dimension)

Return the upper bound of the array argument. The optional dimension specifies
which dimension to check. The first dimension is 1.

 3.5.1. Changing the dimension of an array

The desired dimension of an array is not always known ahead of time. Sometimes, the dimension is known;
but it changes periodically, and the code must be changed. An array variable can be declared with or without
specifying the dimensions. OOo Basic provides a few different methods to set or change the dimensions of
an array.

The Array function generates a Variant array that contains data. This is a quick way to initialize an array. You
are not required to set the dimension of the array, but, if you do, it will change to become the array returned
by the Array function.

Dim a()
a = Array(3.141592654, "PI", 9.81, "Gravity")

The arguments passed to the Array function become data in the returned Variant array. The DimArray
function, on the other hand, interprets the arguments as the dimensions of an array to create (see Listing 21).
The arguments can be expressions, so a variable can be used to set the dimension.

Listing 21. Redimension array.
Sub ExampleDimArray
 Dim a(), i%

49

 Dim s$
 a = Array(10, 11, 12)
 s = "" & LBound(a()) & " " & UBound(a()) Rem 0 2
 a() = DimArray(3) REM the same as Dim a(3)
 a() = DimArray(2, 1) REM the same as Dim a(2,1)
 i = 4
 a = DimArray(3, i) Rem the same as Dim a(3,4)
 s = s & CHR$(10) & LBound(a(),1) & " " & UBound(a(),1) Rem 0, 3
 s = s & CHR$(10) & LBound(a(),2) & " " & UBound(a(),2) Rem 0, 4
 a() = DimArray() REM an empty array
 MsgBox s, 0, "Example Dim Array"
End Sub

The Array and DimArray functions both return an array of Variants. The ReDim statement changes the
dimension of an existing array. This can change both individual dimensions and the number of dimensions.
The arguments can be expressions because the ReDim statement is evaluated at run time.

Dim e() As Integer, i As Integer
i = 4
ReDim e(5) As Integer REM Dimension is 1, a size of 0 To 5 is valid.
ReDim e(3 To 10) As Integer REM Dimension is 1, a size of 3 To 10 is valid.
ReDim e(3, i) As Integer REM Dimension is 2, a size of (0 To 3, 0 To 4) is valid.

Some tips regarding arrays:

• LBound and UBound work with empty arrays.

• An empty array has one dimension. The lower bound is zero and the upper bound is -1.

• Use ReDim to cause an existing array to become empty.

The ReDim statement supports the keyword Preserve. This attempts to save the data when the dimensions of
an array are changed. Increasing the dimension of an array preserves all of the data, but decreasing the
dimension causes data to be lost by truncation. Data can be truncated at either end. If an element in the new
array existed in the old array, the value is unchanged. Unlike some variants of BASIC, OOo Basic allows all
dimensions of an array to be changed while still preserving data.

Dim a() As Integer
ReDim a(3, 3, 3) As Integer
a(1,1,1) = 1 : a(1, 1, 2) = 2 : a(2, 1, 1) = 3
ReDim preserve a(-1 To 4, 4, 4) As Integer
Print "(" & a(1,1,1) & ", " & a(1, 1, 2) & ", " & a(2, 1, 1) & ")"

ReDim specifies both the dimensions and an optional type. If the type is included, it must match the type
specified when the variable is declared or OOo generates a compile-time error.

Listing 22 is a utility function that accepts a simple array and returns a string with all of the elements in the
array. The ReDim example code, also in Listing 22, uses ArrayToString.

Listing 22. Utility function array to string.
REM ArrayToString accepts a simple array and places the value
REM of each element in the array into a string.
Function ArrayToString(a() As Variant) As String
 Dim i%, s$
 For i% = LBound(a()) To UBound(a())
 s$ = s$ & i% & " : " & a(i%) & CHR$(10)
 Next

50

 ArrayToString = s$
End Function

Sub ExampleReDimPreserve
 Dim a(5) As Integer, b(), c() As Integer
 a(0) = 0 : a(1) = 1 : a(2) = 2 : a(3) = 3 : a(4) = 4 : a(5) = 5
 Rem a is dimensioned from 0 to 5 where a(i) = i
 MsgBox ArrayToString(a()), 0 , "a() at start"

 Rem a is re-dimensioned from 1 to 3 where a(i) = i
 ReDim Preserve a(1 To 3) As Integer
 MsgBox ArrayToString(a()), 0 , "a() after ReDim"

 Rem Array() returns a Variant type
 Rem b is dimensioned from 0 to 9 where b(i) = i+1
 b = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 MsgBox ArrayToString(b()), 0 , "b() at initial assignment"

 Rem b is dimensioned from 1 to 3 where b(i) = i+1
 ReDim Preserve b(1 To 3)
 MsgBox ArrayToString(b()), 0 , "b() after ReDim"

 Rem The following is NOT valid because the array is already dimensioned
 Rem to a different size
 Rem a = Array(0, 1, 2, 3, 4, 5)

 Rem c is dimensioned from 0 to 5 where c(i) = i
 Rem If "ReDim" had been done on c, then this would NOT work
 c = Array(0, 1, 2, "three", 4, 5)
 MsgBox ArrayToString(c()), 0 , "Integer array c() Assigned to a Variant"

 Rem Ironically, this is allowed but c will contain no data!
 ReDim Preserve c(1 To 3) As Integer
 MsgBox ArrayToString(c()), 0 , "ReDim Integer c() after assigned Variant"
End Sub

Visual Basic has different rules for changing the dimensions of an array, and these rules change between
versions of Visual Basic. As a general rule, OOo Basic is more flexible.

 3.5.2. The unexpected behavior of arrays

Assigning one Integer variable to another copies the value, and the variables are not related in any other way.
In other words, if you change the first variable’s value, the second variable’s value does not change. This is
not true for array variables. Assigning one array variable to another makes a reference to the first array rather
than copying the data. All changes made to either are automatically seen by the other. It doesn’t matter which
one is changed; they are both affected. This is the difference between “pass by value” (integers) and “pass by
reference” (arrays).

Listing 23. Arrays copy as references.
Sub ExampleArrayCopyIsRef
 Dim a(5) As Integer, c(4) As Integer, s$
 c(0) = 4 : c(1) = 3 : c(2) = 2 : c(3) = 1 : c(4) = 0
 a() = c()

51

 a(1) = 7
 c(2) = 10
 s$ = "**** a() *****" & CHR$(10) & ArrayToString(a()) & CHR$(10) &_
 CHR$(10) & "**** c() *****" & CHR$(10) & ArrayToString(c())
 MsgBox s$, 0 , "Change One, Change Both"
End Sub

To illustrate that arrays are assigned by reference, create three arrays — a(), b(), and c() — as shown in
Figure 23. Internally, OOo Basic creates three arrays that are referenced by a(), b(), and c().

Figure 23. Assigning an array assigns a reference.
Assign array a() to array b(), and both a() and b() reference the same data. The variable a() does not
reference the variable b(), it references the same data referenced by b() (see Figure 24). Therefore, changing
a() also changes b(). The original array referenced by a() is no longer referenced.

Figure 24. Assigning an array assigns a reference.
Assign array b() to array c(), and both b() and c() reference the same data. The variable a() remains
unchanged, as shown in Figure 25.

Figure 25. Assigning an array assigns a reference.

TIP Type checking is not performed when an array is assigned to another array. Do not assign arrays of
different types to each other.

Because no type checking is performed when an array is assigned to another array, unexpected and obscure
problems can occur. The Array function returns a Variant array, and is the quickest method to assign multiple
values to an array variable. An obvious problem is that an Integer array may contain String values if it

52

references a Variant array. A less obvious problem is that the ReDim statement works based on the declared
type. The statement “ReDim Preserve” on an Integer array assigned to a Variant array fails to preserve the
data.

Dim a() As Integer REM Declare a() as an Integer()
a() = Array(0, 1, 2, 3, 4, 5, 6) REM Assign a Variant() to an Integer()
ReDim Preserve a(1 To 3) As Integer REM This wipes the array

To safely assign arrays while maintaining the correct data type, another method is required. Copy each
element in the array individually. This also prevents two array variables from referencing the same array.

Listing 24. More complex array example.
Sub ExampleSetIntArray
 Dim iA() As Integer
 SetIntArray(iA, Array(9, 8, "7", "six"))
 MsgBox ArrayToString(iA), 0, "Assign a Variant to an Integer"
End Sub

REM Dimension the first array to have the same dimensions as the second.
REM Perform an element-by-element copy of the array.
Sub SetIntArray(iArray() As Integer, v() As Variant)
 Dim i As Long
 ReDim iArray(LBound(v()) To UBound(v())) As Integer
 For i = LBound(v) To UBound(v)
 iArray(i) = v(i)
 Next
End Sub

 3.6. Subroutines and functions

Subroutines are used to group lines of code into meaningful pieces of work. A function is a subroutine that
returns a value. The use of subroutines and functions facilitates testing, code reuse, and readability. This in
turn reduces errors.

The keyword Sub defines the beginning of a subroutine, and End Sub defines the end of a subroutine.

Sub FirstSub
 Print "Running FirstSub"
End Sub

To use a subroutine, place the name of the subroutine that you want to call on a line. The name can
optionally be preceded by the keyword Call.

Sub Main
 Call FirstSub ' Call Sub FirstSub
 FirstSub ' Call Sub FirstSub again
End Sub

Subroutine and function names must be unique in a module. They are subject to the same naming
conventions as variables, including the use of spaces in their names.

Sub One
 [name with space]
End Sub
Sub [name with space]
 Print "I am here"

53

End Sub

Visual Basic allows a subroutine to be preceded by optional keywords such as Public or Private. Starting
with OOo 2.0, you can define a routine as public or private, but the routine is always public unless
CompatibilityMode(True) is used first.

Declare a subroutine as private by preceding Sub with the keyword Private.

Private Sub PrivSub
 Print "In Private Sub"
 bbxx = 4
End Sub

Using Option Compatibile is not sufficient to enable Private scope, CompatibilityMode(True) must be used.

Sub TestPrivateSub
 CompatibilityMode(False) 'Required only if CompatibilityMode(True) already used.
 Call PrivSub() 'This call works.
 CompatibilityMode(True) 'This is required, even if Option Compatible is used
 Call PrivSub() 'Runtime error (if PrivSub is in a different module).
End Sub

The keyword Function is used to declare a function which, like a variable, can define the type it returns. If
the type is not declared, the return type defaults to Variant. You can assign the return value at any point and
as many times as you want before the function ends. The last value assigned is returned.

Sub test
 Print "The function returns " & TestFunc
End Sub
Function TestFunc As String
 TestFunc = "hello"
End Function

 3.6.1. Arguments

A variable that is passed to a routine is called an argument. Arguments must be declared. The same rules for
declaring variable types apply to declaring argument types.

A routine name can optionally be followed by parentheses, both when it is defined and when it is called. A
routine that accepts arguments can optionally enclose the argument list in parentheses. The argument list
follows the routine name on the same line. Blank space is allowed between the name of the routine and the
argument list.

Listing 25. Simple argument testing.
Sub ExampleParamTest1()
 Call ParamTest1(2, "Two")
 Call ParamTest1 1, "One"
End Sub
Sub ParamTest1(i As Integer, s$)
 Print "Integer = " & i & " String = " & s$
End Sub

Pass by reference or by value

By default, arguments are passed by reference rather than by value. In other words, when the called
subroutine modifies an argument, the caller sees the change. You can override this behavior by using the

54

ByVal keyword. This causes a copy of the argument (rather than a reference to the argument) to be sent (see
Listing 26 and Figure 26).

TIP Constants passed as arguments by reference cause unexpected behavior if their value is modified in the
called routine. The value may arbitrarily change back inside the called routine. For example, I had a
subroutine that was supposed to decrement an Integer argument in a loop until it was zero; the argument
never became zero.

Listing 26. Arguments by reference and by value.
Sub ExampleArgumentValAndRef()
 Dim i1%, i2%
 i1 = 1 : i2 = 1
 ArgumentValAndRef(i1, i2)
 MsgBox "Argument passed by reference was 1 and is now " & i1 & CHR$(10) &_
 "Argument passed by value was 1 and is still " & i2 & CHR$(10)
End Sub
Sub ArgumentValAndRef(iRef%, ByVal iVal)
 iRef = iRef + 1 ' This will affect the caller
 iVal = iVal - 1 ' This will not affect the caller
End Sub

Figure 26. Pass by reference allows changes to be passed back to the caller.
Visual Basic supports the optional keyword ByRef. This keyword was introduced into OOo Basic starting
with OOo 2.0. Note that pass by reference is the default behavior.

A variable cannot be passed by value if the type does not match. The macros in Listing 27 and Listing 28
differ in the type used to declare the argument.

Listing 27. Simple swap with a string argument.
Sub sSwap(sDatum As String)
 Dim asDatum(1 to 3) As String
 Dim sDummy As String

 asDatum=Split(sDatum, ".")
 sDummy=asDatum(0)
 asDatum(0)=asDatum(2)
 asDatum(2)=sDummy
 sDatum=Join(asDatum,"-")
End Sub

Listing 28. Simple swap with a variant argument.

Sub vSwap(vDatum As Variant)
 Dim asDatum(1 to 3) As String
 Dim sDummy As String

 asDatum=Split(vDatum, ".")

55

 sDummy=asDatum(0)
 asDatum(0)=asDatum(2)
 asDatum(2)=sDummy
 vDatum=Join(asDatum,"-")
End Sub

The following macro uses a variant and a string to call a macro that accepts a variant, and the macro that
accepts the string. Passing a variant to a method that accepts a string argument basses the value by reference.
The unexpected thing is that passing a string to the method that accepts a variant, passes the value by
reference.

Listing 29. Test reference by argument type.
Sub passByReferenceTester
 Dim vVar As Variant
 Dim sVar As string
 Dim s As String

 vVar="01.02.2011"
 sVar="01.02.2011"

 s = vVar & " sSwap(variant var string param) ==> "
 sSwap(vVar)
 s = s & vVar & CHR$(10)

 s = s & sVar & " sSwap(string var string param) ==> "
 sSwap(sVar)
 s = s & sVar & CHR$(10)

 vVar="01.02.2011"
 sVar="01.02.2011"
 s = s & vVar & " vSwap(variant var variant param) ==> "
 vSwap(vVar)
 s = s & vVar & CHR$(10)

 s = s & sVar & " vSwap(string var variant param) ==> "
 vSwap(sVar)
 s = s & sVar & CHR$(10)

 MsgBox(s)
End Sub

It is important that you understand when a variable is passed to a method as a reference or a value. It is
equally important to understand when the value contained in a variable is copied by value or copied by
reference.

• Variables with simple types copy by value; for example, assigning one integer variable to another.

• Arrays always copy by reference. If you assign one array to another, both variables reference and
modify the same array.

• UNO Services copy by reference. This means that you can do things such as oDoc =
ThisComponent, and both variables reference the same object.

• Structs copy by value. This frustrates many people when they first encounter the behavior, but there
is a very good reason for it. First, the problem; oBorder.TopLine.OuterLineWidth = 2

56

fails because TopLine is a struct and the value is returned as a copy rather than a reference. The code
as shown changes the outer line width on a copy of the struct rather than the struct associated with
the border object. The correct way to change the border is (v = oBorder.TopLine :
v.OuterLineWidth = 2 : oBorder.TopLine = v).

A lead developer claimed that one or two services and strutcs do not assign / copy as expected, but he could
not remember which. I have not encountered the objects that violate the guidelines, but, I try to remember
the problem so that I am not taken unaware.

Optional arguments

You can declare arguments as optional by preceding them with the keyword Optional. All of the arguments
following an optional argument must also be optional. Use the IsMissing function to determine if an optional
argument is missing.

Listing 30. Optional arguments.
REM Make test calls with optional arguments.
REM Calls with Integer and Variant arguments should yield the same result.
REM Unfortunately, they do not.
Sub ExampleArgOptional()
 Dim s$
 s = "Variant Arguments () => " & TestOpt() & CHR$(10) &_
 "Integer Arguments () => " & TestOptI() & CHR$(10) &_
 "---" & CHR$(10) &_
 "Variant Arguments (,,) => " & TestOpt(,,) & CHR$(10) &_
 "Integer Arguments (,,) => " & TestOptI(,,) & CHR$(10) &_
 "---" & CHR$(10) &_
 "Variant Arguments (1) => " & TestOpt(1) & CHR$(10) &_
 "Integer Arguments (1) => " & TestOptI(1) & CHR$(10) &_
 "---" & CHR$(10) &_
 "Variant Arguments (,2) => " & TestOpt(,2) & CHR$(10) &_
 "Integer Arguments (,2) => " & TestOptI(,2) & CHR$(10) &_
 "---" & CHR$(10) &_
 "Variant Arguments (1,2) => " & TestOpt(1,2) & CHR$(10) &_
 "Integer Arguments (1,2) => " & TestOptI(1,2) & CHR$(10) &_
 "---" & CHR$(10) &_
 "Variant Arguments (1,,3) => " & TestOpt(1,,3) & CHR$(10) &_
 "Integer Arguments (1,,3) => " & TestOptI(1,,3) & CHR$(10)
 MsgBox s, 0, "Optional Arguments of Type Variant or Integer"
End Sub

REM Return a string that contains each argument. If the argument
REM is missing, then an M is used in its place.
Function TestOpt(Optional v1, Optional v2, Optional v3) As String
 TestOpt = "" & IIF(IsMissing(v1), "M", Str(v1)) &_
 IIF(IsMissing(v2), "M", Str(v2)) &_
 IIF(IsMissing(v3), "M", Str(v3))
End Function

REM Return a string that contains each argument. If the argument
REM is missing, then an M is used in its place.
Function TestOptI(Optional i1%, Optional i2%, Optional i3%) As String
 TestOptI = "" & IIF(IsMissing(i1), "M", Str(i1)) &_

57

 IIF(IsMissing(i2), "M", Str(i2)) &_
 IIF(IsMissing(i3), "M", Str(i3))
End Function

You can omit any optional arguments. Listing 30 demonstrates two functions that accept optional arguments.
The functions are the same except for the argument types. Each function returns a string containing the
argument values concatenated together. Missing arguments are represented by the letter “M” in the string.
Although the return values from TestOpt and TestOpt1 should be the same for the same argument lists, they
are not (see Figure 27). This is a bug.

TIP The IsMissing function returns incorrect results for variables that are not of type Variant when the missing
argument is followed by a comma.

Figure 27. In rare cases, non-Variant optional arguments fail.

Default argument values

OOo version 2.0 introduced default values for missing arguments. This allows a default value to be specified
if an optional argument is missing. You must use the keywords “Option Compatible” for default values to
work.

Option Compatible
Sub DefaultExample(Optional n as Integer=100)
 REM If IsMissing(n) Then n = 100 'I will not have to do this anymore!
 Print n
End Sub

 3.6.2. Recursive routines

A recursive routine calls itself. Consider calculating the mathematical function Factorial for positive
integers. The usual definition is recursive.

Listing 31. Recursively generate factorial.
Sub DoFactorial
 Print "Recursive Factorial = " & RecursiveFactorial(4)

58

 Print "Iterative Factorial = " & IterativeFactorial(4)
End Sub

Function IterativeFactorial(ByVal n As Long) As Long
 Dim answer As Long
 answer = 1
 Do While n > 1
 answer = answer * n
 n = n - 1
 Loop
 IterativeFactorial = answer
End Function

' This finally works in version 1.1
Function RecursiveFactorial(ByVal n As Long) As Long
 RecursiveFactorial = 1
 If n > 1 Then RecursiveFactorial = n * RecursiveFactorial(n-1)
End Function

Computers use a data structure called a stack. At home, I have a stack of books that I want to read. When I
receive a new book, I place it on top of the stack. When I have time to read, I take the top book from the
stack. This is similar to the data structure that a computer uses: a section of memory in a computer for
temporary storage in which the last item stored is the first retrieved. Stacks are usually used when a
computer calls a routine and passes arguments. A typical procedure follows:

1. Push the current run location onto the stack.

2. Push each argument onto the stack.

3. Call the desired function or subroutine.

4. The called routine uses the arguments from the stack.

5. The called routine frequently uses the stack to store its own variables.

6. The called routine removes the arguments from the stack.

7. The called routine removes and saves the caller’s location from the stack.

8. If the called routine is a function, the return value is placed on the stack.

9. The called routine returns to the caller from the saved location on the stack.

10. If the called routine is a function, the return value is taken from the stack.

Although various optimizations are used, there is always some overhead associated with calling subroutines
and functions. There is overhead in running time and in the memory required. The recursive version of
Factorial continually calls itself. While calculating the factorial of four, there is one point at which the stack
contains information for calls for 4, 3, 2, and 1. For some functions — the Fibonacci series, for example —
this call behavior may be prohibitive, and a non-recursive algorithm should be used instead.

 3.7. Scope of variables, subroutines, and functions

The idea of scope deals with the lifetime and visibility of a variable, subroutine, or function in OOo Basic.
The scope depends on the location of the declaration, and the keywords Public, Private, Static, and Global.
Dim is equivalent to Private, but variables are Private only if CompatibilityMode(True) is used.

59

 3.7.1. Local variables defined in a subroutine or function

Variables declared inside a subroutine or function are called local variables. It is also commonly said that a
variable is local to a routine if the variable is declared inside that routine.

You can declare a variable inside a subroutine or function by using the Dim keyword. Variables defined
inside a routine are visible only inside that routine. It is not possible to directly access a variable defined
inside a routine from outside the routine. However, it is possible to access a variable defined outside any
routine — for example, in a module header — from inside a routine. When a variable or routine name is
encountered inside a routine, OOo Basic starts looking for the variable or routine in the following order:
current routine, module, library, and other open libraries. In other words, it starts inside and works its way
out.

Variables defined in a routine are created and initialized each time the routine is entered. The variables are
destroyed every time the routine is exited because the routine is finished. Leaving the routine to call another
routine does not cause the variables to be reinitialized.

Use the keyword Static to change a variable’s creation and destruction times to the calling macro’s start and
finish times, respectively. Although the variable is visible only in the routine containing the variable, the
variable is initialized once when the macro starts running, and the variable's values are retained through
multiple calls to the same routine. In other words, you start with no macro running. The first time that a
subroutine or function that contains a static variable is called, the static variables contain initial values based
on their types. The static variables retain their values between calls as long as the macro as a whole did not
stop running. The keyword Static uses the same syntax as the keyword Dim, and is valid only inside a
subroutine or function. Listing 32 calls a routine that uses a static variable.

Listing 32. Static example.
Sub ExampleStatic
 ExampleStaticWorker()
 ExampleStaticWorker()
End Sub

Sub ExampleStaticWorker
 Static iStatic1 As Integer
 Dim iNonStatic As Integer

 iNonStatic = iNonStatic + 1
 iStatic1 = iStatic1 + 1
 Msgbox "iNonStatic = " & iNonStatic & CHR$(10) &_
 "iStatic1 = " & iStatic1
End Sub

 3.7.2. Variables defined in a module

The Dim, Global, Public, or Private statements are used to declare variables in a module header. Global,
Public, and Private use the same syntax as the Dim statement, but they can’t declare variables inside a
subroutine or function. Each variable type has a different life cycle, as summarized in Table 14.

The keywords Static, Public, Private, and Global are not used as modifiers to the keyword Dim; they are
used instead of the keyword Dim.

Although it is sometimes necessary to define a variable in a module header, you should avoid it if possible.
Variables defined in the header can be seen in other modules that don’t expect them. It’s difficult to

60

determine why the compiler claims that a variable is already defined if it is defined in another library or
module. Even worse, two working libraries may stop working because of naming conflicts.

Table 14. Life cycle of a variable defined in a module header.
Keyword Initialized Dies Scope

Global Compile time Compile time All modules and libraries.

Public Macro start Macro finish Declaring library container.

Dim Macro start Macro finish Declaring library container.

Private Macro start Macro finish Declaring module.

Global

Use Global to declare a variable that is available to every module in every library. The library containing the
Global variable must be loaded for the variable to be visible.

When a library is loaded, it is automatically compiled and made ready for use; this is when a Global variable
is initialized. Changes made to a Global variable are seen by every module and are persisted even after the
macro is finished. Global variables are reset when the containing library is compiled. Exiting and restarting
OpenOffice.org causes all libraries to be compiled and all Global variables to be initialized. Modifying the
module containing the Global definition also forces the module to be recompiled.

Global iNumberOfTimesRun

Variables declared Global are similar to variables declared Static, but Static works only for local variables,
and Global works only for variables declared in the header.

Public

Use Public to declare a variable that is visible to all modules in the declaring library container. Outside the
declaring library container, the public variables aren’t visible. Public variables are initialized every time a
macro runs.

An application library is a library that is declared in the “OpenOffice.org” library container. This is available
when OOo is running, is stored in its own directory, and every document can view it. Document-level
libraries are stored in OOo documents. The libraries are saved as part of the document and are not visible
outside the document.

Public variables declared in an application library are visible in every OOo document-level library. Public
variables declared in a library contained in an OOo document are not visible in application-level libraries.
Declaring a Public variable in a document library effectively hides a Public variable declared in an
application library. Simply stated (see Table 15), if you declare a Public variable in a document, it is visible
only in the document and it will hide a Public variable with the same name declared outside the document. A
Public variable declared in the application is visible everywhere — unless a variable declaration with more
local scope takes priority over the declaration with more global scope.

Public oDialog As Object

Table 15. The scope of a Public variable depends on where it is declared.
Declaration Location Scope

Application Visible everywhere.

Document Visible only in the declaring document.

Application and Document Macros in the document are unable to see the application-level variable.

61

Private or Dim

Use Private or Dim to declare a variable in a module that should not be visible in another module. Private
variables, like Public variables, are initialized every time a macro runs. A single variable name may be used
by two different modules as their own variable if the variable is declared Private.

Private oDialog As Variant

• Declaring a variable using Dim is equivalent to declaring a variable as Private.

• Private variables are only private, however, only with CompatibilityMode(True).

• Option Compatible has no affect on private variables.

A Private variable is visible outside the declaring module unless CompatibilityMode(True) is used. To see
for yourself, create two modules — Module1 and Module2 — in the same library. In Module1, add the
declaration “Private priv_var As Integer”. Macros in Module2 can use the variable “priv_var”. Even if
Module2 is located in a different library in the same document, the variable “priv_var” is visible and usable.
If CompatibilityMode(True) is used, however, then the private variable is no longer visible outside of the
declaring module.

In Module1, declare a variable “Private priv_var As Double”. A variable of the same name is declared in
Module2, but it is an Integer variable. Each module sees its own Private variable. Changing these two
variables to have Public scope rather than Private introduces an ugly situation; only one of these is visible
and usable, but you don’t know which one it is without performing a test. Assign the value 4.7 to the
variable, and see if it is an Integer or a Double.

 3.8. Operators

An operator is a symbol that denotes or performs a mathematical or logical operation. An operator, like a
function, returns a result. For example, the + operator adds two numbers. The arguments to the operator are
called operands. Operators are assigned a precedence. An operator with a precedence of 1 is said to have a
high precedence level; it is, after all, number 1!

TIP While typesetting mathematical equations, the minus sign (−) is represented using the Unicode character
U+2212. With OOo Basic, however, ASCII code 45 (-) must be used instead.

In OOo Basic (see Table 16), operators are evaluated from left to right with the restriction that an operator
with a higher precedence is used before an operator with a lower precedence. For example, 1 + 2 * 3
evaluates to 7 because multiplication has higher precedence than addition. Parentheses may be used to
modify the order of evaluation. For example, (1+2) * 3 evaluates to 9 because the expression inside the
parentheses is evaluated first.

Table 16. Operators supported by OpenOffice.org Basic.
Precedence Operator Type Description

1 NOT Unary Logical or bit-wise NOT

1 - Unary Leading minus sign, negation

1 + Unary Leading plus sign

2
^ Binary Numerical exponentiation. Standard mathematical precedence

would have exponentiation higher than negation.

62

Precedence Operator Type Description

3 * Binary Numerical multiplication

3 / Binary Numerical division

4 MOD Binary Numerical remainder after division

5 \ Binary Integer division

6 - Binary Numerical subtraction

6 + Binary Numerical addition and string concatenation

7 & Binary String concatenation

8 IS Binary Do both operands reference the same object?

8 = Binary Equals

8 < Binary Less than

8 > Binary Greater than

8 <= Binary Less than or equal to

8 >= Binary Greater than or equal to

8 <> Binary Not equal

9 AND Binary Bit-wise for numerics and logical for Boolean

9 OR Binary Bit-wise for numerics and logical for Boolean

9 XOR Binary Exclusive OR, bit-wise for numerics and logical for Boolean

9 EQV Binary Equivalence, bit-wise for numerics and logical for Boolean

9 IMP Binary Implication bit-wise for numerics and logical for Boolean.

TIP OOo Precedence does not follow standard mathematical rules; for example, negation should have a lower
precedence than exponentiation so -1^2 should be -1, not 1.

Visual Basic uses a different precedence for operators — for example, numerical exponentiation and
negation are switched, as are integer division and remainder after division.

The word “binary” means something made of or based on two things. “Unary” means something made of or
based on one thing. A binary operator, not to be confused with a binary number, is placed between two
operands. For example, the addition operator uses two operands with 1+2. In OOo Basic, binary operators
are always evaluated from left to right based on operator precedence. A unary operator requires one operand
that is placed directly to the right of the operator. For example, - (1 + 3). By necessity, a series of unary
operators are evaluated right to left. For example, + - (1+3) must evaluate the rightmost negation operator
first.

 3.8.1. Mathematical and string operators

Mathematical operators can be used with all numerical data types. When operands of different types are
mixed, a conversion is made to minimize the loss of precision. For example, 1 + 3.443 causes a conversion
to a floating-point number rather than a conversion to an Integer. If the first operand is a number and the
second operand is a string, the string is converted to a number. If the string does not contain a valid
numerical value, a zero is returned and no error is generated. Assigning a string directly to a numeric
variable, however, always assigns the value zero and no errors are generated.

63

Listing 33. Strings are automatically converted to numbers when required.
 Dim i As Integer
 i = "abc" 'Assigning a string with no numbers yields zero not an error
 Print i '0
 i = "3abc" 'Assigns 3, automatically converts as it can.
 Print i '3
 Print 4 + "abc" '4

OOo Basic tries to automatically convert types. No errors are generated when a string is used where a
number is required. This is discussed in depth later.

Unary plus (+) and minus (-)

OOo Basic allows unary operators to have spaces between the operator and the operand (see Table 9). Unary
operators also have the highest precedence and are evaluated from right to left. A leading plus sign is
arguably useless — it emphasizes that a constant is not negative but is otherwise effectively ignored. A
leading minus sign indicates numeric negation.

Exponentiation (^)

Numerical exponentiation supports integer and floating-point exponents. The exponentiation operator can
operate on a negative number only if the exponent is an integer.

result = number^exponent

A positive integer exponent has a conceptually simple representation. The number is multiplied by itself
exponent times. For example, 2^4 = 2 * 2 * 2 * 2.

1. OOo does not follow standard mathematical rules for exponentiation:

2. Exponentiation has a lower precedence than negation, so -1^2 incorrectly evaluates to 1.
OOo Basic evaluates multiple exponents (2^3^4) left to right ((2^3)^4), while standard mathematical
precedence evaluates right to left. (2^(3^4)).

Listing 34. Demonstrate exponentiation.
Sub ExampleExponent
 Dim s$
 s = "2^3 = " & 2^3 REM 2*2*2 = 8
 s = s & CHR$(10) & "3^2 = " & 3^2 REM 3 *3 = 9
 s = s & CHR$(10) & "-3^2 = " & -3^2 REM (-3) * (-3) = 9
 s = s & CHR$(10) & "2^3^2 = " & 2^3^2 REM 2^3^2 = 8^2 = 64
 s = s & CHR$(10) & "4^0.5 = " & 4^.5 REM 2
 s = s & CHR$(10) & "4^-0.5 = " & 4^-.5 REM .5
 s = s & CHR$(10) & "-1^2 = " & -1^2 REM 1
 s = s & CHR$(10) & "-(1^2) = " & -(1^2) REM -1
 MsgBox s
End Sub

64

Figure 28. Using the exponentiation operator.

Multiplication (*) and Division (/)

Multiplication and division have the same precedence.

Listing 35. Demonstrate multiplication and division.
Sub ExampleMultDiv
 Print "2*3 = " & 2*3 REM 6
 Print "4/2.0 = " & 4/2.0 REM 2
 Print "-3/2 = " & -3/2 REM -1.5
 Print "4*3/2 = " & 4*3/2 REM 6
End Sub

Remainder after division (MOD)

The MOD operator is also called “remainder after division.” For example, 5 MOD 2 is 1 because 5 divided
by 2 is 2 with a remainder of 1. All operands are rounded to Integer values before the operation is performed.

Listing 36. Definition of the MOD operator for integer operands x and y.
x MOD y = x - (y * (x\y))

Listing 37. Demonstrate mod operator.
REM x MOD y can also be written as
REM CInt(x) - (CInt(y) * (CInt(x)\CInt(y)))
REM CInt is used because the numbers must be rounded
REM before the operations are performed.
Sub ExampleMOD
 Dim x(), y(), s$, i%
 x() = Array (4, 15, 6, 6.4, 6.5, -15, 15, -15)
 y() = Array (15, 6, 3, 3, 3, 8, -8, -8)
 For i = LBound(x()) To UBound(x())
 s = s & x(i) & " MOD " & y(i) & " = " & (x(i) MOD y(i)) & CHR$(10)
 Next
 MsgBox s, 0, "MOD operator"
End Sub

65

Figure 29. Using the MOD operator.

TIP The operands for MOD are rounded to Integer values before the division is done.

Integer division (\)

Regular division expects to divide a Double by a Double, and it returns a Double as an answer. For example,
7.0 / 4.0 is 1.75. Integer division, on the other hand, expects to divide two Integers, and it returns an Integer
as an answer. For example, 7.2 \ 4.3 converts the operands to 7 \ 4 and then returns 1. The numeric constant
operands used with the Integer division operator are truncated to Integer values, and then Integer division is
performed. The result is a truncated result, not a rounded result. Listing 38 compares the difference between
Integer division and regular division.

Listing 38. Demonstrate integer division.
Sub ExampleIntDiv
 Dim f As Double
 Dim s$
 f = 5.9
 s = "5/2 = " & 5/2 REM 2.5
 s = s & CHR$(10) & "5\2 = " & 5\2 REM 2
 s = s & CHR$(10) & "5/3 = " & 5/3 REM 1.666666667
 s = s & CHR$(10) & "5\3 = " & 5\3 REM 1
 s = s & CHR$(10) & "5/4 = " & 5/4 REM 1.25
 s = s & CHR$(10) & "5\4 = " & 5\4 REM 1
 s = s & CHR$(10) & "-5/2 = " & -5/2 REM -2.5
 s = s & CHR$(10) & "-5\2 = " & -5\2 REM -2
 s = s & CHR$(10) & "-5/3 = " & -5/3 REM -1.666666667
 s = s & CHR$(10) & "-5\3 = " & -5\3 REM -1
 s = s & CHR$(10) & "-5/4 = " & -5/4 REM -1.25
 s = s & CHR$(10) & "-5\4 = " & -5\4 REM -1
 s = s & CHR$(10) & "17/6 = " & 17/6 REM 2.83333333333333
 s = s & CHR$(10) & "17\6 = " & 17\6 REM 2
 s = s & CHR$(10) & "17/5.9 = " & 17/5.9 REM 2.88135593220339
 s = s & CHR$(10) & "17\5 = " & 17\5 REM 3
 s = s & CHR$(10) & "17\5.9 = " & 17\5.9 REM 3 because 5.9 was truncated to 5.
 s = s & CHR$(10) & "17\f = " & 17\f REM 2 because f was rounded up to 6.
 s = s & CHR$(10) & "17\(11.9/2) = " & 17\(11.9/2) REM 3 because 11.9/2 truncated to 5.
 MsgBox s
End Sub

66

Figure 30. Integer division.
With integer division, constant numeric operands are truncated to Integer values before the division is done.
When variables are part of an operand, the operand's result is rounded, otherwise truncated.

Addition (+), subtraction (-), and string concatenation (& and +)

Addition and subtraction have the same precedence, which is higher than the string concatenation operator.
Care must be taken while adding numerical values because the plus operator can also signify string
concatenation. When the first operand for the plus operator is a number, and the second is a string; the string
is converted to a number. When the first operand for the plus operator is a string, and the second is a
number; the number is converted to a string.

Print 123 + "3" REM 126 (Numeric)
Print "123" + 3 REM 1233 (String)

The string operator tries to convert the operands to strings if at least one operand is a string.

Print 123 & "3" REM 1233 (String)
Print "123" & 3 REM 1233 (String)
Print 123 & 3 REM Use at least one string or it will not work!

Mixing string manipulations and numerical manipulations may lead to confusing results, especially because
string concatenation with the & operator has lower precedence than the + operator.

Print 123 + "3" & 4 '1264 Do addition then convert to String
Print 123 & "3" + 4 '12334 Do addition first but first operand is String
Print 123 & 3 + "4" '1237 Do addition first but first operand is Integer

 3.8.2. Logical and bit-wise operators

Each logical operator asks a simple question and provides a True or False answer. For example, is it true that
(you have money) AND (you want to purchase my book)? These types of operations are simple and are
frequently used in OOo Basic. Less frequently used, and provided for completeness to keep the computing

67

professionals happy, are the bit-wise operators. Bit-wise operators are not difficult, but if you don’t
understand them, it isn’t likely to affect your usage of OOo Basic.

A logical operator is usually thought to operate on True and False values. In OOo Basic, logical operators
also perform bit-wise operations on Integer values. This means that each bit of the first operand is compared
to the corresponding bit in the second operand to form the corresponding bit in the result. For example, the
binary operands 01 and 10 use the 0 from 01 and the 1 from 10 to produce the first bit of the result.

The unusual thing about logical and bit-wise binary operators in OOo Basic is that their precedence is the
same. In other languages, AND typically has greater precedence than OR.

Table 17 illustrates the logical and bit-wise operators supported by OOo. True and False represent logical
values, and 0 and 1 represent bit values.

Table 17. Truth table for logical and bit-wise operators.
x y x AND y x OR y x XOR y x EQV y x IMP y

True True True True False True True

True False False True True False False

False True False True True False True

False False False False False True True

1100 1010 1000 1110 0110 1001 1011

Internally, the logical operators cast their operands to type Long. An unexpected side effect is that a floating-
point operand is converted to a Long, which might cause numerical overflow. The conversion from a
floating-point number to a long integer number is done by rounding the value, not by truncating. The values
chosen for True (-1) and False (0) allow this to work, but the return type with two Boolean operands is still
sometimes of type Long.

Listing 39. Logical operands are of type long integer.
Sub LogicalOperandsAreLongs
 Dim v, b1 As Boolean, b2 As Boolean
 b1 = True : b2 = False
 v = (b1 OR b2)
 Print TypeName(v) REM Long because operands are converted to Long.
 Print v REM -1 because the return type is Long.
 Print (b2 OR "-1") REM -1 because "-1" is converted to a Long.
End Sub

For some logical expressions, not all operands need to be evaluated. For example, the expression (False
AND True) is known to be False by looking at the first operand and the operator AND. This is known as
“short-circuit evaluation.” Sadly, this isn’t available in OOo Basic; instead, all operands are evaluated.

TIP OOo Basic does not support short-circuit evaluation, so (x <> 0 AND y/x > 3) causes a division-by-zero
error when x is zero.

The bit-wise operators are all illustrated the same way. Two arrays are filled with Boolean values and two
integers are given an Integer value.

xi% = 12 : yi% = 10
x() = Array(True, True, False, False)
y() = Array(True, False, True, False)

68

The decimal number 12 is represented in base 2 as 1100, which corresponds to the values in x(). The
decimal number 10 is represented in base 2 as 1010, which corresponds to the value in y(). The operator is
then applied to “x(0) op y(0)”, “x(1) op y(1)”, “x(2) op y(2)”, “x(3) op y(3)”, and “xi op yi”. The result is
displayed in a message box. The integers are displayed as base 2 to emphasize that a bit-wise operation is
performed. Listing 40 demonstrates how an integer is converted to a stream of bits. This uses many
techniques that are discussed later in this chapter.

Listing 40. Convert an integer to binary.
Sub TestIntoToBinary
 Dim s$
 Dim n%
 Dim x%
 x = InputBox("Enter an integer")
 If x <> 0 Then
 n = Log(Abs(x)) / Log(2) + 1
 If (x < 0) Then
 n = n + 4
 End If
 Else
 n = 1
 End If
 print "s = " & IntToBinaryString(x, n)
End Sub

REM Convert an Integer value to a string of bits
REM x is the integer to convert
REM n is the number of bits to convert
REM This would be easier if I could shift out the lowest while
REM retaining the sign bit of the number, but I cannot.
REM I emulate this by dividing by two, but this fails for negative
REM numbers. To avoid this problem, if the number is negative
REM I flip all of the bits, which makes it a positive number and
REM then I build an inverted answer
Function IntToBinaryString(ByVal x%, ByVal n%) As String
 Dim b0$ 'Bit 0 (the right most bit) for positive numbers.
 Dim b1$ 'Bit 1 for positive numbers.
 If (x >= 0) Then 'Not negative so the algorithm will work.
 b1 = "1" : b0 = "0" 'Use the standard bit values.
 Else 'A negative number so
 x = NOT x 'flip all of the bits.
 b1 = "0" : b0 = "1" 'Invert bit 0 and invert bit 1.
 End If
 Dim s$ 'Accumulate bits as a string in s$.
 Do While n > 0 'n is the number of bits to return.
 If (x AND 1) = 1 Then 'AND with 1 to find bit 0 (the right most bit).
 s = b1$ & s 'Bit 1 set so add a 1 (if x was negative add 0).
 Else
 s = b0$ & s 'Bit 1 clear so add a 0 (if x was negative add 1).
 End If
 x = x\2 'Integer division by 2.
 n = n - 1 'Decrement n by 1, just finished a bit.
 Loop 'Back to the top of the While.
 IntToBinaryString = s 'Assign the return value to the Function.

69

End Function

AND

Perform a logical AND operation on Boolean values, and a bit-wise AND on numerical values. Consider the
phrase, “You can go to the movie if you have money AND if you have transportation.” Both conditions must
be true before you are able to go to the movie. If both operands are True, then the result is True; otherwise
the result is False.

Listing 41. Operator AND.
Sub ExampleOpAND
 Dim s$, x(), y(), i%, xi%, yi%
 xi% = 12 : yi% = 10
 x() = Array(True, True, False, False)
 y() = Array(True, False, True, False)
 For i = LBound(x()) To UBound(x())
 s = s & x(i) & " AND " & y(i) & " = " & CBool(x(i) AND y(i)) & CHR$(10)
 Next
 s = s & IntToBinaryString(xi, 4) & " AND " & IntToBinaryString(yi, 4) &_
 " = " & IntToBinaryString(xi AND yi, 4) & CHR$(10)
 MsgBox s, 0, "Operator AND example"
End Sub

Figure 31. Using the AND operator.

OR

Perform a logical OR operation on Boolean values, and a bit-wise OR on numerical values. Consider the
phrase, “You can purchase that if you have cash OR your friend has cash.” It does not matter who has cash.
If either operand is True, then the result is True; otherwise the result is False.

Listing 42. Operator OR.
Sub ExampleOpOR
 Dim s$, x(), y(), i%, xi%, yi%
 xi% = 12 : yi% = 10
 x() = Array(True, True, False, False)
 y() = Array(True, False, True, False)
 For i = LBound(x()) To UBound(x())
 s = s & x(i) & " OR " & y(i) & " = " & CBool(x(i) OR y(i)) & CHR$(10)
 Next
 s = s & IntToBinaryString(xi, 4) & " OR " & IntToBinaryString(yi, 4) &_
 " = " & IntToBinaryString(xi OR yi, 4) & CHR$(10)
 MsgBox s, 0, "Operator OR example"
End Sub

70

Figure 32. Using the OR operator.

XOR

The XOR operator is called “exclusive or”; this is a question of non-equivalence. The result is True if the
operands have different values. The result is False if both operands have the same value. A logical XOR
operation is performed on Boolean values, and a bit-wise XOR is performed on numerical values.

Listing 43. Operator XOR.
Sub ExampleOpXOR
 Dim s$, x(), y(), i%, xi%, yi%
 xi% = 12 : yi% = 10
 x() = Array(True, True, False, False)
 y() = Array(True, False, True, False)
 For i = LBound(x()) To UBound(x())
 s = s & x(i) & " XOR " & y(i) & " = " & CBool(x(i) XOR y(i)) & CHR$(10)
 Next
 s = s & IntToBinaryString(xi, 4) & " XOR " & IntToBinaryString(yi, 4) &_
 " = " & IntToBinaryString(xi XOR yi, 4) & CHR$(10)
 MsgBox s, 0, "Operator XOR example"
End Sub

Figure 33. Using the XOR operator.

EQV

The EQV operator is a question of equivalence: Are the two operands the same? A logical EQV operation is
performed for Boolean values, and a bit-wise EQV on numbers. If both operands have the same value, the
result is True. If the operands don’t have the same value, the result is False.

Listing 44. Operator EQV.
Sub ExampleOpEQV
 Dim s$, x(), y(), i%, xi%, yi%
 xi% = 12 : yi% = 10
 x() = Array(True, True, False, False)
 y() = Array(True, False, True, False)
 For i = LBound(x()) To UBound(x())
 s = s & x(i) & " EQV " & y(i) & " = " & CBool(x(i) EQV y(i)) & CHR$(10)

71

 Next
 s = s & IntToBinaryString(xi, 4) & " EQV " & IntToBinaryString(yi, 4) &_
 " = " & IntToBinaryString(xi EQV yi, 4) & CHR$(10)
 MsgBox s, 0, "Operator EQV example"
End Sub

Figure 34. Using the EQV operator.

IMP

The IMP operator performs a logical implication. A logical IMP operation is performed on Boolean values,
and a bit-wise IMP on numbers. As the name implies, “x IMP y” asks if the statement that “x implies y” is a
true statement. To help understand logical implication, define x and y as follows:

x = The sky is cloudy
y = The sun is not visible
If x Then y

If both x and y are true — the sky is cloudy and the sun is not visible — the statement can be considered
true. This statement makes no claim about y if x is not true. In other words, if the sky is not cloudy, this
statement does not imply that the sun is, or is not, visible. For example, it might be a clear night, or (like a
good computer geek) you might be inside a room without any windows. This explains why the entire
statement is always considered valid when x is false. Finally, if x is true and y is not, the entire statement is
considered false. If the sky is cloudy, and the sun is visible, the statement cannot possibly be correct; a
cloudy day could not imply that the sun is visible.

Listing 45. Operator IMP.
Sub ExampleOpIMP
 Dim s$, x(), y(), i%, xi%, yi%
 xi% = 12 : yi% = 10
 x() = Array(True, True, False, False)
 y() = Array(True, False, True, False)
 For i = LBound(x()) To UBound(x())
 s = s & x(i) & " IMP " & y(i) & " = " & CBool(x(i) IMP y(i)) & CHR$(10)
 Next
 s = s & IntToBinaryString(xi, 4) & " IMP " & IntToBinaryString(yi, 4) &_
 " = " & IntToBinaryString(xi IMP yi, 4) & CHR$(10)
 MsgBox s, 0, "Operator IMP example"
End Sub

72

Figure 35. Using the IMP operator.

NOT

The NOT operator performs a logical NOT operation on Boolean values, and a bit-wise NOT on numerical
values. This means that “Not True” is False and “Not False” is True. For bit-wise operations, a 1 becomes a
0 and a 0 becomes a 1.

Print NOT True REM 0, which is False
Print NOT False REM -1, which is True
Print NOT 2 REM -3, which took the bits 0010 to 1101

 3.8.3. Comparison operators

The comparison operators work with numerical, Date, Boolean, and String data types.

Print 2 = 8/4 AND 0 < 1/3 AND 2 > 1 '-1=True
Print 4 <= 4.0 AND 1 >= 0 AND 1 <> 0 '-1=True

String comparisons are based on their internal representations as numbers and are case sensitive. The letter
“A” is less than the letter “B”. The uppercase characters are less than the lowercase letters.

Dim a$, b$, c$
a$ = "A" : b$ = "B" : c$ = "B"
Print a$ < b$ 'True
Print b$ = c$ 'True
Print c$ <= a$ 'False

Strange problems occur when all of the operands are string constants. If at least one operand is a variable,
the expected results are achieved. This is likely related to how the operands are recognized and converted for
use.

Print "A" < "B" '0=False, this is not correct
Print "B" < "A" '-1=True, this is not correct
Print 3 = "3" 'False, but this changes if a variable is used

When variables are used rather than string constants, the numerical values are converted to string types for
the comparison.

Dim a$, i%, t$
a$ = "A" : t$ = "3" : i% = 3
Print a$ < "B" 'True, String compare
Print "B" < a$ 'False, String compare
Print i% = "3" 'True, String compare
Print i% = "+3" 'False, String compare
Print 3 = t$ 'True, String compare
Print i% < "2" 'False, String compare
Print i% > "22" 'True, String compare

73

TIP When comparing operands of different types, especially when mixing numeric and string types, it is safer
to explicitly perform a type conversion. Either convert the string to a number, or the number to a string.
The functions to do this are discussed later.

OOo recognizes the Visual Basic statement Option Compare { Binary | Text}, but as of OOo version 3.20,
the statement still does nothing. The current behavior is a binary comparison of strings.

 3.9. Flow control

Flow control is about deciding which line of code runs next. Calling a subroutine or function is a simple
form of unconditional flow control. More complicated flow control involves branching and looping. Flow
control allows macros to have complicated behavior that changes based on the current data.

Branching statements cause the program flow to change. Calling a subroutine or function is an unconditional
branch. OOo Basic supports conditional branching statements such as “if x, then do y”. Looping statements
cause the program to repeat sections of code. Looping statements allow for a section to be repeated a
specific number of times or until a specific “exit” condition has been achieved.

 3.9.1. Define a label as a jump target

Some flow control statements, such as GoSub, GoTo, and On Error, require a label to mark a point in the
code. Label names are subject to the same rules as variable names. Label names are immediately followed
by a colon. Remember that a colon is also used as a statement separator that allows multiple statements to
occupy the same line. Space between the label name and the colon causes the colon to be used as a statement
separator, which means the label won’t be defined. The following lines all represent valid OOo Basic code.

 <statements>
 i% = 5 : z = q + 4.77

MyCoolLabel:
 <more statements>

JumpTarget: <more statements> REM no space between label and colon

TIP Inserting a space between a label and the colon causes the colon to be used as a statement separator, and
the label is not defined.

 3.9.2. GoSub

The GoSub statement causes execution to jump to a defined label in the current routine. It isn’t possible to
jump outside of the current routine. When the Return statement is reached, execution continues from the
point of the original call. A Return statement with no previous GoSub produces a run-time error. In other
words, Return is not a substitute for Exit Sub or Exit Function. It is generally assumed that functions and
subroutines produce more understandable code than GoSub and GoTo.

TIP GoSub is a persistent remnant from old BASIC dialects, retained for compatibility. GoSub

is strongly discouraged because it tends to produce unreadable code. Use a subroutine or

function instead. In fact, Visual Basic .NET no longer supports the GoSub keyword.

74

Listing 46. Example GoSub.
Sub ExampleGoSub
 Dim i As Integer
 GoSub Line2 REM Jump to line 2 then return, i is 1
 GoSub [Line 1] REM Jump to line 1 then return, i is 2
 MsgBox "i = " + i, 0, "GoSub Example" REM i is now 2
 Exit Sub REM Leave the current subroutine.
[Line 1]: REM this label has a space in it
 i = i + 1 REM Add one to i
 Return REM return to the calling location
Line2: REM this label is more typical, no spaces
 i = 1 REM Set i to 1
 Return REM return to the calling location
End Sub

 3.9.3. GoTo

The GoTo statement causes execution to jump to a defined label in the current routine. It isn’t possible to
jump outside of the current routine. Unlike the GoSub statement, the GoTo statement doesn’t know from
where it came. GoTo is a persistent remnant from old BASIC dialects, retained for compatibility. GoTo is
strongly discouraged because it tends to produce unreadable code. Use a subroutine or function instead.

Listing 47. Example GoTo.
Sub ExampleGoTo
 Dim i As Integer
 GoTo Line2 REM Okay, this looks easy enough
Line1: REM but I am becoming confused
 i = i + 1 REM I wish that GoTo was not used
 GoTo TheEnd REM This is crazy, makes me think of spaghetti,
Line2: REM Tangled strands going in and out; spaghetti code.
 i = 1 REM If you have to do it, you probably
 GoTo Line1 REM did something poorly.
TheEnd: REM Do not use GoTo.
 MsgBox "i = " + i, 0, "GoTo Example"
End Sub

 3.9.4. On GoTo and On GoSub

These statements cause the execution to branch to a label based on a numeric expression N. If N is zero, no
branching occurs. The numeric expression N must be in the range of 0 through 255. This is sometimes called
a “computed goto,” because a computation is used to direct the program flow. It isn’t possible to jump
outside of the current subroutine.

Syntax: On N GoSub Label1[, Label2[, Label3[,...]]]
Syntax: On N GoTo Label1[, Label2[, Label3[,...]]]

To reiterate how this works, if N = 1 then branch to Label 1, if N = 2 then branch to Label 2... If N is less
than 1 or if N is greater than the number of labels, then the branch is not taken; it is simply ignored.

Listing 48. Example On GoTo.
Sub ExampleOnGoTo
 Dim i As Integer
 Dim s As String
 i = 1
 On i+1 GoSub Sub1, Sub2

75

 s = s & Chr(13)
 On i GoTo Line1, Line2
 REM The exit causes us to exit if we do not continue execution
 Exit Sub
Sub1:
 s = s & "In Sub 1" : Return
Sub2:
 s = s & "In Sub 2" : Return
Line1:
 s = s & "At Label 1" : GoTo TheEnd
Line2:
 s = s & "At Label 2"
TheEnd:
 MsgBox s, 0, "On GoTo Example"
End Sub

 3.9.5. If Then Else

The If construct is used to execute a block of code based on an expression. Although you can use GoTo or
GoSub to jump out of an If block, you cannot jump into an If block. The simplest If statement has the
following form:

If Condition Then Statement

The condition can be any expression that either evaluates to — or is convertible to — True or False. Use a
slightly more complicated version to control more than a single statement.

If Condition Then
 Statementblock
[ElseIf Condition Then]
 Statementblock
[Else]
 Statementblock
End If

If the first condition evaluates to True, the first block runs. The ElseIf statement allows multiple If
statements to be tested in sequence. The statement block for the first true condition runs. The Else statement
block runs if no other condition evaluates to True.

Listing 49. Example If.
Sub ExampleIf
 Dim i%
 i% = 4
 If i = 4 Then Print "i is four"
 If i <> 3 Then
 Print "i is not three"
 End If
 If i < 1 Then
 Print "i is less than 1"
 elseif i = 1 Then
 Print "i is 1"
 elseif i = 2 Then
 Print "i is 2"
 else
 Print "i is greater than 2"

76

 End If
End Sub

If statements can be nested.

If i <> 3 THEN
 If k = 4 Then Print "k is four"
 If j = 7 Then
 Print "j is seven"
 End If
End If

 3.9.6. IIf

The IIf (“Immediate If”) function returns one of two values based on a conditional expression.

Syntax: object = IIf (Condition, TrueExpression, FalseExpression)

This is very similar to the following code:

If Condition Then
 object = TrueExpression
Else
 object = FalseExpression
End If

This works as a great single-line If-Then-Else statement.

max_age = IIf(johns_age > bills_age, johns_age, bills_age)

 3.9.7. Choose

The Choose statement selects from a list of values based on an index.

Syntax: obj = Choose (expression, Select_1[, Select_2, ... [,Select_n]])

The Choose statement returns a null if the expression is less than 1 or greater than the number of selection
arguments. Choose returns “select_1” if the expression evaluates to 1, and “select_2” if the expression
evaluates to 2. The result is similar to storing the selections in an array with a lower bound of 1 and then
indexing into the array.

Listing 50. A division-by-zero error occurs even though 1/(i-2) should be returned.
i% = 3
Print Choose (i%, 1/(i+1), 1/(i-1), 1/(i-2), 1/(i-3))

Selections can be expressions and they can contain function calls. Every function is called and every
expression is evaluated in the argument list for the call to the Choose statement. The code in Listing 50
causes a division-by-zero error because every argument is evaluated, not just the argument that will be
returned. Listing 51 calls the functions Choose1, Choose2, and Choose3.

Listing 51. Example Choose statement.
Sub ExampleChoose
 Print Choose(2, "One", "Two", "Three") 'Two
 Print Choose(2, Choose1(), Choose2(), Choose3()) 'Two
End Sub
Function Choose1$()
 Print "I am in Choose1"
 Choose1 = "One"

77

End Function
Function Choose2$()
 Print "I am in Choose2"
 Choose2 = "Two"
End Function
Function Choose3$()
 Print "I am in Choose3"
 Choose3 = "Three"
End Function

TIP All arguments in a Choose statement are evaluated. If functions are used in the arguments for Choose, they
are all called.

 3.9.8. Select Case

The Select Case statement is similar to an If statement with multiple Else If blocks. A single-condition
expression is specified and this is compared against multiple values for a match as follows:

Select Case condition_expression
 Case case_expression1
 StatementBlock1
 Case case_expression2
 StatementBlock2
 Case Else
 StatementBlock3
End Select

The condition_expression is compared in each Case statement. The first statement block to match is
executed. The optional Case Else block runs if no condition matches. It is not an error if nothing matches
and no Case Else block is present.

Case expressions

The conditional expression is evaluated once and then it is compared to each case expression until a match is
found. A case expression is usually a constant, such as “Case 4” or “Case "hello"”.

Select Case 2
 Case 1
 Print "One"
 Case 3
 Print "Three"
End Select

You can specify multiple values by separating them with commas: “Case 3, 5, 7”. The keyword To
checks a range of values — for example, “Case 5 To 10”. Open-ended ranges are checked as “Case <
10” or as “Case IS < 10”.

TIP The Case IS statement is different than the IS operator that decides if two objects are the same.

Every Case statement written “Case op expression” is shorthand for writing “Case IS op expression”. The
form “Case expression” is shorthand for “Case IS = expression”. For example, “Case >= 5” is
equivalent to “Case IS >= 5”, and “Case 1+3” is equivalent to “Case IS = 1+3”.

Select Case i

78

 Case 1, 3, 5
 Print "i is one, three, or five"
 Case 6 To 10
 Print "i is a value from 6 through 10"
 Case < -10
 Print "i is less than -10"
 Case IS > 10
 Print "i is greater than 10"
 Case Else
 Print "No idea what i is"
End Select

A Case statement can contain a list of expressions separated by commas. Each expression can include an
open-ended range. Each expression can use the statement Case IS (see Listing 52).

Listing 52. The keyword IS is optional.
Select Case i%
 Case 6, Is = 7, Is = 8, Is > 15, Is < 0
 Print "" & i & " matched"
 Case Else
 Print "" & i & " is out of range"
End Select

If Case statements are easy, why are they frequently incorrect?

I frequently see incorrect examples of Case statements. It’s instructive to see what is repeatedly done
incorrectly. Consider the simple examples in Table 18. The last examples are written correctly in Table 20.

Table 18. Case statements are frequently written incorrectly.
Example Valid Description
Select Case i
 Case 2

Correct The Case expression 2 is evaluated as two. Two is compared to i.

Select Case i
 Case Is = 2

Correct The Case expression 2 is evaluated as two. Two is compared to i.

Select Case i
 Case Is > 7

Correct The expression 7 is evaluated as seven. Seven is compared to i.

Select Case i
 Case 4, 7, 9

Correct The conditional expression i is compared individually to 4, 7, and 9.

Select Case x
 Case 1.3 TO 5.7

Correct You can specify a range and use floating-point numbers.

Select Case i
 Case i = 2

Incorrect The Case expression (i=2) is evaluated as True or False. True or False is
compared to i. This is reduced to “IS = (i=2)”.

Select Case i
 Case i<2 OR i>9

Incorrect The Case expression (i<2 OR 9<i) is evaluated as True or False. True or
False is compared to i. This is reduced to “IS = (i<2 OR 9<i)”.

Select Case i%
 Case i%>2 AND i%<10

Incorrect The Case expression (i>2 AND i < 10) is evaluated as True or False. True
or False is compared to i. This is reduced to “IS = (i>2 AND i<10)”.

Select Case i%
 Case IS>8 And i<11

Incorrect Again, True and False are compared to i. This is reduced to “IS > (8 AND
i<11)”. The precedence rules cause this to be reduced to “IS > (8 AND
(i<11))”. This is usually not what’s intended.

Select Case i%
 Case IS>8 And IS<11

Incorrect Compile error. The keyword IS must immediately follow Case.

79

I have seen OOo examples with incorrect examples such as “Case i > 2 AND i < 10”. This fails. Don’t
believe it even though you see it in print. Understand why this fails and you have mastered Case statements.

The next to the last incorrect example in Table 18 demonstrates the most common error that I see with Case
expressions. Listing 53 considers the case when i is less than 11, and the case when i is greater than or equal
to 11. To put it simply, IS>8 AND i<11 has the Case statement comparing the value of i to the result of a
Boolean expression, which can be only 0 or -1. The big difficulty with Case statements is that they look like
If statements, which are looking for a True or False, but Case statements are looking for a particular value
against which to match the conditional, and 0 or -1 is not helpful.

Consider the second case in Listing 53, i >= 11. The operator < has higher precedence than the operator
AND, so it is evaluated first. The expression i<11 evaluates to False (because I assumed that i>=11). False
is internally represented as 0. Zero has no bits set, so 8 AND 0 evaluates to zero. For values of i greater than
or equal to 11, the entire expression is equivalent to “IS > 0”. In other words, for i = 45, this Case
statement is incorrectly accepted.

A similar argument for values of i less than 11, left as an exercise for the reader, demonstrates that the Case
statement is equivalent to “Case IS > 8”. Therefore, values of i less than 11 are correctly evaluated, but
values of i greater than or equal to 11 are not.

Listing 53. “Case IS > 8 AND i < 11” reduces incorrectly.
IS > (8 AND i < 11) => IS > (8 AND -1) => IS > 8 'Assume i < 11 is correct.
IS > (8 AND i < 11) => IS > (8 AND 0) => IS > 0 'Assume i >= 11 is unwanted.

Writing correct Case expressions

After you learn a few simple examples, it’s easy to write correct Case expressions. Table 19 abstractly
enumerates the varieties, and Listing 57 concretely demonstrates the varieties.

Table 19. Simple Case varieties.
Example Description
Case IS operator expression This is both the simplest case and the most difficult case. If the expression is

a constant, it is easy to understand. If the expression is more complicated,
the only difficult part is building the expression.

Case expression This is a reduction of “Case IS operator expression” when the operator
checks for equality.

Case expression TO expression Check an inclusive range. This is usually done correctly.

Case expression, expression, Each expression is compared. This is usually done correctly.

For the difficult cases, it suffices to produce an expression that evaluates to the Case condition expression if
it is correct, and anything else if it is not. In other words, for Select Case 4, the expression must evaluate to 4
for the statement block to run.

Listing 54. If x is a String value, this will work for any Boolean expression.
Select Case x
 Case IIF(Boolean expression, x, x&"1") ' Assumes that x is a string

In Listing 54, x is returned if the Boolean expression is True. The expression x=x is True, so the Case
statement passes. If the Boolean expression is False, x&"1" is returned. This is not the same string as x, so
the Case statement will not pass. A similar method is used for numerical values.

80

Listing 55. If x is a numerical value, this will work for any Boolean expression.
Select Case x
 Case IIF(Boolean expression, x, x+1) ' Assumes that x is numeric

In Listing 55, x is returned if the Boolean expression is True. The expression x=x is True, so the Case
statement passes. If the Boolean expression is False, x+1 is returned. For numerical values, x=x+1 is not
True, so the Case statement will not pass. There is a possibility of numerical overflow, but in general this
works. A brilliant and more elegant solution for numerical values is provided by Bernard Marcelly, a
member of the OOo French translation project.

Case x XOR NOT (Boolean Expression)

This assumes that the Boolean expression returns True (-1) if it should pass and False (0) if it should not.

Listing 56. This code uses XOR and NOT in a Case statement.
x XOR NOT(True) = x XOR NOT(-1) = x XOR 0 = x
x XOR NOT(False) = x XOR NOT(0) = x XOR -1 <> x

After my initial confusion, I realized how brilliant this really is. There are no problems with overflow and it
works for all Integer values of x. Do not simplify this to the incorrect reduction “x AND (Boolean
expression)” because it fails if x is 0.

Listing 57. Select Case example.
Sub ExampleSelectCase
 Dim i%
 i = Int((20 * Rnd) -2) 'Rnd generates a random number between zero and one
 Select Case i%
 Case 0
 Print "" & i & " is Zero"
 Case 1 To 5
 Print "" & i & " is a number from 1 through 5"
 Case 6, 7, 8
 Print "" & i & " is the number 6, 7, or 8"
 Case IIf(i > 8 And i < 11, i, i+1)
 Print "" & i & " is greater than 8 and less than 11"
 Case i% XOR NOT(i% > 10 AND i% < 16)
 Print "" & i & " is greater than 10 and less than 16"
 Case Else
 Print "" & i & " is out of range 0 to 15"
 End Select
End Sub

ExampleSelectCase in Listing 57 generates a random integer from -2 through 18 each time it runs. Run this
repeatedly to see each Case statement used. Each of the cases could have used the IIF construct.

Now that I’ve explained the different methods to deal with ranges, it’s time to reevaluate the incorrect cases
in Table 18. The solutions in Table 20 are not the only possible solutions, but they use some of the solutions
presented.

Table 20. Incorrect examples from Table 18 — now corrected.
Incorrect Correct Description
Select Case i
 Case i = 2

Select Case i
 Case 2

The variable i is compared to 2.

Select Case i
 Case i = 2

Select Case i
 Case IS = 2

The variable i is compared to 2.

81

Incorrect Correct Description
Select Case i
 Case i<2 OR i>9

Select Case i
 Case IIf(i<2 OR i>9, i, i+1)

This works even if i is not an integer.

Select Case i%
 Case i%>2 AND i%<10

Select Case i%
 Case 3 TO 9

i% is an integer so the range is from 3
through 9.

Select Case i%
 Case IS>8 And i<11

Select Case i%
 Case i XOR NOT(i>8 AND i< 11)

This works because i% is an integer.

 3.9.9. While ... Wend

Use the While ...Wend statement to repeat a block of statements while a condition is true. This construct has
limitations that do not exist with the Do While ... Loop construct and offers no particular benefits. The
While ... Wend statement does not support an Exit statement. You cannot use GoTo to exit a While ... Wend
statement.

While Condition
 StatementBlock
Wend

Visual Basic .NET does not support the keyword Wend. This is another reason to use the Do While ... Loop
instead.

 3.9.10. Do ... Loop

The Loop construct has different forms and is used to continue executing a block of code while, or until, a
condition is true. The most common form checks the condition before the loop starts, and repeatedly
executes a block of code as long as the condition is true. If the initial condition is false, the loop is never
executed.

Do While condition
 Block
 [Exit Do]
 Block
Loop

A similar, but much less common form, repeatedly executes the code as long as the condition is false. In
other words, the code is executed until the condition becomes true. If the condition evaluates to true
immediately, the loop never runs.

Do Until condition
 Block
 [Exit Do]
 Block
Loop

You can place the check at the end of the loop, in which case the block of code is executed at least once.
With the following construct, the loop runs at least once and then repeatedly runs as long as the condition is
true:

Do
 Block
 [Exit Do]
 Block
Loop While condition

82

To execute the loop at least once and then continue as long as the condition is false, use the following
construct:

Do
 Block
 [Exit Do]
 Block
Loop Until condition

Exit the Do Loop

The Exit Do statement causes an immediate exit from the loop. The Exit Do statement is valid only within a
Do ... Loop. Program execution continues with the statement that follows the innermost Loop statement. The
subroutine ExampleDo in Listing 58 demonstrates a Do While Loop by searching an array for a number.

Listing 58. Do Loop example.
Sub ExampleDo
 Dim a(), i%, x%
 a() = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30)
 x = Int(32 * Rnd) REM random integer between 0 and 32
 i = LBound(a()) REM i is the lower bound of the array.
 Do While a(i) <> x REM while a(i) is not equal to x
 i = i + 1 REM Increment i
 If i > UBound(a()) Then Exit Do REM If i is too large, then exit
 Loop REM Loop back to the Do While
 If i <= UBound(a()) Then REM If i is not too large then found x
 MsgBox "Found " & x & " at location " & i, 0, "Example Do"
 Else
 MsgBox "Could not find " & x & " in the array", 0, "Example Do"
 End If
End Sub

Which Do Loop should I use?

OOo Basic supports four variants of the Do Loop construct. Each variant has a particular purpose and time
for use. The most common problem is that the loop runs one time too few or one time too many because the
conditional expression was incorrectly placed at the wrong location.

When deciding where to place the conditional expression of a Do Loop, ask yourself this question: “Must
the loop always run at least once?” If the answer is no, the conditional expression must be at the top. This
will prevent the code in the loop from running if the conditional expression fails. Consider, for example,
printing all of the elements in an array of unknown size. The array might contain no elements at all, in which
case the code in the loop shouldn’t run (see Table 21).

Table 21. While and Until loops are very similar.
Do While Do Until

i% = LBound(a())
Do While i% <= UBound(a())
 Print a(i%)
 i% = i% + 1
Loop

i% = LBound(a())
Do Until i% > UBound(a())
 Print a(i%)
 i% = i% + 1
Loop

83

In each case in Table 21, if the array is empty, the loop never runs. Before the condition is evaluated, i% is
set to the lower bound of the array. In each case, the loop continues to run while i% is not larger than the
upper bound.

Consider the difference between a While loop and an Until loop with a simple example. While the car has
gas, you may drive it. Until the car does not have gas, you may drive it. The primary difference between the
While and the Until is the word NOT. Tending more toward OOo Basic, I can write “Until NOT (the car has
gas).” The choice between While and Until is usually based on which one you can write without the NOT.

If the loop should run at least once, move the conditional expression to the end of the Do Loop. Consider
requesting user input until a valid value has been entered. The most natural choice is to place the conditional
expression at the end.

Dim s$, x As Double
Do
 s$ = InputBox("Enter a number from 1 through 5")
 x = CDbl(s$) 'Convert the string to a Double
Loop Until x >= 1 AND x <= 5

The loop must run at least once so that at least one number is entered. The loop repeats until a valid value is
entered. As an exercise, consider how to write this as a While loop.

 3.9.11. For ... Next

The For ... Next statement repeats a block of statements a specified number of times.

For counter=start To end [Step stepValue]
 statement block1
 [Exit For]
 statement block2
Next [counter]

The numeric “counter” is initially assigned the “start” value. When the program reaches the Next statement,
the counter is incremented by the “step” value, or incremented by one if a “step” value is not specified. If the
“counter” is still less than or equal to the “end” value, the statement blocks run. An equivalent Do While
Loop follows:

counter = start
Do While counter <= end
 statement block1
 [Exit Do]
 statement block2
 counter = counter + step
Loop

The “counter” is optional on the “Next” statement, and it automatically refers to the most recent “For”
statement.

For i = 1 To 4 Step 2
 Print i ' Prints 1 then 3
Next i ' The i in this statement is optional.

The Exit For statement leaves the For statement immediately. The most recent For statement is exited.
Listing 59 demonstrates this with a sorting routine. An array is filled with random integers, and then sorted
using two nested loops. This technique is called a “modified bubble sort.”

84

First, iOuter is set to the last number in the array. The inner loop, using iInner, compares every number to the
one after it. If the first number is larger than the second number, the two numbers are swapped. The second
number is then compared to the third number. After the inner loop is finished, the largest number is
guaranteed to be at the last position in the array.

Next, iOuter is decremented by 1. The inner loop this time ignores the last number in the array, and
compares every number to the one after it. At the end of the inner loop, the second-highest number is second
from the end.

With each iteration, one more number is moved into position. If no numbers are exchanged, the list is sorted.

Listing 59. Modified bubble sort.
Sub ExampleForNextSort
 Dim iEntry(10) As Integer
 Dim iOuter As Integer, iInner As Integer, iTemp As Integer
 Dim bSomethingChanged As Boolean

 ' Fill the array with integers between -10 and 10
 For iOuter = LBound(iEntry()) To Ubound(iEntry())
 iEntry(iOuter) = Int((20 * Rnd) -10)
 Next iOuter

 ' iOuter runs from the highest item to the lowest
 For iOuter = UBound(iEntry()) To LBound(iEntry()) Step -1

 'Assume that the array is already sorted and see if this is incorrect
 bSomethingChanged = False
 For iInner = LBound(iEntry()) To iOuter-1
 If iEntry(iInner) > iEntry(iInner+1) Then
 iTemp = iEntry(iInner)
 iEntry(iInner) = iEntry(iInner+1)
 iEntry(iInner+1) = iTemp
 bSomethingChanged = True
 End If
 Next iInner
 'If the array is already sorted then stop looping!
 If Not bSomethingChanged Then Exit For
 Next iOuter
 Dim s$
 For iOuter = LBound(iEntry()) To Ubound(iEntry())
 s = s & iOuter & " : " & iEntry(iOuter) & CHR$(10)
 Next iOuter
 MsgBox s, 0, "Sorted Array"
End Sub

 3.9.12. Exit Sub and Exit Function

The Exit Sub statement exits a subroutine, and the Exit Function statement exits a function. The routine is
exited immediately. The macro continues running at the statement following the statement that called the
current routine. These statements work only to exit the currently running routine, and they are valid only in
their respective types. For example, you can’t use Exit Sub in a function.

85

 3.10. Error handling using On Error

Errors are usually placed into three “categories” — compile time, run time, and logic. Compile-time errors
are typically syntax errors such as missing double quotation marks that prevent your macro from compiling.
Compile-time errors are the easiest to deal with because they are found immediately and the IDE shows you
which line caused the problem. Run-time errors compile properly but cause an error when the macro runs.
For example, dividing by a variable that at some point evaluates to zero will cause a run-time error. The
third type, logic errors, are mistakes in the business logic of the program: They compile and run okay, but
generate the wrong answers. They’re the worst kind because you have to find them yourself — the computer
won’t help you at all. This section is about run-time errors: how to deal with them and how to correct them.

An error handler is a piece of code that runs when an error occurs. The default error handler displays an error
message and stops the macro. OOo Basic provides a mechanism to modify this behavior (see Table 22). The
first form, On Error Resume Next, tells OOo to ignore all errors: No matter what happens, keep running and
pretend everything is fine. The second form, On Error GoTo 0, tells OOo to stop using the current error
handler. Ignoring error handler scope issues, as explained later, think of On Error GoTo 0 as restoring the
default method of handling errors: Stop running and display an error message. The final form, On Error
GoTo LabelName, allows you to define code to handle errors the way that you want. This is called “setting
up an error handler.”

Table 22. Supported On Error forms.
Form Usage
On Error Resume Next Ignore errors and continue running at the next line in the

macro.

On Error GoTo 0 Cancel the current error handler.

On Error GoTo LabelName Transfer control to the specified label.

When an error occurs, the code that was running stops running, and control is transferred to the current error
handler. The error handlers use the functions in Table 23 to determine the cause and location of the error.
Visual Basic uses an Error object and does not support the functions in Table 23.

Table 23. Error-related variables and functions.
Function Use

CVErr Convert an expression to an error object.

Erl Integer line number of the last error.

Err Integer error number of the last error.

Error Error message of the last error.

All error handlers must be declared in a routine and are local to the containing subroutine or function. When
an error occurs, OOo Basic starts working backward through the call stack until it finds an error handler. If it
doesn’t find an error handler, it uses the default handler. The default handler prints an error message and
halts the program. The error information, such as Erl, indicates the line number in the current routine that
caused the error. For example, if the current routine calls the function b() at line 34 and an error occurs in
b(), the error is reported as occurring at line 34. Listing 60 contains an example of this, and Figure 36 shows
the call stack. Another example is shown in Listing 64.

Listing 60. Use Erl to get the line number.
 x = x + 1 'Assume that this is line 33

86

 Call b() 'Error in b() or something b() calls (line 34)
 Exit Sub 'Leave the subroutine
ErrorHandler: 'No other handlers between here and the error
 Print "error at " & Erl 'Prints line 34

Figure 36. Walk the call stack to find a handler.
You cannot catch errors that occur in a DLL. Check the return code from the called DLL instead.

 3.10.1. CVErr

Use CVErr (as mentioned in Table 23) to create an OOo specific internal data type that represents an error. I
have never seen this done, but it can be useful for a very robust function.

CVErr returns an internal OOo type that should be assigned to a variant variable. Why?

1. Use VarType to check the type of the returned value. A VarType of 10 means that an error object was
returned (see Table 85).

2. CVErr accepts an integer, which represents the internal error code that occurred. The internal error
object casts to an integer and returns that internal error code.

The following example demonstrates CVErr.

Listing 61. Using CVErr
Sub CallNotZero
 Dim xVar As Variant
 Dim xInt As Integer
 Dim i As Integer
 Dim s As String
 For i = -1 To 1
 xInt = NotZero(i)
 xVar = NotZero(i)
 s = s & "NotZero(" & i & ") = [" & xInt & "] when assigned to an Integer"
 s = s & CHR$(10)
 s = s & "NotZero(" & i & ") = [" & xVar & "] VarType=" & VarType(xVar)
 s = s & CHR$(10)
 Next
 MsgBox s
End Sub

Function NotZero(x As Integer)

87

 If x <> 0 Then
 NotZero = x
 Else
 ' 7 is an arbitrary number meaning nothing.
 NotZero = CVErr(7)
 End If
End Function

Figure 37. Return values using CVErr.

 3.10.2. Ignore errors with On Error Resume Next

Error handling, in some cases, means ignoring errors. The On Error Resume statement tells OOo Basic that
if a standard error occurs, it should ignore the error and resume running the code at the next line in the
macro (see Listing 62). The error information is cleared, so it isn’t possible to check if an error occurred
following the statement.

Listing 62. The error is cleared by the Resume Next statement.
Private zero%
sub ExampleErrorResumeNext
 On Error Resume Next
 Print 1/Zero%
 If Err <> 0 Then Print Error$ & " at line " & Erl 'Err was cleared
End Sub

 3.10.3. Clear an error handler with On Error GoTo 0

Use the statement On Error GoTo 0 to clear an installed error handler. This is usually done inside an error
handler or after the code that used one. If an error occurs inside an error handler, it isn’t handled and the
macro stops.

Listing 63. The error handler is cleared with the statement On Error GoTo 0.
Private zero%
sub ExampleErrorResumeNext
 On Error Resume Next
 Print 1/Zero%
 On Error GoTo 0
 ...
End Sub

Some versions of Visual Basic also support On Error GoTo -1, which is equivalent to On Error GoTo 0.

88

 3.10.4. Specify your own error handler with On Error GoTo Label

To specify your own error handler, use On Error GoTo Label. To define a label in OOo Basic, type some text
on a line by itself and follow it with a colon. Line labels are no longer required to be unique; they must be
unique only within each routine. This allows for consistency in naming error-handling routines rather than
creating a unique name for every error handler (see Listing 64 and Figure 38). When an error occurs,
execution is transferred to the label.

Listing 64. Error Handling.
Private zero%
Private error_s$
Sub ExampleJumpErrorHandler
 On Error GoTo ExErrorHandler
 JumpError1
 JumpError2
 Print 1/Zero%
 MsgBox error_s, 0, "Jump Error Handler"
 Exit Sub
ExErrorHandler:
 error_s = error_s & "Error in MainJumpErrorHandler at line " & Erl() &_
 " : " & Error() & CHR$(10)
 Resume Next
End Sub
Sub JumpError1
 REM Causes a jump to the handler in ExampleJumpErrorHandler.
 REM The main error handler indicates that the error location is
 REM at the call to JumpError1 and not in JumpError1.
 Print 1/zero%
 error_s = error_s & "Hey, I am in JumpError1" & CHR$(10)
End Sub

Sub JumpError2
 On Error GoTo ExErrorHandler
 Print 1/zero%
 Exit Sub
ExErrorHandler:
 error_s = error_s & "Error in JumpError2 at line " & Erl() &_
 " : " & Error() & CHR$(10)
 Resume Next
End Sub

Figure 38. The last error handler declared is used.
A routine can contain several On Error statements. Each On Error statement can treat errors differently. The
error handlers in Listing 64 all used Resume Next to ignore the error and continue execution at the line
following the error. Using multiple error handlers, it is possible to skip sections of code when an error
occurs (see Listing 65).

89

TIP The OOo version 3.20 help still incorrectly states that error handling must occur at the start of a routine.

Listing 65. Skip sections of code when an error occurs.
 On Error GoTo PropertiesDone 'Ignore any errors in this section.
 a() = getProperties() 'If unable to get properties then
 DisplayStuff(a(), "Properties") 'an error will prevent getting here.
PropertiesDone:
 On Error GoTo MethodsDone 'Ignore any errors in this section.
 a() = getMethods()
 DisplayStuff(a(), "Methods")
MethodsDone:
 On Error Goto 0 'Turn off current error handlers.

When you write an error handler, you must decide how to handle errors. The functions in Table 23 are used
to diagnose errors and to display or log error messages. There is also the question of flow control. Here are
some error-handling guidelines:

Exit the subroutine or function using Exit Sub or Exit Function.

Let the macro continue to run and ignore the error (see Listing 65).

Use Resume Next to continue running the macro at the line following the error (see Listing 66 and Figure
39).

Use Resume to run the same statement again. If the problem is not fixed, the error will occur again.
This will cause an infinite loop.

Use Resume LabelName to continue running at some specified location.

Listing 66. Resume next error handler.
Sub ExampleResumeHandler
 Dim s$, z%
 On Error GoTo Handler1 'Add a message, then resume to Spot1
 s = "(0) 1/z = " & 1/z & CHR$(10) 'Divide by zero, so jump to Handler1
Spot1: 'Got here from Handler1
 On Error GoTo Handler2 'Handler2 uses resume
 s = s & "(1) 1/z = "&1/z & CHR$(10) 'Fail the first time, work the second
 On Error GoTo Handler3 'Handler3 resumes the next line
 z = 0 'Allow for division by zero again
 s = s & "(2) 1/z = "&1/z & CHR$(10) 'Fail and call Handler3
 MsgBox s, 0, "Resume Handler"
 Exit Sub
Handler1:
 s = s & "Handler1 called from line " & Erl() & CHR$(10)
 Resume Spot1
Handler2:
 s = s & "Handler2 called from line " & Erl() & CHR$(10)
 z = 1 'Fix the error then do the line again
 Resume
Handler3:
 s = s & "Handler3 called from line " & Erl() & CHR$(10)
 Resume Next
End Sub

90

Figure 39. The last error handler declared is used.

TIP Errors that occur in an error handler are not handled; the macro just stops running.

 3.10.5. Error handlers — why use them?

When I run a macro and it crashes, I usually understand the sometimes cryptic error messages and recognize
how to deal with them. When others run my macros and an error occurs, I usually hear about it because they
don’t know how to handle it. This is a good indicator that I have not used proper error handling.

You do not have to write an error handler for each routine. If the current routine doesn’t have an error
handler, but the routine that called it does, the caller’s error handler is called. For example, imagine that
sub1 has an error handler and it calls sub2 that does not. If an error occurs in sub2, the error handler in sub1
is called.

When you use an error handler, you control how and when a user is notified of an error. Error handlers have
uses other than controlling when a user is informed of an error. A properly used error handler can reduce the
size of your macro. Consider, for example, the mathematical operations. It is cumbersome to check every
mathematical operation before it is used.

If x <> 0 Then y = z / x
If x > 0 Then y = Log(x)
If i% < 32767 Then i% = i% + 1

Even with my paranoid code checking the arguments, I might still have a numeric overflow. Even worse,
nothing is done if an error occurs, and processing continues as normal. Sometimes you can’t check anything
to avoid the error. For example, prior to OOo version 2.0, the DimArray function returned an invalid empty
array. The LBound and UBound functions generate exceptions with these invalid empty arrays. Error
handling was used to safely generate the LBound and UBound even if an error occured. Consider the
following cases:

• The argument is not an array.

• In an empty array, UBound < LBound; ­1 and 0, for example.

• There are no problems if the array is not an invalid empty array.

• Should the optional dimension be considered?

The code in Listing 67 demonstrates a simple error handler that is able to simply ignore errors. The function
returns True if the lower bound is less than or equal to the upper bound — in other words, if the array
contains data. If an error occurs, either because the argument is not an array or because this is an invalid
empty array, the line does not finish running so the assignment never takes place. If the assignment never
takes place, the original default Boolean value of False is used. This is the correct answer. Writing a safe

91

upper-bound or lower-bound routine is left as an exercise for the reader — the safe versions are not required
with the fixed UBound and LBound functions released with OOo 2.0.

Listing 67. Determine if an array has stuff.
Sub ExampleArrayHasStuff
 Dim a(), b(3), v
 Print ArrayHasStuff(a()) 'False, because empty
 Print ArrayHasStuff(v) 'False, not an array, so use error handler
 Print ArrayHasStuff(DimArray()) 'False, bad array, so error handler called
 Print ArrayHasStuff(DimArray(3))'True, this is not empty
 Print ArrayHasStuff(b()) 'True, this is not empty
End Sub

Function ArrayHasStuff(v) As Boolean
 REM default value for a Boolean is False, so the default answer is False
 REM If an error occurs, then the statement never completes!
 REM This is a good time to use On Error Resume Next
 On Error Resume Next
 ArrayHasStuff = CBool(LBound(v) <= UBound(v))
End Function

An error handler can even be interactive. The code in Listing 68 attempts to copy a file that doesn’t exist to a
location that doesn’t exist. Needless to say, an error is generated. An error message is displayed and the user
is asked if the copy should be tried again. The user is given an opportunity to correct any errors and
continue.

Listing 68. Copy a file.
Sub ExampleCopyAFile()
 CopyAFile("/I/do/not/exist.txt", "/neither/do/I.txt")
End Sub

Sub CopyAFile(Src$, Dest$)
 On Error GoTo BadCopy: 'Set up the error handler
TryAgain:
 FileCopy(Src$, Dest$) 'Generate the error

AllDone: 'If no error, then continue here
 Exit Sub 'Resume to the AllDone label from the handler

BadCopy: 'Display an error dialog
 Dim rc% 'Ask if should try again
 rc% = MsgBox("Failed to copy from " & Src$ & " to " & Dest$ & " because: "&_
 CHR$(10) & Error() & " at line " & Erl & CHR$(10) &_
 "Try again?", (4 OR 32), "Error Copying")
 If rc% = 6 Then 'Yes, try the command again
 Resume
 End If
 If rc% = 7 Then 'No
 Resume AllDone 'Go to the AllDone label
 End If
End Sub

92

 3.11. Conclusion

Building any significant OOo macro requires understanding the syntax of OOo Basic. This chapter covered
the key elements:

• The syntax of a macro determines valid and invalid constructs.

• The logic of a macro determines what the macro does.

• Flow control directs the macro as it runs.

• Error handling directs the macro when it does something unexpected.

A complete, well-constructed macro that accomplishes any significant function will most likely use all of
these characteristics of OOo programming. The specific elements within OOo that one uses to build a
specific program depend on the application, the desired logical behavior of the program, and the best
judgment of the programmer. One major part of successful programming is developing the experience to
apply the ideas of this chapter in the most effective way.

93

 4. Numerical Routines
This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
numbers — including mathematical functions, conversion routines, formatting numbers as a string, and
random numbers. This chapter also discusses alternate number bases.

Numerical subroutines and functions are routines that perform mathematical operations. If you use
spreadsheets, you may already be familiar with mathematical functions such as Sum, which adds groups of
numbers together, or even IRR, which calculates the internal rate of return of an investment. The numerical
routines supported by OOo Basic (see Table 24) are simpler in nature, typically operating on only one or two
arguments rather than an entire group of numbers.

Table 24. Subroutines and functions related to numbers and numerical operations.
Function Description

ABS(number) The absolute value of a specified number.

ATN(number) The angle, in radians, whose tangent is the specified number in the range of -Pi/2 through
Pi/2.

CByte(expression) Round the String or numeric expression to a Byte.

CCur(expression) Convert the expression to a Currency type.

CDbl(expression) Convert a String or numeric expression to a Double.

CDec(expression) Generate a Decimal type; implemented only on Windows.

CInt(expression) Round the String or numeric expression to the nearest Integer.

CLng(expression) Round the String or numeric expression to the nearest Long.

COS(number) The cosine of the specified angle.

CSng(expression) Convert a String or numeric expression to a Single.

Exp(number) The base of natural logarithms raised to a power.

Fix(number) Chop off the decimal portion.

Format(obj, format) Fancy formatting, discussed in Chapter 6, “String Routines.”

Hex(n) Return the hexadecimal representation of a number as a String.

Int(number) Round the number toward negative infinity.

Log(number) The logarithm of a number. In Visual Basic .NET this method can be overloaded to return
either the natural (base e) logarithm or the logarithm of a specified base.

Oct(number) Return the octal representation of a number as a String.

Randomize(num) Initialize the random number generator. If num is ommitted, uses the system timer.

Rnd Return a random number as a Double from 0 through 1.

Sgn(number) Integer value indicating the sign of a number.

SIN(number) The sine of an angle.

Sqr(number) The square root of a number.

Str(number) Convert a number to a String with no localization.

TAN(number) The tangent of an angle.

Val(str) Convert a String to a Double. This is very tolerant to non-numeric text.

94

The mathematical functions presented in this chapter are well-known and understood by mathematicians,
engineers, and others who look for excuses to use calculus in everyday life. If that is not you — if, perhaps,
you do not consider the slide rule to be the coolest thing since sliced bread — don’t panic when the coverage
starts to become mathematical in nature. I have tried to make the information accessible while still providing
the in-depth information for those who require it. The routines are topically grouped into sections so you can
skip sections that you know that you won’t use.

The numerical routines perform operations on numerical data. OOo Basic tries to convert arguments to an
appropriate type before performing an operation. It is safer to explicitly convert data types using conversion
functions, as presented in this chapter, than to rely on the default behavior. When an Integer argument is
required and a floating-point number is provided, the default behavior is to round the number. For example,
“16.8 MOD 7” rounds 16.8 to 17 before performing the operation. The Integer division operator, however,
truncates the operands. For example,
“Print 4 \ 0.999” truncates 0.999 to 0, causing a division-by-zero error.

TIP Table 24 contains subroutines and functions, not operators such as MOD, +, and \.
Operators were covered in Chapter 3, Language Constructs.

 4.1. Trigonometric functions

Trigonometry is the study of the properties of triangles and trigonometric functions and of their applications.
Discussions of trigonometric functions usually refer to right triangles, which have one angle of 90 degrees
(see Figure 40). There is a set of defined relationships among the trigonometric functions, the lengths of the
sides of a right triangle, and the corresponding angles in the triangle. When you know these relationships,
you can use the trigonometric functions to solve trigonometric problems.

A practical problem that uses trigonometry is to estimate one’s distance from a pole or tower of known
height. By measuring the observed angle from the ground to the top of the pole, and knowing the height of
the pole, your distance from that pole is the height of the pole divided by the tangent of the measured angle.
This principle can be applied to golf, sailing, or hiking, to estimate distance from a fixed point of interest
(the golf flag, for example, or a radio transmission tower).

The principal trigonometric functions are sine, cosine, and tangent. Each is defined as the ratio between two
sides of a right triangle. The values of these functions for any value of the angle, x, correspond to the ratios
of the lengths of the sides of the right triangle containing that angle, x. For a given angle, the trigonometric
functions fix the lengths of the sides of the right triangle. Likewise, knowing the lengths of any two sides of
the right triangle allows one to compute the value of the angle using one of the inverse trigonometric
functions.

OOo Basic uses radians as the unit of measure for angles; however, most non-scientists think in degrees. An
angle that is 90 degrees, such as the corner of a square, is Pi/2 radians.

TIP The built-in constant Pi is approximately 3.1415926535897932385. Pi is a fundamental constant widely
used in scientific calculations, and is defined as the ratio of the circumference of a circle to its diameter.
The sum of the angles in any triangle — including a right triangle — is 180 degrees, or Pi radians. A
tremendous amount of elegant and practical mathematical methods result from this connection between a
triangle and a circle. All descriptions of periodic motion build on this foundation, making trigonometry a
fundamental and very useful set of mathematical tools.

Using the relationship between degrees and radians, it is easy to convert between radians and degree
measurements of angles.

95

degrees = (radians * 180) / Pi
radians = (degrees * Pi) / 180

To calculate the sine of a 45-degree angle, you must first convert the angle from degrees to radians. Here’s
the conversion:

radians = (45° * Pi) / 180 = Pi / 4 = 3.141592654 / 4 = 0.785398163398

You can use this value directly in the trigonometric function SIN.

Print SIN(0.785398163398) ' .707106781188

To determine the angle whose tangent is 0.577350269189, use the arctangent function. The returned value is
in radians, so this value must be converted back to degrees.

Print ATN(0.577350269189) * 180 / Pi '29.9999999999731

TIP Rounding errors, as discussed later, affect these examples. With infinite precision, the previous example
would result in an answer of 30 degrees rather than 29.9999999999731.

The answer is roughly 30 degrees. The triangle in Figure 40 is used to help explain the trigonometric
functions.

Figure 40. A right triangle has one angle at 90 degrees.
Table 25. Trigonometric functions supported by OOo Basic.
OOo Basic VB VB .NET Return Value

ATN ATN Math.Atan The angle, in radians, whose tangent is the specified
number in the range of -Pi/2 through Pi/2.

COS COS Math.Cos The cosine of the specified angle.

SIN SIN Math.Sin The sine of an angle.

TAN TAN Math.Tan The tangent of an angle.

The trigonometric functions supported by OOo Basic are shown in Table 25 and illustrated using the right
triangle in Figure 40. The single argument expression is converted to a double-precision number before the
function is performed.

COS(x) = Adjacent Leg / Hypotenuse

96

SIN(x) = Opposite Leg / Hypotenuse

TAN(x) = Opposite Leg / Adjacent Leg = SIN(x) / COS(x)

ATN(Opposite Leg / Adjacent Leg) = x

The code in Listing 69 solves a series of geometry problems using the trigonometric functions. The code
assumes a right triangle, as shown in Figure 40, with an opposite leg of length 3, and an adjacent leg of
length 4. The tangent is easily calculated as 3/4 and the ATN function is used to determine the angle. A few
other calculations are performed, such as determining the length of the hypotenuse using both the SIN and
the COS functions. Also see Figure 41.

Listing 69. ExampleTrigonometric
Sub ExampleTrigonometric
 Dim OppositeLeg As Double
 Dim AdjacentLeg As Double
 Dim Hypotenuse As Double
 Dim AngleInRadians As Double
 Dim AngleInDegrees As Double
 Dim s As String
 OppositeLeg = 3
 AdjacentLeg = 4
 AngleInRadians = ATN(3/4)
 AngleInDegrees = AngleInRadians * 180 / Pi
 s = "Opposite Leg = " & OppositeLeg & CHR$(10) &_
 "Adjacent Leg = " & AdjacentLeg & CHR$(10) &_
 "Angle in degrees from ATN = " & AngleInDegrees & CHR$(10) &_
 "Hypotenuse from COS = " & AdjacentLeg/COS(AngleInRadians) & CHR$(10) &_
 "Hypotenuse from SIN = " & OppositeLeg/SIN(AngleInRadians) & CHR$(10) &_
 "Opposite Leg from TAN = " & AdjacentLeg * TAN(AngleInRadians)
 MsgBox s, 0, "Trigonometric Functions"
End Sub

Figure 41. Use the trigonometric functions to solve problems with triangles.

 4.2. Rounding errors and precision

Numerical calculations performed on either a computer or calculator are performed with only a finite
number of digits; this introduces rounding errors. This isn’t a problem with integer numbers. The number
1/3 is represented in decimal form as 0.33333333, but there needs to be an infinite number of threes
following the decimal point. With four digits of precision, this is written as 0.3333. This introduces
inaccuracies in the representation and the resulting calculations.

1/3 + 1/3 + 1/3 = 3/3 = 1 'The exact answer is 1
0.3333 + 0.3333 + 0.3333 = 0.9999 'The finite precision answer, off a bit

97

The simple macro in Listing 70 demonstrates this problem. The value 0.2 is repeatedly added to the variable
num until the value is equal to 5. If infinite precision were used, or if the number 0.2 were exactly
represented inside the computer, the loop would stop with the variable num containing the value 5. The
variable never precisely equals the value 5, however, so the loop never stops. The value 5 is printed, but this
is only because the Print statement rounds 4.9999999 to the value 5 when it prints the number.

Listing 70. Rounding errors and finite precision prevent this from stopping.
Dim num As Single
Do
 num = num + 0.2
 If num > 4.5 Then Print num 'prints 4.6, 4.8, 5, 5.199999...
Loop Until num = 5.0
Print num

Computers use complex rounding algorithms in an attempt to reduce the impact of finite precision — finite
precision means that a finite number of digits and storage are used to represent a number. Although this
helps, Listing 70 clearly demonstrates that the internal complex rounding algorithms do not solve the
problem. When you compare two floating-point numbers to see if they are equal, it is safer to compare them
to a range of values. The code in Listing 71 stops when the variable is greater than or equal to 5.

Listing 71. Avoid rounding errors by using >= (greater than or equal to).
Dim num As Single
Do
 num = num + 0.2
Loop Until num >= 5.0
Print num '5.199999

The code in Listing 71 works to some extent, but you probably want the loop to exit when the variable num
is 4.9999999 rather than when it is 5.199999. You can do this by checking to see if two numbers are close
rather than equal. The big question is, How close must two numbers be before they are considered equal?
You can usually make a simple guess based on what you know about the problem. Single-precision variables
can represent about eight digits of precision. Double-precision variables can represent about 16 digits of
precision. Don’t try to demand more precision from the variables than they support. The code in Listing 71
uses single-precision variables so you can expect roughly seven digits of precision. The code in Listing 72
prints the difference between 5 and num — notice that about six digits are correct.

Listing 72. Compare the variable to a range.
Dim num As Single
Do
 num = num + 0.2
Loop Until 4.99999 < num AND num < 5.00001
Print 5 - num '4.76837158203125E-07 = 0.000000476837158203125

The ABS function returns the absolute value of a number. You can use it to simplify the process of checking
to see how close one number is to another.

If ABS(num - 5) < 0.00001 Then

Using ABS and subtraction indicates how close two numbers are to each other, but it may not be sufficient.
For example, light travels at about 299,792,458 meters each second. This number contains nine digits. A
single-precision number is accurate to about seven digits. See Listing 73.

Listing 73. Single-precision variables have only seven or eight digits of accuracy.
Dim c1 As Single 'Scientists usually use the letter c to represent
Dim c2 As Single 'the speed of light.

98

c1 = 299792458 'Speed of light in meters per second to nine digits
c2 = c1 + 16 'Add 16 to the speed of light
If c1 = c2 Then 'These are equal because only the first seven
 Print "Equal" 'or eight digits are significant
End If

The code in Listing 73 adds 16 to the speed of light, but this does not change the value. This is because only
the first seven or eight digits are significant. The code in Listing 74 uses a number that is smaller in
magnitude but uses the same number of digits. Adding 1 to the number would change a significant digit, but
adding a smaller number still leaves the numbers equal.

Listing 74. Single-precision variables have only seven or eight digits of accuracy.
Dim c1 As Single 'Scientists usually use the letter c to represent
Dim c2 As Single 'the speed of light.
c1 = 299.792458 'This is nine digits but it is not the speed of light
c2 = c1 + .0000016 'Must add a smaller number for them to still be equal
If c1 = c2 Then 'These are equal because only the first seven
 Print "Equal" 'or eight digits are significant
End If

Floating-point numbers can have different magnitudes — magnitude refers to the size of the number — and
it doesn’t significantly affect the number of digits that are relevant. To check if two numbers are about the
same value, large numbers can differ by a greater amount than small numbers. The greatest allowed
difference is dependent upon the magnitude (size) of the numbers; a mathematician calls this the “relative
error.” See Listing 75.

Listing 75. Compare two numbers.
REM This uses n1 as the primary number of interest
REM n2 is compared to n1 in a relative way
REM rel_diff is the desired relative difference
REM rel_diff is assumed non-negative
Function AreSameNumber(n1, n2, rel_diff) As Boolean
 AreSameNumber = False 'Assume that they are different
 If n1 <> 0 Then 'Cannot divide by n1 if it is zero
 If ABS((n1-n2)/n1) <= rel_diff Then 'Divide difference by n1 for relative
 AreSameNumber = True 'comparison.
 End If 'If n1, the number of interest, is
 ElseIf ABS(n2) <= rel_diff Then 'zero, then compare n2 for size.
 AreSameNumber = True
 End If
End Function

The code in Listing 75 divides the difference of two numbers by one of the numbers. The code in Listing 76
checks numbers of different sizes to see if they are the same number.

Listing 76. Test if same number.
Sub CheckSameNumber
 Dim s1 As Single
 Dim s2 As Single
 Print AreSameNumber(299792458, 299790000, 1e-5) 'True: five digits same
 Print AreSameNumber(299792458, 299700000, 1e-5) 'False: four digits same
 s1 = 299792458 's1 assigned different value
 s2 = 299792448 'than s2 but same number.
 Print AreSameNumber(s1, s2, 0.0) 'True: Same number in single precision.
 Print AreSameNumber(299.792458, 299.790000, 1e-5)'True: five digits same

99

 Print AreSameNumber(2.99792458, 2.99700000, 1e-5)'False: four digits same
End Sub

A large quantity of literature and research is available on the negative issues associated with floating-point
numbers. A complete discussion is therefore well beyond the scope of this book. In general usage, the
problems typically aren’t that troublesome, but, when they arise, they can be most perplexing if you aren’t
aware of the issues.

 4.3. Mathematical functions

The mathematical functions in OOo Basic take a numeric argument. All of the standard types are converted
to a Double before they are used. Strings may include hexadecimal and octal numbers. The functions are the
same as those available in Visual Basic (see Table 26).

Table 26. Mathematical functions supported by OOo Basic.
OOo Basic VB VB .NET Return Value

ABS ABS Math.Abs The absolute value of a specified number.

Exp Exp Math.Exp The base of natural logarithms raised to a power.

Log Log Math.Log The logarithm of a number. In VB .NET you can overload this method
to return either the natural (base e) logarithm or that of a specified base.

Sgn Sgn Math.Sign Integer value indicating the sign of a number.

Sqr Sqr Math.Sqrt The square root of a number.

Use the ABS function to determine the absolute value of a number, which you can think of as simply
throwing away the leading + or - sign from the front of the number. The geometrical definition of ABS(x) is
the distance from x to 0 along a straight line.

ABS(23.33) = 23.33
ABS(-3) = 3
ABS("-1") = 1 'Notice that the string value "-1" is converted to a Double

Use the Sgn function to determine the sign of a number. An integer with the value -1, 0, or 1 is returned if
the number is negative, zero, or positive.

Sgn(-37.4) = -1
Sgn(0) = 0
Sgn("4") = 1

The square root of 9 is 3, because 3 multiplied by 3 is 9. Use the Sqr function to get the square root of a
number. The Sqr function can’t calculate the square root of a negative number — attempting to do so causes
a run-time error.

Sqr(100) = 10
Sqr(16) = 4
Sqr(2) = 1.414213562371

Logarithms were devised by John Napier, who lived from 1550 through 1617. Napier devised logarithms to
simplify arithmetic calculations, by substituting addition and subtraction for multiplication and division.
Logarithms have the following properties:

Log(x*y) = Log(x) + Log(y)
Log(x/y) = Log(x) - Log(y)
Log(x^y) = y * Log(x)

100

The Exp function is the inverse of the Log function. For example, Exp(Log(4)) = 4 and Log(Exp(2)) = 2. By
design, logarithms turn multiplication problems into addition problems. This allows the use of logarithms as
they were originally designed.

 Print Exp(Log(12) + Log(3)) '36 = 12 * 3
 Print Exp(Log(12) - Log(3)) ' 4 = 12 / 3

Logarithms are defined by the equation y=b^x. It is then said that the logarithm, base b, of y is x. For
example, the logarithm base 10, 10^2 = 100 so the logarithm, base 10, of 100 is 2. The natural logarithm,
with a base approximated by e=2.71828182845904523536, is frequently used because it has some nice
mathematical properties. This is called the “natural logarithm” and is used in OOo Basic. Visual Basic .NET
allows you to calculate logarithms of other bases. This is easily done using the formula that the logarithm
base b is given by Log(x)/Log(b), regardless of the base of the logarithm that is used.

Logarithms are not as useful as a general shortcut for calculations today, when lots of computing power is
available. However, the logarithmic relationship describes the behavior of many natural phenomena. For
example, the growth of populations is often described using logarithms, because geometric growth
expressed on a logarithmic graph displays as a straight line. Exponentials and logarithms are also used
extensively in engineering computations that describe the dynamic behavior of electrical, mechanical, and
chemical systems.

The macro in Listing 77 calculates the logarithm of the number x (first argument) to the specified base b
(second argument). For example, use LogBase(8, 2) to calculate the log, base 2, of 8 (the answer is 3).

Listing 77. LogBase.
Function LogBase(x, b) As Double
 LogBase = Log(x) / Log(b)
End Function

 4.4. Numeric conversions

OOo Basic tries to convert arguments to an appropriate type before performing an operation. However, it is
safer to explicitly convert data types using conversion functions, as presented in this chapter, than to rely on
the default behavior, which may not be what you want. When an Integer argument is required and a floating-
point number is provided, the default behavior is to round the number. For example, 16.8 MOD 7 rounds
16.8 to 17 before performing the operation. The Integer division operator, however, truncates the operands.
For example, “Print 4 \ 0.999” truncates 0.999 to 0, causing a division-by-zero error.

There are many different methods and functions to convert to numeric types. The primary conversion
functions convert numbers represented as strings based on the computer’s locale. The conversion functions
in Table 27 convert any string or numeric expression to a number. String expressions containing
hexadecimal or octal numbers must represent them using the standard OOo Basic notation. For example, the
hexadecimal number 2A must be represented as “&H2A”.

Table 27. Convert to a numerical type.
Function Type Description

CByte(expression) Byte Round the String or numeric expression to a Byte.

CCur(expression) Currency Convert the String or numeric expression to a Currency. The locale settings are
used for decimal separators and currency symbols.

CDec(expression) Decimal Generate a Decimal type; implemented only on Windows.

CInt(expression) Integer Round the String or numeric expression to the nearest Integer.

CLng(expression) Long Round the String or numeric expression to the nearest Long.

101

Function Type Description

CDbl(expression) Double Convert a String or numeric expression to a Double.

CSng(expression) Single Convert a String or numeric expression to a Single.

The functions that return a whole number all have similar behavior. Numeric expressions are rounded rather
than truncated. A string expression that does not contain a number evaluates to zero. Only the portion of the
string that contains a number is evaluated, as shown in Listing 78.

Listing 78. CInt and CLng ignore non-numeric values.
Print CInt(12.2) ' 12
Print CLng("12.5") ' 13
Print CInt("xxyy") ' 0
Print CLng("12.1xx") ' 12
Print CInt(-12.2) '-12
Print CInt("-12.5") '-13
Print CLng("-12.5xx") '-13

CLng and CInt have similar, but not identical, behavior for different types of overflow conditions. Decimal
numbers in strings that are too large cause a run-time error. For example, CInt("40000") and
CLng("999999999999") cause a run-time error, but CLng("40000") does not. CLng never causes an
overflow if a hexadecimal or octal number is too large; it silently returns zero without complaint. CInt,
however, interprets hexadecimal and octal numbers as a Long and then converts them to an Integer. The
result is that a valid Long generates a run-time error when it is converted to an Integer. A hexadecimal value
that is too large to be valid returns zero with no complaints and then is cast to an Integer (see Listing 79).

Listing 79. CInt interprets the number as a Long, then converts to an Integer.
Print CLng("&HFFFFFFFFFFE") '0 Overflow on a Long
Print CInt("&HFFFFFFFFFFE") '0 Overflow on a Long then convert to Integer
Print CLng("&HFFFFE") '1048574
Print CInt("&HFFFFE") 'Run-time error, convert to Long then overflow

The code in Listing 80 converts numerous hexadecimal numbers to a Long using CLng. See Table 28 for an
explanation of the output in Listing 80.

Listing 80. ExampleCLngWithHex.
Sub ExampleCLngWithHex
 On Error Resume Next
 Dim s$, i%
 Dim v()
 v() = Array("&HF", "&HFF", "&HFFF", "&HFFFF",_
 "&HFFFFF", "&HFFFFFF", "&HFFFFFFF", "&HFFFFFFFF",_
 "&HFFFFFFFFF",_
 "&HE", "&HFE", "&HFFE", "&HFFFE",_
 "&HFFFFE", "&HFFFFFE", "&HFFFFFFE", "&HFFFFFFFE",_
 "&HFFFFFFFFE")
 For i = LBound(v()) To UBound(v())
 s = s & i & " CLng(" & v(i) & ") = "
 s = s & CLng(v(i))
 s = s & CHR$(10)
 Next
 MsgBox s
End Sub

102

Table 28. Output from Listing 80 with explanatory text.
Input CLng Explanation

F 15 Correct hexadecimal value.

FF 255 Correct hexadecimal value.

FFF 4095 Correct hexadecimal value.

FFFF 65535 Correct hexadecimal value.

FFFFF 1048575 Correct hexadecimal value.

FFFFFF 16777215 Correct hexadecimal value.

FFFFFFF 268435455 Correct hexadecimal value.

FFFFFFFF ?? Should return -1, but may cause a run time error on 64-bit versions.

FFFFFFFFF 0 Overflow returns zero; this is nine hexadecimal digits.

E 14 Correct hexadecimal value.

FE 254 Correct hexadecimal value.

FFE 4094 Correct hexadecimal value.

FFFE 65534 Correct hexadecimal value.

FFFFE 1048574 Correct hexadecimal value.

FFFFFE 16777214 Correct hexadecimal value.

FFFFFFE 268435454 Correct hexadecimal value.

FFFFFFFE ERROR Run time error, used to return -2.

FFFFFFFFE 0 Overflow returns zero; this is nine hexadecimal digits.

When writing numbers, you don’t need to include leading zeros. For example, 3 and 003 are the same
number. A Long Integer can contain eight hexadecimal digits. If only four digits are written, you can assume
there are leading zeros. When the hexadecimal number is too large for a Long, a zero is returned. The
negative numbers are just as easily explained. The computer’s internal binary representation of a negative
number has the first bit set. The hexadecimal digits 8, 9, A, B, C, D, E, and F all have the high bit set when
represented as a binary number. If the first hexadecimal digit has the high bit set, the returned Long is
negative. A hexadecimal number is positive if it contains fewer than eight hexadecimal digits, and it is
negative if it contains eight hexadecimal digits and the first digit is 8, 9, A, B, C, D, E, or F. Well, this used
to be true.

TIP In 64-bit versions of OOo, CLng generate an error for negative numbers represented as Hexadecimal!
Hopefully this will be fixed. Here are two tests that I expect to print -1. Note: I last tested with OOo
version 3.3.0 and LO 4.0.1.2.
print &HFFFFFFFF
print CLng("&HFFFFFFFF") ' Generates an error

The CByte function has the same behavior as CInt and CLng, albeit with a few caveats. The return type,
Byte, is interpreted as a character unless it is explicitly converted to a number. A Byte is a Short Integer that
uses only eight bits rather than the 16 used by an Integer.

Print CByte("65") 'A has ASCII value 65
Print CInt(CByte("65xx")) '65 directly converted to a number.

103

TIP An integer in VB .NET is equivalent to an OOo Basic Long.

VB uses different rounding rules. Numbers are rounded to the nearest even number when the decimal point
is exactly 0.5; this is called IEEE rounding.

The functions that return a floating-point number all have similar behavior. Numeric expressions are
converted to the closest representable value. Strings that contain non-numeric components generate a run-
time error. For example, CDbl(“13.4e2xx”) causes a run-time error. CDbl and CSng both generate a run-
time error for hexadecimal and octal numbers that are too large.

Listing 81. CSng and CDbl handle string input.
Print CDbl(12.2) ' 12.2
Print CSng("12.55e1") ' 125.5
Print CDbl("-12.2e-1")'-1.22
Print CSng("-12.5") '-12.5
Print CDbl("xxyy") ' run-time error
Print CSng("12.1xx") ' run-time error

The functions CDbl and CSng both fail for string input that contains non-numeric data; the Val function does
not. Use the Val function to convert a string to a Double that may contain other characters. The Val function
looks at each character in the string, ignoring spaces, tabs, and new lines, stopping at the first character that
isn’t part of a number. Symbols and characters often considered to be parts of numeric values, such as dollar
signs and commas, are not recognized. The function does, however, recognize octal and hexadecimal
numbers prefixed by &O (for octal) and &H (for hexadecimal).

The Val function treats spaces differently than other functions treat spaces; for example, Val(“ 12 34”)
returns the number 1234; CDbl and CSng generate a run-time error, and CInt returns 12 for the same input.

Listing 82. Treatment of spaces is different.
Sub NumsAreDifferent
 On Error GoTo ErrorHandler:
 Dim s$
 s = "Val("" 12 34"") = "
 s = s & Val(" 12 34")
 s = s & CHR$(10) & "CInt("" 12 34"") = "
 s = s & CInt(" 12 34")
 s = s & CHR$(10) & "CLng("" 12 34"") = "
 s = s & CLng(" 12 34")
 s = s & CHR$(10) & "CSng("" 12 34"") = "
 s = s & CSng(" 12 34")
 s = s & CHR$(10) & "CDbl("" 12 34"") = "
 s = s & CDbl(" 12 34")
 MsgBox s
 Exit Sub
 ErrorHandler:
 s = s & " Error: " & Error
 Resume Next
End Sub

TIP The Val function does not use localization while converting a number so the only recognized decimal
separator is the period; the comma can be used as a group separator but is not valid to the right of the
decimal. Use CDbl or CLng to convert numbers based on the current locale. In case you forgot, the locale
is another way to refer to the settings that affect formatting based on a specific country. See Listing 83.

104

Listing 83. The Val function is the inverse of the Str function.
Sub ExampleVal
 Print Val(" 12 34") '1234
 Print Val("12 + 34") '12
 Print Val("-1.23e4") '-12300
 Print Val(" &FF") '0
 Print Val(" &HFF") '255
 Print Val("&HFFFF") '-1
 Print Val("&HFFFE") '-2
 Print Val("&H3FFFE") '-2, yes, it really converts this to -2
 Print Val("&HFFFFFFFFFFFFF") '-1
End Sub

As of version 1.1.1, the behavior of the Val function while recognizing hexadecimal or octal numbers is
strange enough that I call it a bug. Internally, hexadecimal and octal numbers are converted to a 32-bit Long
Integer and then the least significant 16 bits are converted to an Integer. This explains why in Listing 83 the
number H3FFFE is converted to -2, because only the least significant 16 bits are recognized — in case you
forgot, this means the rightmost four hexadecimal digits. This strange behavior is demonstrated in Listing
84. The output is explained in Table 29.

Listing 84. ExampleValWithHex.
Sub ExampleValWithHex
 Dim s$, i%
 Dim l As Long
 Dim v()
 v() = Array("&HF", "&HFF", "&HFFF", "&HFFFF",_
 "&HFFFFF", "&HFFFFFF", "&HFFFFFFF", "&HFFFFFFFF",_
 "&HFFFFFFFFF",_
 "&HE", "&HFE", "&HFFE", "&HFFFE",_
 "&HFFFFE", "&HFFFFFE", "&HFFFFFFE", "&HFFFFFFFE",_
 "&HFFFFFFFFE", "&H111111111", "&H1111")
 For i = LBound(v()) To UBound(v())
 s = s & "Val(" & v(i) & ") = " & Val(v(i)) & CHR$(10)
 Next
 'This worked in OOo 2.x, but, it
 ' fails in OOo 3.2.1
 'l = "&H" & Hex(-2)
 s = s & CHR$(10) & "Hex(-1) = " & Hex(-1) & CHR$(10)
 s = s & "Hex(-2) = " & Hex(-2) & CHR$(10)
 's = s & "l = &H" & Hex(-2) & " ==> " & l & CHR$(10)
 MsgBox s
End Sub

Table 29. Output from Listing 84 with explanatory text.
Input Output Explanation

F 15 Hexadecimal F is 15.

FF 255 Hexadecimal FF is 255.

FFF 4095 Hexadecimal FFF is 4095.

FFFF -1 Hexadecimal FFFF is -1 for a 16-bit (two-byte) integer.

FFFFF -1 Only the rightmost two bytes (four characters) are recognized.

E 14 Hexadecimal E is 14.

105

Input Output Explanation

FE 254 Hexadecimal FE is 254.

FFE 4094 Hexadecimal FFE is 4094.

FFFE -2 Hexadecimal FFFE is -2 for a 16-bit (two-byte) integer.

FFFFE -2 Only the rightmost two bytes are recognized.

FFFFFE -2 Only the rightmost two bytes are recognized.

FFFFFFE -2 Only the rightmost two bytes are recognized.

FFFFFFFE -2 Only the rightmost two bytes are recognized.

HFFFFFFFFE -2 Only the rightmost two bytes are recognized.

111111111 4639 Correct value, right most two bytes only.

1111 4639 Correct value

Val converts hexadecimal numbers, but, it only uses the rightmost two bytes.

Use the functions CByte, CInt, CLng, CSng, and CDbl to convert a number, string, or expression to a
specific numeric type. Use the functions Int and Fix to remove the decimal portion and return a Double. A
string expression that does not contain a number evaluates to zero. Only the portion of the string that
contains a number is evaluated. See Table 30.

Table 30. Remove the decimal portion of a floating-point number.
Function Type Description

Int Double Round the number toward negative infinity.

Fix Double Chop off the decimal portion.

The functions Int and Fix differ only in their treatment of negative numbers. Fix always discards the
decimal, which is equivalent to rounding toward zero. Int, on the other hand, rounds toward negative
infinity. In other words, “Int(12.3)” is 12 and “Int(-12.3)” is -13.

Print Int(12.2) ' 12
Print Fix(12.2) ' 12
Print Int("12.5") ' 12
Print Fix("12.5") ' 12
Print Int("xxyy") ' 0
Print Fix("xxyy") ' 0
Print Int(-12.4) '-13
Print Fix(-12.4) '-12
Print Fix("-12.1xx")'-12
Print Int("-12.1xx")'-13

The CCur function converts a numerical expression to a currency object. Visual Basic .NET removed
support for the CCur function as well as the Currency data type. OOo Basic still supports the Currency data
type.

106

 4.5. Number to string conversions

String conversion functions, shown in Table 31, change non-string data into strings. In OOo, text is stored as
Unicode version 2.0 values, providing good support for multiple languages. Each String variable can hold
up to 65,535 characters.

Table 31. String conversion functions.
Function Description

Str Convert from a number to a String with no localization.

CStr Convert anything to a String. Numbers and dates are formatted based on locale.

Hex Return the hexadecimal representation of a number as a String.

Oct Return the octal representation of a number as a String.

 4.6. Simple formatting

Use the CStr function to generally convert any type to a String. The returned value is dependent upon the
input data type. Boolean values convert to the text “True” or “False.” Dates convert to the short date format
used by the system. Numbers are converted to a string representation of the number. See Listing 85.

Listing 85. Output from CStr is locale specific; this is English (USA).
Dim n As Long, d As Double, b As Boolean
n = 999999999 : d = EXP(1.0) : b = False
Print "X" & CStr(b) 'XFalse
Print "X" & CStr(n) 'X999999999
Print "X" & CStr(d) 'X2.71828182845904
Print "X" & CStr(Now)'X06/09/2010 20:24:24 (almost exactly 7 years after 1st edition)

The CStr function performs simple number formatting with knowledge of the current locale. Simple
conversion of a number to a string is done with Str. Although the Str function is designed to deal specifically
with numeric values, the output is very similar to CStr. When the Str function converts a number to a string,
a leading space is always included for the sign of the number. A negative number includes the minus sign,
and no leading empty space is present. A non-negative number, on the other hand, includes a leading empty
space. The output of Str is not locale specific; a period is always used as the decimal separator. See Listing
86.

Listing 86. Output from Str is not dependent upon locale.
Dim n As Long, d As Double, b As Boolean
n = 999999999 : d = EXP(1.0) : b = False
Print "X" & Str(b) 'XFalse
Print "X" & Str(n) 'X 999999999
Print "X" & Str(d) 'X 2.71828182845904
Print "X" & Str(Now)'X06/09/2010 20:28:48 (almost exactly 7 years after 1st edition)

The output from the code in Listing 85 and Listing 86 is the same except for a leading space in front of the
non-negative numbers. If you run the code using a different locale, such as Germany, the output changes for
Listing 85 but not Listing 86.

TIP There is little reason to use Str rather than CStr. Str may run a bit faster, but CStr knows about your current
locale.

107

To demonstrate that CStr is locale specific, I changed my locale to German (Germany) and then ran the code
in Listing 85 again. Listing 87 shows that the decimal is now expressed as a comma and that the date is now
expressed as MM.DD.YYYY.

Listing 87. Output from CStr is locale specific; this is German (Germany).
Dim n As Long, d As Double, b As Boolean
n = 999999999 : d = EXP(1.0) : b = False
Print "X" & CStr(b) 'XFalse
Print "X" & CStr(n) 'X999999999
Print "X" & CStr(d) 'X2,71828182845904
Print "X" & CStr(Now)'X14.08.2010 20:39:49

 4.7. Other number bases, hexadecimal, octal, and binary

OOo Basic provides the functions Hex and Oct to convert a number to hexadecimal and octal. No native
support is provided for a conversion to and from binary. You can’t directly use the output from Hex and Oct
to convert the string back to a number because it is missing the leading “&H” and “&O”.

Print Hex(447) '1BF
Print CInt("&H" & Hex(747)) '747
Print Oct(877) '1555
Print CInt("&O" & Oct(213)) '213

The source code for Chapter 2 contains the function IntToBinaryString, which converts an integer to a binary
number in the Operators module in the source code file SC02.sxw. The function is very flexible but it isn’t
particularly fast. A faster routine using the Hex function is shown in Listing 88.

Listing 88. IntToBinaryString.
Function IntToBinaryString(ByVal x As Long) As String
 Dim sHex As String
 Dim sBin As String
 Dim i As Integer
 sHex = Hex(x)
 For i=1 To Len(sHex)
 Select Case Mid(sHex, i, 1)
 Case "0"
 sBin = sBin & "0000"
 Case "1"
 sBin = sBin & "0001"
 Case "2"
 sBin = sBin & "0010"
 Case "3"
 sBin = sBin & "0011"
 Case "4"
 sBin = sBin & "0100"
 Case "5"
 sBin = sBin & "0101"
 Case "6"
 sBin = sBin & "0110"
 Case "7"
 sBin = sBin & "0111"
 Case "8"
 sBin = sBin & "1000"
 Case "9"

108

 sBin = sBin & "1001"
 Case "A"
 sBin = sBin & "1010"
 Case "B"
 sBin = sBin & "1011"
 Case "C"
 sBin = sBin & "1100"
 Case "D"
 sBin = sBin & "1101"
 Case "E"
 sBin = sBin & "1110"
 Case "F"
 sBin = sBin & "1111"
 End Select
 Next
 IntToBinaryString = sBin
End Function

The code in Listing 88 may be long, but it’s very simple. There is a correlation between hexadecimal digits
and binary digits; each hexadecimal digit is composed of four binary digits. This relationship does not exist
for base 10 numbers. The number is converted to a hexadecimal number using the Hex function. Each
hexadecimal digit is converted to the corresponding binary digits. To convert a binary number in String form
back to an Integer, use the code in Listing 89.

TIP This routine fails with negative numbers because CLng() OOo 3.3.0 fails with Hex numbers representing
negative long values.

Listing 89. BinaryStringToLong.
Function BinaryStringToLong(s$) As Long
 Dim sHex As String
 Dim sBin As String
 Dim i As Integer
 Dim nLeftOver As Integer
 Dim n As Integer

 n = Len(s$)
 nLeftOver = n MOD 4
 If nLeftOver > 0 Then
 sHex = SmallBinToHex(Left(s$, nLeftOver))
 End If
 For i=nLeftOver + 1 To n Step 4
 sHex = sHex & SmallBinToHex(Mid(s$, i, 4))
 Next
 BinaryStringToLong = CLng("&H" & sHex)
End Function

Function SmallBinToHex(s$) As String
 If Len(s$) < 4 Then s$ = String(4-Len(s$), "0") & s$
 Select Case s$
 Case "0000"
 SmallBinToHex = "0"
 Case "0001"
 SmallBinToHex = "1"

109

 Case "0010"
 SmallBinToHex = "2"
 Case "0011"
 SmallBinToHex = "3"
 Case "0100"
 SmallBinToHex = "4"
 Case "0101"
 SmallBinToHex = "5"
 Case "0110"
 SmallBinToHex = "6"
 Case "0111"
 SmallBinToHex = "7"
 Case "1000"
 SmallBinToHex = "8"
 Case "1001"
 SmallBinToHex = "9"
 Case "1010"
 SmallBinToHex = "A"
 Case "1011"
 SmallBinToHex = "B"
 Case "1100"
 SmallBinToHex = "C"
 Case "1101"
 SmallBinToHex = "D"
 Case "1110"
 SmallBinToHex = "E"
 Case "1111"
 SmallBinToHex = "F"
 End Select
End Function

To convert a binary string to an Integer, the number is first converted to a hexadecimal number. A set of four
binary digits correspond to a single hexadecimal digit. The number is padded on the left with zeros so that
the string can be broken up into blocks of four binary digits. Each block of four binary digits is converted to
a single hexadecimal digit. The CLng function is then used to convert the hexadecimal number to decimal
form. The routine in Listing 90 demonstrates the use of these functions; also see Figure 42.

Listing 90. ExampleWholeNumberConversions.
Sub ExampleWholeNumberConversions
 Dim s As String
 Dim n As Long
 Dim nAsHex$, nAsOct$, nAsBin$
 s = InputBox("Number to convert:", "Long To Other", "1389")
 If IsNull(s) Then Exit Sub
 If Len(Trim(s)) = 0 Then Exit Sub
 n = CLng(Trim(s)) 'Trim removes leading and trailing spaces
 nAsHex = Hex(n)
 nAsOct = Oct(n)
 nAsBin = IntToBinaryString(n)
 s = "Original number = " & CStr(n) & CHR$(10) &_
 "Hex(" & CStr(n) & ") = " & nAsHex & CHR$(10) &_
 "Oct(" & CStr(n) & ") = " & nAsOct & CHR$(10) &_
 "Binary(" & CStr(n) & ") = " & nAsBin &_

110

 " ==> " & BinaryStringToLong(nAsBin)
 MsgBox(s, 0, "Whole Number Conversions")
End Sub

Figure 42. Convert a whole number to hexadecimal, octal, and binary.

 4.8. Random numbers

OOo Basic generates floating-point random numbers ranging from 0 through 1. Random numbers generated
by computers aren’t, in general, random. An algorithm is used that generates “random numbers” based on a
previous random number. The first number on which all other random numbers are based is called the
“seed.” You use the Randomize function to specify the seed value. If a value is omitted, the Randomize
function uses a value obtained from the system timer. Specifying the starting seed allows you to test
programs and generate the same sequence of random numbers each time.

The Rnd function is used to generate the random numbers between 0 and 1. The OOo help claims that the
Rnd function accepts an argument; I checked the source code for the Rnd function, which has not changed
from version 1.x through 3.2.1, and the argument is ignored.

TIP The included help files incorrectly claim that the Rnd function accepts an argument that affects the
behavior. The argument is, and always has been, ignored.

Print Rnd() 'Some number from 0 through 1
Print Rnd() 'Another number from 0 through 1

The random number generated is some number from 0 through 1. To obtain a different range, perform a few
mathematical operations. For example, multiplying a number between 0 and 1 by 10 yields a number
between 0 and 10. To use a range that does not start at 0, add an appropriate offset. See Listing 91.

Listing 91. Return a random number in a range.
Function RndRange(lowerBound As Double, upperBound As Double) As Double
 RndRange = lowerBound + Rnd() * (upperBound - lowerBound)
End Function

Use an appropriate function, such as CInt or CLng, if you want a whole number rather than a floating-point
number.

CLng(lowerBound + Rnd() * (upperBound - lowerBound))

I had two functions that solved the same problem — determining the GCD (Greatest Common Divisor) of
two integers — and I wanted to know which was faster. I generated random integers and called each routine
a few thousand times. While performing timing tests, it’s important to use the same data for each trial. I was
able to use random numbers because the Randomize statement allows me to generate the same random
numbers every time.

Randomize(2) 'reset the random number generator to a known state
t1 = getSystemTicks()

111

For i = 0 To 30000
 n1 = CLng(10000 * Rnd())
 n2 = CLng(10000 * Rnd())
 call gcd1(n1, n2)
Next
total_time_1 = getSystemTicks() - t1

Randomize(2) 'reset the random number generator to a known state
t1 = getSystemTicks()
For i = 0 To 30000
 n1 = CLng(10000 * Rnd())
 n2 = CLng(10000 * Rnd())
 call gcd2(n1, n2)
Next
total_time_2 = getSystemTicks() - t1

 4.9. Conclusion

The standard mathematical functions in OpenOffice.org Basic contain few surprises. The conversion
functions work well, with some idiosyncrasies while converting strings to numbers. Be certain to choose a
function that can handle the format and the ranges used. Rounding is another issue that requires special
attention. Although the rounding behavior is documented and consistent, different functions and operators
cause rounding to occur differently.

112

 5. Array Routines
This chapter introduces the subroutines and functions supported by OOo Basic that are used to manipulate
arrays. It covers methods for manipulating arrays, creating arrays with data, creating arrays with no data, and
changing the dimension of arrays. This chapter also presents methods to inspect array variables.

An array is a data structure in which similar elements of data are arranged in an indexed structure — for
example, a column of names or a table of numbers. OOo Basic has subroutines and functions that change
array dimensions, inspect existing arrays, and convert between arrays and scalar (non-array) data types.

The majority of the routines listed in Table 32 require an array variable as the first argument. Array variables
used as arguments to routines can be written with trailing parentheses. Parentheses after the variable are
optional, but they used to be required (see Listing 92).

TIP There is no way to determine if a() refers to an array or a function while reading code; you must find where
the item in question is declared.

Listing 92. Parentheses are not always required but are always allowed.
Sub AreArrayParensRequired
 Dim a(1 To 2) 'a() is declared with specified dimensions
 Dim b() 'b() is declared as an array without specified dimensions
 Dim c 'c is a variant and may reference an array.
 c = Array(1, 2) 'c references a Variant array
 Print IsArray(a()) 'True
 Print IsArray(b()) 'True
 Print IsArray(c()) 'True
 Print IsArray(a) 'True
 Print IsArray(b) 'True
 Print IsArray(c) 'True
End Sub

Table 32. Summary of subroutines and functions related to arrays.
Function Description

Array(args) Return a Variant array that contains the arguments.

DimArray(args) Return an empty Variant array. The arguments specify the dimension(s).

IsArray(var) Return True if this variable is an array, False otherwise.

Join(array)

Join(array, delimiter)

Concatenate the array elements separated by the optional string delimiter and
return as a String. The default delimiter is a single space.

LBound(array)

LBound(array, dimension)

Return the lower bound of the array argument. The optional dimension specifies
which dimension to check. The first dimension is 1.

ReDim [Preserve] var(args) [As Type] Change the dimension of an array using the same syntax as the DIM statement.
The keyword Preserve keeps existing data intact. “As Type” is optional.

Split(str)

Split(str, delimiter)

Split(str, delimiter, n)

Split the string argument into an array of strings. The default delimiter is a space.
The optional argument n limits the number of strings returned.

UBound(array)

UBound(array, dimension)

Return the upper bound of the array argument. The optional dimension specifies
which dimension to check. The first dimension is 1.

113

The word “dimension” is used to refer to arrays similarly to the way that “dimensions” is used to refer to
spatial dimensions. For example, an array with one dimension is like a line; you can set boxes along the line
that represent data. An array with two dimensions is like a grid with rows and columns of data.

Dim a(3) As Integer 'One-dimensional array
Dim b(3 To 5) As String 'One-dimensional array
Dim c(5, 4) As Integer 'Two-dimensional array
Dim d(1 To 5, 4) As Integer 'Two-dimensional array

 5.1. Array() quickly builds a one-dimensional array with data

Use the Array function to quickly build a Variant array with data. The Array function returns a Variant array
that contains the arguments to the function. See Listing 93. This is an efficient method to create a Variant
array containing a predefined set of values. One entry in the array is created for each argument.

Use the Array function to quickly generate an array that already has data. The following code creates an
array with five elements, zero through four, and then individually initializes each element.

Dim v(4)
v(0) = 2 : v(1) = "help": v(2) = Now : v(3) = True : v(4) = 3.5

This can be done in a much simpler manner. Constants can be used as arguments to functions. You aren’t
always forced to assign a value to a variable so that you can call a function.

 Dim v()
 Dim FirstName$: FirstName = "Bob"
 v() = Array(0, "help", Now, True, 3.5)
 Print Join(Array("help", 3, "Joe", Firstname))

The argument list is a comma-separated list of expressions, which can be of any type because each element
in the returned array is a variant.

Listing 93. The Array function returns a Variant array.
Dim vFirstNames 'A Variant can reference an array
Dim vAges() 'A Variant array can reference an array
vFirstNames = Array("Tom", "Rob") 'Array contains strings
vAges = Array(18, "Ten") 'Array contains a number and a string
Print vAges(0) 'First element has the value 18

Variant variables can contain any type, including an array. I frequently use variant variables when I retrieve
values from methods when I’m not certain of the return type. I then inspect the type and use it appropriately.
This is a convenient use of the Variant variable type. Because a Variant variable can contain any type —
including an array — each element in a Variant array can also contain an array. The code in Table 33
demonstrates placing an array inside another array. The code in each column is roughly equivalent.

TIP Although user defined structures cannot contain arrays, they can contain a variant, which can contain an
array.

One advantage of Variant arrays is that it’s possible to easily build collections of information of different
types. For example, the item description (String), stock-tracking ID (Integer), and invoice amount (Double
or Currency) can readily be stored as rows in an array, with each type of data stored in a single row for each
customer. This allows array rows to behave more like rows in a database. Older programming languages
required use of separately declared arrays for each data type, with added programming overhead of
managing the use of multiple, related arrays of data.

114

Table 33. A Variant can contain an array, so these accomplish the same thing.
Dim v(1)
v(0) = Array(1, 2, 3)
v(1) = Array("one", "two", "three")

Dim v()
v = Array(Array(1, 2, 3),_
 Array("one", "two", "three"))

In OOo version 1.x, to address an array containing an array, you had to first extract the contained array, and
then subscript the contained array. Much of my existing code was written based on this.

Listing 94. Cumbersome method to subscript an array in an array.
 v = Array(Array(1, 2, 3), Array("one", "two", "three"))
 x = v(0) 'This is very cumbersome.
 Print x(1) 'Prints 2

Somewhere between version 2.x and 3.x, the obvious solution was introduced; you can directly access the
contained array. This is particularly useful while using data arrays returned by Calc containing cell data.

Listing 95. In OOo 3.x, you no longer need to extract the contained array to use it.
Sub ArrayInArray
 Dim v() : v = Array(Array(1, 2, 3), Array("one", "two", "three"))
 Print v(0)(1)
End Sub

Although it’s easy to create an array inside of an array, it’s typically easier to use an array with multiple
dimensions, as shown in Listing 96. The “array of arrays” construction is sometimes useful, if there is an
obvious relationship with the natural organization of the data. Generally, it is best to select a way to organize
the data that has the most direct, natural, and memorable relationship to how it is produced, used, and
manipulated.

Listing 96. It is easier to use multi-dimensioned arrays than arrays inside of arrays.
Dim v(0 To 1, 0 To 2)
v(0, 0) = 1 : v(0, 1) = 2 : v(0, 2) = 3
v(1, 0) = "one" : v(1, 1) = "two" : v(1, 2) = "three"
Print v(0, 1) 'prints 2

A Variant array can be assigned to any other array, regardless of its declared type. Assigning one array to
another causes one array to reference the other; they become the same array. As mentioned earlier, this is a
bad idea. This is considered a bug and it may not be allowed in later versions of OOo Basic. Use the Array
function and enjoy the flexibility, but assign the returned Variant array to either a Variant or a Variant array.

Listing 97. Assign an string array to an integer array.
Sub BadArrayTypes
 Dim a(0 To 1) As Integer
 Dim b(0 To 1) As String
 b(0) = "zero": b(1) = "one"
 a() = b()
 Print a(0)
End Sub

115

TIP Assigning a Variant array to variables declared as a non-Variant array is ill-advised. For example, after an
Integer array has been assigned to reference a Variant array, it’s possible to assign non-integer values to
elements in the array. References to the array won’t return the expected values due to the mismatch
between Integer and Variant data types.
 Dim a(0 To 4) As Integer ' Create an array of Integers.
 a(2) = "Tom" ' Assign a string to an Integer variable.
 Print a(2) ' 0, because the string is converted to zero.
 a() = Array(4, "Bob", 7) ' Array always returns a variant array.
 a(2) = "Tom" ' a() is now a variant.
 Print a(2) ' Tom

 5.2. DimArray creates empty multi-dimensional arrays

The DimArray function creates and returns a dimensioned Variant array. This allows the dimensions of the
array to be determined at run time. The arguments specify the dimensions of the array; each argument
specifies one dimension. If no arguments are present, an empty array is created.

The primary use of the DimArray statement is to create an empty, dimensioned Variant array. If you know
the size of the array that you will need, you can declare it when you declare the variable. If you don’t know
the size, and if a Variant array is acceptable, then you can create the empty, dimensioned array at run time.

Listing 98. DimArray returns a dimensioned Variant array that contains no data.
i% = 7
v = DimArray(3*i%) 'Same as Dim v(0 To 21)
v = DimArray(i%, 4) 'Same as Dim v(0 To 7, 0 To 4)

The code in Listing 98 does not show how the variable v is declared. This works equally well if v is declared
as a Variant, or a Variant array. The argument list is a comma-separated list of expressions. Each expression
is rounded to an integer and used to set the range of one dimension of the returned array.

Dim a As Variant
Dim v()
Dim i As Integer
i = 2
a = DimArray(3) 'Same as Dim a(0 To 3)
a = DimArray(1+i, 2*i) 'Same as Dim a(0 To 3, 0 To 4)

v() = DimArray(1) 'Same as Dim v(0 To 1)
v(0) = Array(1, 2, 3) 'Oh no, not this again!
v(1) = Array("one", "two", "three") 'You can do it, but yuck!

v = DimArray(1, 2) 'Now that makes more sense!
v(0, 0) = 1 : v(0, 1) = 2 : v(0, 2) = 3
v(1, 0) = "one" : v(1, 1) = "two" : v(1, 2) = "three"
Print v(0, 1) 'prints 2

TIP Option Base 1 has no effect on the dimensions of the array returned by the DimArray function. For each
dimension, the lower bound of the range is always zero and the upper bound is the rounded integer value of
the relevant expression.

116

 5.3. Change the dimension of an array

Use ReDim to change the dimensions of an existing array by using the same syntax as the DIM statement.
Increasing the dimension of an array while using the keyword Preserve preserves all of the data, but
decreasing the dimension causes data to be lost by truncation. Unlike some variants of BASIC, OOo Basic
allows all dimensions of an array to be changed while also preserving data.

The primary use of the ReDim statement is to change the dimension of an existing array. If you know the
size of the array that you will need, you can declare it when you declare the variable. If you don’t know the
size ahead of time, you can declare the array with any size, including as an empty array, and then change the
dimension when you know it.

Dim v() As Integer
Dim x(4) As Integer
i% = 7
ReDim v(3*i%) As Integer 'Same as Dim v(0 To 21) As Integer.
ReDim x(i%, 1 To 4) As Integer 'Same as Dim x(0 To 7, 1 To 4).

The ReDim statement changes the dimension of an existing array, even an empty one. ReDim specifies both
the dimensions and the type. The type specified with the ReDim statement must match the type specified
when the variable is declared. If the types differ, you’ll see the compile-time error “Variable already
defined.”

Dim a() As Integer 'Empty Integer Array.
Dim v(8) 'Variant array with nine entries.
ReDim v() 'v() is a valid empty array.
ReDim a(2 To 4, 5) As Integer 'a() is a two-dimensional array.

The DimArray function creates and returns a dimensioned Variant array that contains no data. This is not
useful if you require an array of a specific type, or if you simply need to change the dimensions of an
existing array while preserving data. The ReDim statement changes the dimensions of an existing array with
the option of preserving existing data. You can use the ReDim statement to change a dimensioned array to an
empty array.

The subroutine in Listing 99 contains many examples of the ReDim statement using the keyword Preserve.
Figure 43 shows the results of these commands.

Listing 99. Use ReDim with Preserve to change dimension and preserve data.
Sub ExampleReDimPreserve
 Dim a(5) As Integer 'A dimensioned array, 0 To 5
 Dim b() 'An empty array of type Variant
 Dim c() As Integer 'An empty array of type Integer
 Dim s$ 'The string that accumulates the output text

 REM a is dimensioned from 0 to 5 where a(i) = i
 a(0) = 0 : a(1) = 1 : a(2) = 2 : a(3) = 3 : a(4) = 4 : a(5) = 5
 s$ = "a() at start = " & Join(a()) & CHR$(10)

 REM a is dimensioned from 1 to 3 where a(i) = i
 ReDim Preserve a(1 To 3) As Integer
 s$ = s$ & "ReDim Preserve a(1 To 3) = " & Join(a()) & CHR$(10)

 ReDim a() As Integer
 s$ = s$ & "ReDim a() has LBound = " &_
 LBound(a()) & " UBound = " & UBound(a()) & CHR$(10)

117

 REM Array() returns a Variant type
 Rem b is dimensioned from 0 to 9 where b(i) = i+1
 b = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 s$ = s & CHR$(10) & "b() at start = " & Join(b()) & CHR$(10)

 REM b is dimensioned from 1 to 3 where b(i) = i+1
 Dim il%, iu%
 il = 1 : iu = 3
 ReDim Preserve b(il To iu)
 s$ = s$ & "ReDim Preserve b(1 To 3) = " & Join(b()) & CHR$(10)

 ReDim b(-5 To 5)
 s$ = s$ & "ReDim b(-5 To 5) = " & Join(b()) & CHR$(10)
 s$ = s$ & "ReDim b(-5 To 5) has LBound = " &_
 LBound(b()) & " UBound = " & UBound(b()) & CHR$(10) & CHR$(10)

 ReDim b(-5 To 5, 2 To 4)
 s$ = s$ & "ReDim b(-5 To 5, 2 To 4) has dimension 1 LBound = " &_
 LBound(b()) & " UBound = " & UBound(b()) & CHR$(10)
 s$ = s$ & "ReDim b(-5 To 5, 2 To 4) has dimension 2 LBound = " &_
 LBound(b(), 2) & " UBound = " & UBound(b(), 2) & CHR$(10)

 MsgBox s$, 0, "ReDim Examples"
End Sub

Figure 43. Use ReDim to change the dimensions of an array.

 5.4. Array to String and back again

Just as it’s common to convert an array of values into a single string for display, it is also common to split a
string into multiple pieces. OOo Basic provides these abilities with the functions Join and Split.

The first argument to the Join function is a one-dimensional array. Any other dimension causes a run-time
error. The elements in the array are concatenated with an optional delimiter string between each element.
The default delimiter is a single space.

Join(Array(1, 2, 3)) '1 2 3 using the default delimiter
Join(Array(1, 2, 3), "X") '1X2X3 specifying a delimiter
Join(Array(1, 2, 3), "") '123 specifying an empty delimiter

118

The Split function returns a Variant array of strings, created by breaking a string into multiple strings based
on a delimiter. In other words, it parses a string into pieces with one command. The delimiter separates
portions of the string. For example, the delimiter “XY” splits “12XY11XY22” into the strings (“12”, “11”,
“22”). The delimiter defaults to a space but can be any string expression with length greater than zero.

Split("1 2 3") 'return Array("1", "2", "3") split on " "
Split("1, 2, 3", ", ") 'return Array("1", "2", "3") split on ", "

The optional third argument is used to limit the size of the returned array. This is used only to limit the
returned size and has no effect if the returned size is less than the limit. For example, the 4 in
Split(“1X2X3”, “X”, 4) has no effect because the returned array has only three elements. If the size is
limited, however, the last element in the array contains the remainder of the unparsed string.

Split("1, 2, 3", ", ", 2) 'return Array("1", "2, 3") split on ", "

TIP The second argument to Split is a string, so, OOo automatically converts it to a string. The statement
Split(“0 1 2 3”, 2) converts the 2 to a string and uses it as the delimiter. The returned array contains two
elements, “0 1 ” and “ 3”. You must specify the delimiter if you want to specify the number of strings
returned. The correct format is Split(“0 1 2 3”, “ ”, 2).

The Split function assumes that a string comes before and after each delimiter, even if the string has length
zero.

Split("X1XX2X", "X") = ("", "1", "", "2", "")

The first returned string is empty because the first argument contains a leading delimiter. Two consecutive
delimiters produce an empty string between the “1” and the the “2”. Finally, the trailing string is empty
because there is a trailing delimiter.

The Split function is almost the inverse of the Join function. The Join function can use a zero-length string
as the delimiter, but the Split function cannot. If the joined string contains the delimiter, splitting the string
will produce a different set of strings. For example, joining “a b” and “c” with a space produces “a b c”.
Splitting this with a space produces (“a”, “b”, “c”), which is not the original set of strings.

I spent a lot of time writing and debugging a macro to parse through a string to remove all occurrences of the
text “Sbx”. Using Split and Join is significantly smaller and faster:

Join(Split(s, "Sbx"), "")

 5.5. Array inspection functions

The most fundamental thing to ask about an array is whether or not it really is an array. The IsArray function
returns True if the argument is an array, and False otherwise. Use the LBound and UBound functions to
determine the lower and upper bounds of an array. An array is empty if the upper bound is less than the
lower bound.

The first argument to LBound and UBound is the array to check. The second optional argument is an integer
expression specifying which dimension is returned. The default value is 1, which returns the lower bound of
the first dimension.

Dim a()
Dim b(2 to 3, -5 To 5)
Print LBound(a()) ' 0
Print UBound(a()) '-1 because the array is empty
Print LBound(b()) ' 2 no optional second argument so defaults to 1
Print LBound(b(),1) ' 2 optional second argument specifies first dimension

119

Print UBound(b(),2) ' 5

If the value of the second argument doesn’t contain a valid value, if it’s greater than the number of
dimensions, or if it’s less than 1, a run-time error occurs.

Listing 100. SafeUBound will not generate an error.
Function SafeUBound(v, Optional n) As Integer
 SafeUBound = -1 'If an error occurs, this is already set
 On Error GoTo BadArrayFound 'On error skip to the end
 If IsMissing(n) Then 'Was the optional argument used?
 SafeUBound = UBound(v)
 Else
 SafeUBound = UBound(v, n) 'Optional argument is present
 End If
BadArrayFound: 'Jump here on error
 On Error GoTo 0 'Turn off this error handler
End Function

The macro in Listing 100 properly returns -1 if an error occurs. The proper value is returned for invalid
empty arrays, but it also returns -1 if the first argument isn’t an array or if the second argument is simply too
large. The ArrayInfo function in Listing 101 uses a similar technique to return array information about a
variable. Also see Figure 44.

Listing 101. Print information about an array.
REM If the first argument is an array, the dimensions are determined.
REM Special care is given to an empty array that was created using DimArray
REM or Array.
REM a : Variable to check
REM sName : Name of the variable for a better looking string
Function arrayInfo(a, sName$) As String

 REM First, verify that:
 REM the variable is not NULL, an empty Object
 REM the variable is not EMPTY, an uninitialized Variant
 REM the variable is an array.
 If IsNull(a) Then
 arrayInfo = "Variable " & sName & " is Null"
 Exit Function
 End If
 If IsEmpty(a) Then
 arrayInfo = "Variable " & sName & " is Empty"
 Exit Function
 End If
 If Not IsArray(a) Then
 arrayInfo = "Variable " & sName & " is not an array"
 Exit Function
 End If

 REM The variable is an array, so get ready to work
 Dim s As String 'Build the return value in s
 Dim iCurDim As Integer 'Current dimension
 Dim i%, j% 'Hold the LBound and UBound values
 On Error GoTo BadDimension 'Set up the error handler
 iCurDim = 1 'Ready to check the first dimension

120

 REM Initial pretty return string
 s = "Array dimensioned as " & sName$ & "("

 Do While True 'Loop forever

 i = LBound(a(), iCurDim) 'Error if dimension is too large or
 j = UBound(a(), iCurDim) 'if invalid empty array

 If i > j Then Exit Do 'If empty array then get out

 If iCurDim > 1 Then s = s & ", " 'Separate dimensions with a comma
 s = s & i & " To " & j 'Add in the current dimensions
 iCurDim = iCurDim + 1 'Check the next dimension
 Loop

 REM Only arrive here if the array is a valid empty array.
 REM Otherwise, an error occurs when the dimension is too
 REM large and a jump is made to the error handler
 REM Include the type as returned from the TypeName function.
 REM The type name includes a trailing "()" so remove this
 s = s & ") As " & Left(TypeName(a), LEN(TypeName(a))-2)
 arrayInfo = s
 Exit Function

BadDimension:
 REM Turn off the error handler
 On Error GoTo 0

 REM Include the type as returned from the TypeName function.
 REM The type name includes a trailing "()" so remove this
 s = s & ") As " & Left(TypeName(a), LEN(TypeName(a))-2)

 REM If errored out on the first dimension then this must
 REM be an invalid empty array.
 If iCurDim = 1 Then s = s & " *** INVALID Empty Array"
 arrayInfo = s
End Function

Sub UseArrayInfo
 Dim i As Integer, v
 Dim ia(1 To 3) As Integer
 Dim sa() As Single
 Dim m(3, 4, -4 To -1)

 Dim s As String
 s = s & arrayInfo(i, "i") & CHR$(10) 'Not an array
 s = s & arrayInfo(v, "v") & CHR$(10) 'Empty variant
 s = s & arrayInfo(sa(), "sa") & CHR$(10) 'Empty array
 s = s & arrayInfo(Array(), "Array") & CHR$(10) 'BAD empty array
 s = s & arrayInfo(ia(), "ia") & CHR$(10)
 s = s & arrayInfo(m(), "m") & CHR$(10)
 MsgBox s, 0, "Array Info"

121

End Sub

Figure 44. Use proper error handling to determine the dimension of the array.
An array with one dimension may have an upper bound that is less than the lower bound. This indicates that
the array has no allocated spots for data. This is different than an array that has data locations allocated but
no data has been saved in them. For most data types, such as Integer, if space is allocated for an integer, then
it has a value.

Dim a(3) As Integer 'This array has four integer values, they are all zero
Dim b(3) 'This array has four Variants, they are all Empty
Dim c() 'This array has one dimension and no space Ubound < Lbound
v = Array() 'This array has zero dimensions.

 5.6. Conclusion

Array handling in OOo Basic is very flexible. You have the ability to inspect arrays and to change their
dimensions. Using the Variant type in OOo Basic provides a great deal of flexibility for creating collections
of related data of different types. Strings and arrays are related; string arrays can be processed with Join and
Split functions, permitting the creation of compact code that is very powerful for processing string
information.

122

 6. Date Routines
This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
dates — including functions to retrieve the current date and time, manipulate dates and times, and perform
timing functions. It also discusses some potentially unexpected behavior around October 4, 1582, and again
around December 30, 1899.

Date variables contain both a date and a time value. OOo Basic stores dates internally as a floating-point
Double. The portion of the number to the left of the decimal contains the date, and the fractional portion to
the right of the decimal contains the time. For example, adding 1 to a date value adds one day to the date.
Adding 1/24 to a date value adds one hour to a date value; remember that there are 24 hours in a day. The
date and time functions supported by OpenOffice.org are listed in Table 34.

Table 34. Functions and subroutines related to dates and times.
Function Type Description

CDate(expression) Date Convert a number or string to a date.

CDateFromIso(string) Date Convert to a date from an ISO 8601 date representation.

CDateToIso(date) String Convert a date to an ISO 8601 date representation.

Date() String Return the current date as a string.

DateAdd Date Add an interval to a date.

DateDiff Integer Returns the number of intervals between two dates.

DatePart Variant Obtain a specific part of a date value.

DateSerial(yr, mnth, day) Date Create a date from component pieces: Year, Month, Day.

DateValue(date) Date Extract the date from a date/time value by truncating the decimal portion.

Day(date) Integer Return the day of the month as an Integer from a Date value.

FormatDateTime String Format the date and time as a string. Requires OptionCompatible.

GetSystemTicks() Long Return the number of system ticks as a Long.

Hour(date) Integer Return the hour as an Integer from a Date value.

IsDate(value) Boolean Is this (value, converted to a string) a date?

Minute(date) Integer Return the minute as an Integer from a Date value.

Month(date) Integer Return the month as an Integer from a Date value.

MonthName String Return the name of the month based on an integer argument (1-12).

Now() Date Return the current date and time as a Date object.

Second(date) Integer Return the seconds as an Integer from a Date value.

Time() Date Return the time as a String in the format HH:MM:SS.

Timer() Date Return the number of seconds since midnight as a Date. Cast this to a
Long.

TimeSerial(hour, min, sec) Date Create a date from component pieces: Hours, Minutes, Seconds.

TimeValue(“HH:MM:SS”) Date Extract the time value from a date; a pure time value between 0 and 1.

WeekDay(date) Integer Return the integer 1 through 7 corresponding to Sunday through
Saturday.

WeekdayName String Return the day of the week based on an integer argument (1-7).

Year(date) Integer Return the year as an Integer from a Date value.

123

 6.1. Compatibility issues

When OOo added a number and a date, the result was always a date. LibreOffice changed this behavior to
always return a number. After breaking existing macros, LibreOffice changed the code so that some
combinations involving a date and a number return a date. If existing code fails, explicitly cast the result to a
date:

CDate(2 + Now)

 6.2. Retrieve the current date and time

OOo Basic has functions to determine the current date and time: Date, Time, and Now (described in Table
35). The Date and Time functions return a string with the current date and time, respectively. The strings are
formatted based on the current locale (Tools | Options | Language Settings | Languages; and then set the
locale). The Now command returns a Date object that contains both the current date and the current time.

TIP Now returns a Date object, which internally is stored as a Double. The functions Date and Time both return
a String.

Table 35. Date and time functions in OOo Basic.
Function Description

Date Return the current date as a String.

Now Return the current date and time as a Date object.

Time Return the current time as a String.

Printing the date and time is easy.

Print Date
Print Time
Print Now

 6.3. Dates, numbers, and strings

OOo Basic recognizes dates in two different string formats. The obvious format is set by the locale. A less
obvious format is the ISO 8601 date format. String formats are always assumed to be in a locale-specific
format except for routines specific to the ISO 8601 format. Arguments passed to the date and time functions
are converted to an appropriate type if possible. As a result, most of the functions in Table 36 accept string,
numeric, and date arguments.

Table 36. Date and string conversion functions
Function Description

CDate Convert a number or string to a date.

DateValue Convert a formatted string from December 1, 1582 through December 31, 9999 to a Date
value that contains no time.

CDateFromIso Convert to a date from an ISO 8601 date representation.

CDateToIso Convert a date to an ISO 8601 date representation.

IsDate Is this string a properly formatted date?

124

Use the IsDate function to test if a string contains a valid date. The argument is always converted to a string
before it is used, so a numeric argument will return False. The IsDate function tests more than just syntax —
it checks to see if the string contains a valid date. For example, “02/29/2003” fails because February 2003
contains only 28 days. The same validity check is not performed on the time component of the string (see
Listing 102 and Listing 103).

Listing 102. IsDate verifies that a string contains a valid date.
Print IsDate("December 1, 1582 2:13:42") 'True
Print IsDate("2:13:42") 'True
Print IsDate("12/1/1582") 'True
Print IsDate(Now) 'True
Print IsDate("26:61:112") 'True: 112 seconds and 61 minutes!!!
Print IsDate(True) 'False: Converts to string first
Print IsDate(32686.22332) 'False: Converts to string first
Print IsDate("02/29/2003") 'False: Only 28 days in February 03

The apparent inconsistency with the IsDate function is that “02/29/2003” is an invalid date but “26:61:112”
is valid. With time values, if a section of the time is too large, it is simply added to the next section. For
example, 61 minutes is one hour and one minute. Again, 112 seconds adds one minute and 52 seconds to the
final computed time value. This is demonstrated in Listing 103 and shown in Figure 45. Notice that, in line
two, 30 hours becomes six hours and the day is incremented by one.

Listing 103. Converting time is strange.
Sub ExampleTimeConversions
 On Error GoTo Oops:
 Dim Dates()
 Dim i As Integer
 Dim s As String
 Dates() = Array("1/1/1 00:00:00 ", "1/1/1 22:40:00 ", "1/1/1 30:40:00 ",_
 "1/1/1 30:100:00 ", "1/1/1 30:100:100")
 For i = LBound(Dates()) To UBound(Dates())
 s = s & CStr(i) & " " & Dates(i) & " => "
 s = s & CDate(Dates(i))
 s = s & CHR$(10)
 Next
 MsgBox s, 0, "Strange Time Values"
 Exit Sub
 Oops:
 s = s & " Error"
 Resume Next
End Sub

Figure 45. What appear to be invalid times are valid.

125

Apart from the strange behavior with respect to time, dates and times are converted with no problems except
for invalid dates during the skip from the Julian to the Gregorian calendar.

 6.4. Locale formatted dates

Use the CDate function to convert a string or number to a date. The CDate function performs a locale-
specific conversion including the time component. The DateValue function removes the time portion by
removing the fractional portion of the underlying Double. This causes unexpected results with some date
values. See Listing 104.

Listing 104. CDate returns a date and a time; DateValue removes the time.
Print Now 'for example, 08/16/2003 16:05:53
Print DateValue(Now) 'for example, 08/16/2003

The default language on the computers that I use is “English USA.” To use a different locale, select Tools |
Options | Language Settings | Languages to open the Languages tab on the Options dialog. Then choose a
locale.

To test different locales, use the code in Listing 105.

Listing 105. Print date-related information dependent on current locale.
Dim d As Date
d = CDate("1/2/3") 'You can use 1.2.3 or 1/2/3 regardless of locale
Print d 'Prints locale specific
Print Year(d)
Print Month(d)
Print Day(d)

I ran the code in Listing 105 using four different locales: English USA, English UK, French France, and
German Germany. The results are shown in Table 37. The format used to print a date is locale-specific, as
you can see in the Germany column. The CDate function accepts dates formatted using the period as a
separator, even for the USA locale. Initializing d using CDate("1.2.3") rather than CDate("1/2/3") does not
change the output in Table 37.

Table 37. Locale affects the date.
Code USA UK France Germany
Print d “01/02/2003” “01/02/2003” “01/02/2003” “01.02.2003”

Print Year(d) 2003 2003 2003 2003

Print Month(d) 1 2 2 2

Print Day(d) 2 1 1 1

 6.5. ISO 8601 dates

The International Standard ISO 8601 specifies the numeric representations of date and time. This standard
notation helps to avoid confusion in international communication caused by numerous different notations,
and increases the portability of computer user interfaces. In addition, these formats have several important
advantages for computer usage compared to other traditional date and time notations.

The international standard date notation is YYYY-MM-DD, which is a four-digit year followed by a two-
digit month and a two-digit day. The year is based on the usual Gregorian calendar. For example, March 8,
2003 is written as 2003-03-08. The separators are optional, so you could also express the date as 20030308;

126

this is the format returned by CDateToISO. See Listing 121. Other components of the date format are
beyond the scope of this book. The ISO format has several advantages:

• ISO 8601 is easily comparable and sortable with a string comparison. This is why I prefer this format
when appending dates to file names.

• ISO 8601 is easily readable and writable by software because no translation to and from month
names is required.

• ISO 8601 is language and locale independent.

There is no ambiguity compared to other date formats. For example, in other formats, there’s often a
question as to whether the month or the day is listed first. The convention in Europe, for example, would
express the fifth day of June in 2003 as 5/6/03, while in the United States — and North and South America,
generally — the same date would commonly be expressed as 6/5/03. The opportunity for confusion is great,
especially around the time bills are due near the beginning of each month! This is illustrated by the Month
and Day row entries shown in Table 37. Listing 106 Converts the same data to the appropriate ISO 8601
string .

Listing 106. Convert to ISO 8601.
Sub ExampleCDateToISO
 Print CDateToISO("12/30/1899") '18991230
 Print CDateToISO(Now) '20100816
 Print CDateFromISO("20030313") '03/13/2003
End Sub

 6.6. Problems with dates

Date and time information usually requires little thought. Just use the date and time functions and the correct
expected results are produced. Unfortunately, this falls apart as your dates start moving back in time. Three
specific dates and times are of interest for each function:

• December 30, 1899 at 00:00:00, when the internal Date representation is a numerical zero. Any pure
time value (without a date component) appears to occur on December 30, 1899.

• October 4, 1582, when the Julian calendar was dropped.

• October 15,1582, when the Gregorian calendar begins.

Various calendar systems have been used at different times and places around the world. The Gregorian
calendar, on which OOo Basic is based, is used almost universally. The predecessor to the Gregorian
calendar is the Julian calendar. The two calendars are almost identical, differing only in how they handle
leap years. The Julian calendar has a leap year every fourth year, while the Gregorian calendar has a leap
year every fourth year except century years that aren’t exactly divisible by 400.

The change from the Julian calendar to the Gregorian calendar occurred in October of 1582, based on a
scheme instituted by Pope Gregory XIII. The Julian calendar was used through October 4, 1582, at which
point 10 days were skipped and it became October 15, 1582. Typically, for dates on or before 4 October
1582, the Julian calendar is used; for dates on or after 15 October 1582, the Gregorian calendar is used.
Thus, there is a 10-day gap in calendar dates, but no discontinuity in Julian dates or days of the week.
Astronomers, however, typically use Julian dates because they don’t have a 10-day gap; discontinuous dates
do not typically work well in numerical calculations. As seen in Listing 116, Dates are printed based on the
Gregorian calendar, but when the component parts are extracted, they are based on the Julian date.

127

The ISO 8601 standard, introduced to standardize the exchange of date and time-related data, introduces a
complication. The standard states that every date must be consecutive, so changing to the Julian calendar
violates the standard (because at the switchover date, the dates would not be consecutive).

The following examples demonstrate converting a date / time with CDate, DateValue, and CDateToISO. The
DateValue operates on the value returned from CDate. The standard values work as expected (see Table 38).
January 1, 2001 is 36892 days after December 30, 1899, and January 1, 1900 is 2 days after December 30,
1899.

Table 38. Dates after January 1, 1900 work fine.
Date / Time DateValue CDate CDateToISO

01/01/1900 12:00 AM 2 2 19000101

01/01/1900 06:00 AM 2 2.25 19000101

01/02/1900 12:00 AM 3 3 19000102

01/02/1900 06:00 AM 3 3.25 19000102

01/01/2001 12:00 AM 36892 36892 20010101

01/01/2001 06:00 AM 36892 36892.25 20010101

01/01/2001 12:00 PM 36892 36892.5 20010101

Values near December 30, 1899 reveals some bugs.

1) DateValue generates an error on December 30, 1899. This may be intentional so that DateValue
generates an error on a pure time value, which cannot be distinguished from a date/time on
December 30, 1899.

2) DateValue returns an incorrect answer for all dates before December 30, 1899 for all time values
other than midnight.

3) CDateToISO returns an incorrect answer for all dates before January 1, 1900 for all time values other
than midnight.

4) CDateToISO has an exceptional failure on on December 31, 1899 for times after midnight.

Table 39. Dates near December 30, 1899 are a problem.
Date / Time DateValue CDate CDateToISO

12/28/1899 12:00 AM -2 -2 18991228

12/28/1899 06:00 AM -1 -1.75 18991229

12/29/1899 12:00 AM -1 -1 18991229

12/29/1899 06:00 AM Error -0.75 18991230

12/30/1899 12:00 AM Error 0 18991230

12/30/1899 06:00 AM Error 0.25 18991231

12/31/1899 12:00 AM 1 1 18991231

12/31/1899 06:00 AM 1 1.25 18991201

Purely invalid dates generate an error as they should; for example, dates between the end of the Julian
calendar and the start of the Gregorian calendar. Issues with DateValue and CdateToISO continue when the
time is not midnight.

128

Table 40. Nothing special about dates near the Julian / Gregorian calendar change.
Date / Time DateValue CDate CDateToISO

10/04/1582 12:00 AM -115859 -115859 15821014

10/04/1582 06:00 AM -115858 -115858.75 15821015

10/05/1582 00:00:00 Error Error Error

10/05/1582 06:00:00 Error Error Error

10/15/1582 12:00 AM -115858 -115858 15821015

10/15/1582 06:00 AM -115857 -115857.75 15821016

Listing 107 Demonstrates the issues converting to date / time values.

Listing 107. Demonstrate odd date behavior.
Sub OddDateTimeBehavior
 On Error GoTo Oops:
 Dim Dates()
 Dim i As Integer
 Dim s As String
 Dates() = Array("10/04/1582 00:00:00", "10/04/1582 06:00:00", _
 "10/05/1582 00:00:00", "10/05/1582 06:00:00", _
 "10/15/1582 00:00:00", "10/15/1582 06:00:00", _
 "12/28/1899 00:00:00", "12/28/1899 06:00:00", _
 "12/29/1899 00:00:00", "12/29/1899 06:00:00", _
 "12/30/1899 00:00:00", "12/30/1899 06:00:00", _
 "12/31/1899 00:00:00", "12/31/1899 06:00:00", _
 "01/01/1900 00:00:00", "01/01/1900 06:00:00", _
 "01/02/1900 00:00:00", "01/02/1900 06:00:00", _
 "1/1/1 00:00:00", "1/1/1 06:00:00", "1/1/1 12:00:00" _
)
 For i = LBound(Dates()) To UBound(Dates())
 s = s & CStr(i) & " " & Dates(i) & " => "
 s = s & CDbl(DateValue(CDate(Dates(i))))
 s = s & " => "
 s = s & CDbl(CDate(Dates(i))) & " => " & CDateToISO(Dates(i))
 s = s & CHR$(10)
 Next
 MsgBox s, 0, "Strange Time Values"
 Exit Sub
 Oops:
 s = s & " Error"
 Resume Next
End Sub

129

Figure 46. Some Date values convert poorly.

TIP DateValue fails with a run-time error for dates with a zero day component, such as
DateValue(CDate("12/30/1899 06:00:00")). Dates before this return an incorrect value. I might also argue
that dates and times that use the same data type is a bug, because it isn’t possible to distinguish between a
time and a date value for the day 12/30/1899.

DateValue truncates the decimal portion of the number to determine the date. The Int function, however,
always rounds toward negative infinity, which produces the correct result. See Listing 108. Remember that
the Int function rounds towards negative infinity and returns a double.

Listing 108. Round toward negative infinity and convert it to a Date.
Function SafeDateValue(v) Date
 SafeDateValue = CDate(Int(CDate(v)))
End Function

SafeDateValue in Listing 108 corrects the wrong behavior. Listing 109 repeats Listing 107 using
SafeDateValue, so now the correct values are obtained.

Listing 109. Round toward negative infinity and convert it to a Date.
Sub SafeDateTimeBehavior
 On Error GoTo Oops:
 Dim Dates()
 Dim i As Integer
 Dim s As String
 Dates() = Array("10/04/1582 00:00:00", "10/04/1582 06:00:00", _
 "10/05/1582 00:00:00", "10/05/1582 06:00:00", _
 "10/15/1582 00:00:00", "10/15/1582 06:00:00", _
 "12/28/1899 00:00:00", "12/28/1899 06:00:00", _

130

 "12/29/1899 00:00:00", "12/29/1899 06:00:00", _
 "12/30/1899 00:00:00", "12/30/1899 06:00:00", _
 "12/31/1899 00:00:00", "12/31/1899 06:00:00", _
 "01/01/1900 00:00:00", "01/01/1900 06:00:00", _
 "01/02/1900 00:00:00", "01/02/1900 06:00:00", _
 "1/1/1 00:00:00", "1/1/1 06:00:00", "1/1/1 12:00:00" _
)
 For i = LBound(Dates()) To UBound(Dates())
 s = s & CStr(i) & " " & Dates(i) & " => "
 s = s & CDbl(SafeDateValue(CDate(Dates(i))))
 s = s & " => "
 s = s & CDbl(CDate(Dates(i))) & " => " & CDateToISO(SafeDateValue(Dates(i)))
 s = s & CHR$(10)
 Next
 MsgBox s, 0, "Strange Time Values"
 Exit Sub
 Oops:
 s = s & " Error"
 Resume Next
End Sub

 6.7. Extract each part of a date

Date objects are based on floating-point Double numbers so mathematical operations and comparisons can
be used with Date objects. The Date and Time functions, however, return strings, so they can’t be used in
this capacity. OOo Basic provides functions to retrieve the individual pieces of a date (see Table 41).

Table 41. Date component extraction functions in OOo Basic.
Function Description

Year(date) Return the year portion of a Date value as an Integer.

Month(date) Return the month portion of a Date value as an Integer.

Day(date) Return the day portion of a Date value as an Integer.

Hour(date) Return the hour portion of a Date value as an Integer.

Minute(date) Return the minutes portion of a Date value as an Integer.

Second(date) Return the seconds portion of a Date value as an Integer.

WeekDay(date) Return an integer value from 1 through 7, corresponding to the day of the week,
Sunday through Saturday.

The functions in Table 41 all expect a Date object, which is internally based on a Double. OOo Basic
automatically converts the argument to the appropriate type if possible. The Date function returns a string
with no time information (everything to the right of the decimal is zero) so there is no time information for
the Hour, Minute, and Second functions to return. Similarly, the Time function returns a string with no date
information (everything to the left of the decimal is zero), which corresponds to December 30, 1899.

Print "Year = " & Year(0.223) '1899, 0 for date means December 30, 1899
Print "Year = " & Year(Time) '1899, No date information from Time()
Print "Month = " & Month(Date) 'Current month
Print "Day = " & Day(Now) 'Now contains date and time information
Print "Hour = " & Hour(Date) '0, No time information from Date()
Print "Minutes = " & Minute(Now) 'Current minutes

131

Print "Seconds = " & Second(Time) 'Current seconds

Use the WeekDay function to determine the day of the week. Some calendars start on Monday and some
start on Sunday; OOo Basic assumes that Sunday is the first day of the week. See Listing 110.

Listing 110. Determine the day of the week.
Sub ExampleWeekDayText
 Print "Today is " & WeekDayText(Date)
End Sub
Function WeekDayText(d) As String
 Select Case WeekDay(d)
 case 1
 WeekDayText="Sunday"
 case 2
 WeekDayText="Monday"
 case 3
 WeekDayText="Tuesday"
 case 4
 WeekDayText="Wednesday"
 case 5
 WeekDayText="Thursday"
 case 6
 WeekDayText="Friday"
 case 7
 WeekDayText="Saturday"
 End Select
End Function

The DatePart function allows you to pass a string expression that determines the part of the date of interest;
as expressed as a string as the first argument. Running DatePart with September 15, 2010 at 19:13:20 yields
the results shown in Table 42.

Table 42. DatePart string specifier.
Format Description Result

yyyy Four-digit year 2010

q Quarter 3

m Month 9

y Day of year 258

w Weekday 4

ww Week of year 38

d Day of Month 15

h Hour 19

n Minute 13

s Second 20

Listing 111. Use DatePart to extract components of a date.
Sub ExampleDatePart
 Dim TheDate As Date
 Dim f
 Dim i As Integer

132

 Dim s$
 TheDate = Now
 f = Array("yyyy", "q", "m", "y", "w", "ww", "d", "h", "n", "s")
 s = "Now = " & TheDate & CHR$(10)
 For i = LBound(f) To UBound(f)
 s = s & "DatePart(" & f(i) & ", " & TheDate & ") = " & _
 DatePart(f(i), TheDate) & CHR$(10)
 Next
 MsgBox s
End Sub

TIP A German user claimed that DatePart failed if it were not run with CompatibilityMode(True).

DatePart supports an optional third argument that specifies when a week is assumed to start (see Table 43).
The optional fourth argument, specifies when the year is assumed to start. The third and fourth arguments
affect things such as the week of the year, but will not affect other values such as the day of the year.

Table 43. DatePart week start and year start values.
Value Week Start Description Year Start Description

0 Use system default value. Use system default value.

1 Sunday (default) Week 1 is the week with January first (default).

2 Monday Week 1 is the first week containing four or more days of that year.

3 Tuesday Week 1 is the first week containing only days of the new year.

4 Wednesday

5 Thursday

6 Friday

7 Saturday

After extracting portions of the date, it is useful to print the values in an easy to read format. Use
MonthName to convert the month number to the month name. Setting the optional second argument to True
causes the name to be abbreviated.

Listing 112. Print the Month as a string.
Sub ExampleMonthName
 Dim i%
 Dim s$
 For i = 1 To 12
 s = s & i & " = " & MonthName(i, True) & " = " & MonthName(i) & CHR$(10)
 Next
 MsgBox s, 0, "MonthName"
End Sub

133

Figure 47. Use MonthName and WeekDayName to convert an integer into the name.
WeekDayName, similar to Monthname, returns the day of the week as a string. Oddly, WeekDayName only
works if compatibility mode is on. WeekDayName also supports a third argument, which specifies the day
that the week begins (see Table 44).

Listing 113. Print the day of the week as a string.
Sub ExampleWeekDayName
 Dim i%
 Dim s$
 CompatibilityMode(True)
 For i = 1 To 7
 s = s & i & " = " & WeekDayName(i, True) & " = " & WeekDayName(i) & CHR$(10)
 Next
 MsgBox s, 0, "WeekDayName"
End Sub

Table 44. Third argument for WeekDayName to specify the first day of the week.
Value Description

0 Use National Language Support API setting.

1 Sunday (default)

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Use the WeekDay function to extract the day of the week based on a date. The optional second argument
specifies the day on which the week starts; the values are the same as for WeekDayName (see Table 44)
except that 0 corresponds to the system default setting.

Print WeekDay(Now)

134

Use FormatDateTime to display the date and time in a common format. The first argument is the date. The
second argument is optional and specifies how the date should be formatted (see Table 45).

Listing 114. Format a date/time string.
Sub ExampleFormatDateTime
 Dim s$, i%
 Dim d As Date
 d = Now
 CompatibilityMode(True)
 s = "FormatDateTime(d) = " & FormatDateTime(d) & CHR$(10)
 For i=0 To 4
 s = s & "FormatDateTime(d, " & i & ") = " & FormatDateTime(d, i) & CHR$(10)
 Next
 MsgBox s, 0, "FormatDateTime"
End Sub

Figure 48. Format a date and time with FormatDateTime.
Table 45. Second argument to FormatDateTime specify format.
Value Description

0 Default format with a short date and and a long time.

1 Long date format with no time.

2 Short date format.

3 Time in the computer's regional settings.

4 24 hour hours and minutes as hh:mm.

 6.8. Date arithmetic

Internally, a date is represented as a floating point number. The decimal portion represents the time, and the
integer portion represents the date. The representation allows mathematical manipulation, but, it requires a
bit of thought; for example, add:

• 1 Add one day Now + 1

• 1/24 Add one hour Now + 1/24

• 365 Add one year, but leap years are a problem.

Use DateAdd to simplify the process. The third argument is the date. The first argument (see Table 42)
determines how the value in the second argument is interpreted. I can repeat the list above as:

Print DateAdd("d", 1, Now) 'Add one day.

135

Print DateAdd("h", 1, Now) 'Add one hour.
Print DateAdd("yyy", 1, Now) 'Add one year.

Use DateDiff to determine the number of “intervals” between two dates; for example, the number weeks
between two dates. The first argument specifies the interval to use (see Table 42). The second argument is
the first date, and the third argument is the second date. The optional fourth and fifth arguments specify the
first day of the week and the first week of the year (see Table 43).

Print DateDiff("yyyy", "03/13/1965", Date(Now)) 'Years from March 13, 1965 to now
Print DateDiff("d", "03/13/1965", Date(Now)) 'Days from March 13, 1965 to now

 6.9. Assembling dates from components

The functions Hour, Minute, Second, Year, Month, and Day are used to break a date into parts. The functions
DateSerial and TimeSerial are used to put the dates back together again. The function DateSerial creates a
Date object from the year, month, and day. The function TimeSerial creates a Date object from the hours,
minutes, and seconds.

Print DateSerial(2003, 10, 1) '10/01/2003
Print TimeSerial(13, 4, 45) '13:04:45

The first argument to the DateSerial function is the year, the second argument is the month, and the final
argument is the day. If the month or day aren’t valid values, a run-time error occurs. Year values greater than
100 are used directly. Year values less than 100, however, have 1900 added to them. Two-digit years are
mapped to the years 1900 and later (see Listing 115).

Listing 115. DateSerial adds 1900 to years earlier than 100.
Sub ExampleDateSerial
 On Error Goto OOPS
 Dim x
 Dim i%
 Dim s$

 x = Array(2003, 10, 1, _
 1899, 12, 31, _
 1899, 12, 30, _
 1899, 12, 29, _
 1899, 12, 28, _
 99, 10, 1, _
 3, 10, 1, _
 0, 1, 1, _
 -3, 10, 1, _
 -99, 10, 1, _
 -100, 10, 1, _
 -1800, 10, 1, _
 -1801, 10, 1)
 i = LBound(x)
 Do While i < UBound(x)
 s = s & DateSerial(x(i), x(i+1), x(i+2))
 s = s & " <= (" & ToStrWithLen(x(i), 4) & ","
 s = s & ToStrWithLen(x(i+1), 3) & ","
 s = s & ToStrWithLen(x(i+2), 3) & ")"
 s = s & CHR$(10)
 i = i + 3
 Loop

136

 MsgBox s
 Exit Sub
 OOPS:
 s = s & ERROR
 Resume Next
End Sub

Figure 49. DateSerial creates a date from a year, month, and day value.

TIP DateSerial adds 1900 to years earlier than 100, including negative years. An error is generated if the
resulting year is still lower than 100. This allows years from -1800 through -1, which should probably be
an error. The Date type is able to handle dates prior to 1/1/00, but obviously, DateSerial cannot.

Dates are printed based on the Gregorian calendar, but when the component parts are extracted, they are
based on the Julian date.

Listing 116. DateSerial accepts Gregorian dates before 10/15/1582.
Print DateSerial(1582, 10, 15) '10/15/1582
Print DateSerial(1582, 10, 14) '10/04/1582
Print Day(DateSerial(1582, 10, 14)) '14

 6.10. Measuring elapsed time over short intervals

You can obtain simple elapsed time by subtracting two date values. For example, CLng(Now -
CDate("1/1/2000")) determines the number of days elapsed since January 1, 2000. OOo Basic supports
returning elapsed time as the number of seconds (Timer) and as the number of system ticks
(GetSystemTicks). See Table 46. Internally, computers have a system timer that advances at a certain rate;
the rate is hardware dependent. On Intel-based computers this value is 1/17th of a second. Each time that the
timer advances by 1, it’s called a “system tick.” The number returned by GetSystemTicks is always based on
milliseconds, even if it relies on a less accurate clock.

137

Table 46. Elapsed time functions in OOo Basic.
Function Description

GetSystemTicks Return the number of system ticks as a Long. The reported time is always in
milliseconds, even if the underlying timer is less accurate.

Timer Return the number of seconds since midnight as a Date. Cast this to a Long.

Use GetSystemTicks to get the system-dependent number of system timer ticks. This value is typically used
to time internal operations because it has higher precision than the internal time and date functions (see
Listing 117 and Figure 50). The return value is a Long.

Listing 117. Measuring elapsed time.
Sub ExampleElapsedTime
 Dim StartTicks As Long
 Dim EndTicks As Long
 Dim StartTime As Date
 Dim EndTime As Date
 StartTicks = GetSystemTicks()
 StartTime = Timer
 Wait(200) 'Pause execution for 0.2 seconds
 EndTicks = GetSystemTicks()
 EndTime = Timer
 MsgBox "After waiting 200 ms (0.2 seconds), " & CHR$(10) &_
 "System ticks = " & CStr(EndTicks - StartTicks) & CHR$(10) &_
 "Time elapsed = " & CStr((EndTime - StartTime)) &_
 " seconds" & CHR$(10), 0, "Elapsed Time"
End Sub

Figure 50. GetSystemTicks has better resolution than Now.
Run the macro in Listing 117 a few times. Sometimes it shows 0 seconds, and sometimes it shows 1 second.
The resolution is too large for short duration items.

The Timer function returns the number of seconds since midnight as a Date object. The problem with this is
that at 10 seconds past midnight, the return value is 10. The Date object, however, interprets 10 to mean “10
days”. Cast the returned type directly to a numerical type using CLng or CDbl to obtain the number of
elapsed seconds.

Dim nSeconds As Long
nSeconds = Timer
Print "Number of seconds = " & nSeconds
Print "Number of seconds = " & Clng(Timer)

TIP The Timer function returns the number of seconds since midnight. Using Timer to determine elapsed time
for spans that start before midnight and end after midnight produces useless results.

138

 6.11. How fast does this run? A real-world example!

The greatest common divisor (GCD) of two integers is the largest integer that divides both integers with no
remainder. For example, the GCD of 6 and 9 is 3. The numbers 1 and 3 both divide the numbers 6 and 9 (see
Table 47). The greatest of these is 3.

Table 47. Dividing 6 and 9 by integers.
Number 6 Divided By # 9 Divided By # Both Divide

1 6 9 Yes

2 3 4 remainder 1 No

3 2 3 Yes

4 1 remainder 2 2 remainder 1 No

5 1 remainder 1 1 remainder 4 No

6 1 1 remainder 3 No

7 0 remainder 6 1 remainder 2 No

8 0 remainder 6 1 remainder 1 No

9 0 remainder 6 1 No

This example begins around the year 300 B.C. with a guy living in ancient Greece named Euclid. Euclid was
a pretty smart guy who wrote numerous books, including Data, concerning the solution of problems through
geometric analysis, On Divisions (of Figures), the Optics, the Phenomena, a paper on spherical geometry for
astronomers, the Elements, a 13-volume textbook on geometry, and several lost works on higher geometry.
His impact on society was huge. One of his most well-known contributions is an extremely efficient
algorithm to solve the GCD problem. Now jump ahead a few thousand years to Olivier Bietzer, who noticed
that I had an impractically slow algorithm for solving the GCD problem. Olivier, who certainly knows a lot
about these things, wrote the macro in Listing 118 that solves the GCD problem using Euclid’s algorithm,
and sent it to me.

Listing 118. Calculate the GCD.
'Author: Olivier Bietzer
'e-mail: olivier.bietzer@laposte.net
'This uses Euclid's algorithm and it is very fast!
Function GCD_1(ByVal x As Long, ByVal y As Long) As Long
 Dim pgcd As Long, test As Long

 ' We must have x >= y and positive values
 x=abs(x) : y=abs(y)
 If (x < y) Then
 test = x : x = y : y = test
 End If
 If y = 0 Then Exit Function

 ' Euclid says
 pgcd = y ' by definition, PGCD is the smallest
 test = x MOD y ' remainder after division
 Do While (test) ' While not 0
 pgcd = test ' pgcd is the remainder
 x = y ' x,y and current pgcd permutation
 y = pgcd

139

mailto:olivier.bietzer@laposte.net

 test = x MOD y ' test again
 Loop
 GCD_1 = pgcd ' pgcd is the last non 0 rest ! Magic ...
End Function

In general, the best way to speed up a solution to a computational problem is by using a better algorithm.
The algorithm in Listing 118 runs roughly 1000 times faster than the routine that I had. If a faster algorithm
is not available, you can look for other ways to improve performance. (Sometimes it’s possible to invent a
wholly new and improved algorithm; but that is quite a trick! If you succeed in developing a new, faster
algorithm for a widely known problem, you may have great career potential as a professional mathematics or
computer science professor.) The code in Listing 118 is already pretty lean. There isn’t a whole lot to
remove, but I thought that I could reduce the number of assignments (see Listing 119).

Listing 119. Calculate the GCD (another way).
Function GCD_2(ByVal x As Long, ByVal y As Long) As Long
 Dim pgcd As Long, test As Long

 ' We must have x >= y and positive values
 x=abs(x) : y=abs(y)
 If (x < y) Then
 test = x : x = y : y = test
 End If
 If y = 0 Then Exit Function

 Do While (y) ' While not 0
 pgcd = y ' pgcd is the remainder
 y = x MOD pgcd ' test again
 x = pgcd ' x,y and current pgcd permutation
 Loop
 GCD_2 = pgcd ' pgcd is the last non 0 remainder ! Magic ...
End Function

Now the question is, which function is faster? If you use a stopwatch to see how quickly I can blink, the
results aren’t likely to be very accurate because of measurement errors. It’s much easier to tell me to blink as
many times as I can in four seconds or to time how quickly I can blink 50 times. The code in Listing 120
does something similar. It sits in a tight loop and calls each GCD implementation 5000 times. I want to
know how long it takes to call the GCD function 5000 times, but I’m actually timing how long it takes to
loop 5000 times, generate 10,000 random numbers, and call the GCD function 5000 times. To compensate
for this, the amount of time required to loop 5000 times and generate 10,000 random numbers is measured.

TIP The test program takes a few seconds to run, so, be patient.

Listing 120. Time the two different GCD methods.
Sub testGCD
 Dim nStartTicks As Long 'When I started timing
 Dim nEndTicks As Long 'When I stopped timing
 Dim nLoopTicks As Long 'Ticks to do only the loop
 Dim nGCD_1_Ticks As Long 'Ticks for GCD_1
 Dim nGCD_2_Ticks As Long 'Ticks for GCD_2
 Dim nMinIts As Long 'Number of iterations
 Dim x&, y&, i&, n& 'Temporary long numbers
 Dim s$ 'Hold the output string

140

 nMinIts = 5000 'Set the number of iterations
 Randomize(2) 'Set to a known state
 nStartTicks = GetSystemTicks() 'Start ticks
 For i& = 1 To nMinIts 'Control the number of iterations
 x = 10000 * Rnd() 'Generate the random data
 y = 10000 * Rnd() 'Generate the random data
 Next
 nEndTicks = GetSystemTicks()
 nLoopTicks = nEndTicks - nStartTicks

 Randomize(2) 'Set to a known state
 nStartTicks = GetSystemTicks() 'Start ticks
 For i& = 1 To nMinIts 'Control the number of iterations
 x = 10000 * Rnd() 'Generate the random data
 y = 10000 * Rnd() 'Generate the random data
 GCD_1(x, y) 'Do the work we really care about
 Next
 nEndTicks = GetSystemTicks()
 nGCD_1_Ticks = nEndTicks - nStartTicks - nLoopTicks

 Randomize(2) 'Set to a known state
 nStartTicks = GetSystemTicks() 'Start ticks
 For i& = 1 To nMinIts 'Control the number of iterations
 x = 10000 * Rnd() 'Generate the random data
 y = 10000 * Rnd() 'Generate the random data
 GCD_2(x, y) 'Do the work we really care about
 Next
 nEndTicks = GetSystemTicks()
 nGCD_2_Ticks = nEndTicks - nStartTicks - nLoopTicks

 s = "Looping " & nMinIts & " iterations takes " & nLoopTicks &_
 " ticks" & CHR$(10) &_
 "Calling GCD_1 takes " & nGCD_1_Ticks & " ticks or " &_
 Format(nMinIts * 100 /nGCD_1_Ticks, "#####00.00") &_
 " Iterations per second" & CHR$(10) &_
 "Calling GCD_2 takes " & nGCD_2_Ticks & " ticks or " &_
 Format(nMinIts * 100 /nGCD_2_Ticks, "#####00.00") &_
 " Iterations per second"

 MsgBox s, 0, "Compare GCD"
End Sub

One problem in writing timing routines is determining how many iterations to do. I frequently use computers
of different speeds. The results in Figure 51 are based on my home computer running the macro in Listing
120. The macro in Listing 120 makes a specific number of iterations. Sometimes I use a solution that limits
the iterations based on time rather than number of iterations. This complicates the measurement of overhead
and is left as an interesting, but not overly difficult, problem for the reader.

141

Figure 51. The improvement is about 10 percent.

 6.12. Long time intervals and special dates

It’s easy to obtain elapsed time over long intervals by subtracting date values. To determine precise dates and
intervals, you can creatively use the component pieces. For example, given the date, what is the first day of
the month? This is easy because the first day of every month is day 1. Use the functions Year and Month to
extract the year and month, and then reassemble the date using DateSerial and set the day to 1. The sample
macro also calls WeekDayText shown in Listing 110.

Listing 121. First day of the month.
Function FirstDayOfMonth(d As Date) As Date
 FirstDayOfMonth() = DateSerial(Year(d), Month(d), 1)
End Function

Sub FirstDayOfThisMonth()
 Dim d As Date
 d = FirstDayOfMonth(Now())
 MsgBox "First day of this month (" & d & ") is a " & WeekDayText(d)
End Sub

To find the last day of a month, find the first day of the next month and then subtract 1 from the number. If
the current month is December, set the month to January and increment the year by 1.

Listing 122. Last day of the month.
Function LastDayOfMonth(d As Date) As Date
 Dim nYear As Integer
 Dim nMonth As Integer
 nYear = Year(d) 'Current year
 nMonth = Month(d) + 1 'Next month, unless it was December.
 If nMonth > 12 Then 'If it is December then nMonth is now 13
 nMonth = 1 'Roll the month back to 1
 nYear = nYear + 1 'but increment the year
 End If
 LastDayOfMonth = CDate(DateSerial(nYear, nMonth, 1)-1)
End Function

Sub LastDayOfThisMonth()
 Dim d As Date
 d = LastDayOfMonth(Now())
 MsgBox "Last day of this month (" & d & ") is a " & WeekDayText(d)
End Sub

It’s easy to find the first day of the year for any given date; it’s always January 1 of that year. Use the Year
function to obtain the current year and then set the day and month each equal to 1. Finding the last day of the
year for any given date is only marginally more difficult. First, find the first day of the next year by

142

incrementing the year by 1 and setting the month and day equal to 1. Subtracting 1 from the first day of next
year provides the last day of this year.

d = Now
Print DateSerial(Year(d), 1, 1) '01/01/2003
Print CDate(DateSerial(Year(d)+1, 1, 1)-1) '12/31/2003

Use the WeekDay function to find the first and last days of a week. Subtract the day of the week and add 1 to
take the date to Sunday at the beginning of the current week.

d = Date
Print CDate(CDbl(d) - WeekDay(d) + 1) '8/10/2003 is a Sunday
Print CDate(CDbl(d) - WeekDay(d) + 7) '8/16/2003 is a Saturday

You can use similar date manipulations to solve other date-related problems, such as determining the work
week, how many days until your anniversary, or the age of a person in years, months, and days.

 6.13. Conclusion

Although dates in OpenOffice.org Basic are straightforward and easy to use, you must take care with dates
prior to October 15, 1582. The jump from the Gregorian and Julian calendar also may potentially cause
unexpected problems. Also take care when the underlying implementation, a Double, becomes a negative
number; this happens around December 30, 1899. This chapter also discussed methods of timing routines
and determining specific dates.

143

 7. String Routines
This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
strings. This includes functions to manipulate strings, convert other data types to strings, and to perform
special formatting.

Text data is stored in strings as a sequence of 16-bit unsigned integer Unicode version 2.0 values. The
Unicode Worldwide Character Standard is a set of binary codes representing textual or script characters
designed because ASCII, the original standard, can handle only 256 distinct characters. The first 128
characters (numbered 0 through 127) correspond to the letters and symbols on a standard U.S. keyboard. The
next 128 characters (numbered 128 through 255) consist of special characters such as accent marks, Latin-
based characters, and a few symbols. The remaining 65,280 values — of which only about 34,000 are
currently used — are used for a wide variety of worldwide text characters, mathematical symbols, accent
marks (diacritics), and technical symbols.

OpenOffice.org has a large number of functions that allow you to manipulate strings. These string-
manipulation operations range from converting uppercase to lowercase (or vice versa) to selecting substrings
out of a longer string. The functions listed in Table 48 are the string functions covered in this chapter. The
functions listed in Table 49 are related to strings as well as either numerical or array manipulations; these are
covered in other chapters.

Table 48. These string-related functions are covered in this section.
Function Description

ASC(str) Return the integer ASCII value of the first character in the string. This supports 16-bit Unicode
values as well.

CHR(n) Convert an ASCII number to a character.

CStr(obj) Convert standard types to a string.

Format(obj, format) Fancy formatting; works only for strings.

Hex(n) Return the hexadecimal representation of a number as a string.

InStr(str, str)

InStr(start, str, str)

InStr(start, str, str,
mode)

Attempt to find string 2 in string 1. Returns 0 if not found and starting location if it is found.
The optional start argument indicates where to start looking. The default value for mode is 1
(case-insensitive comparison). Setting mode to 0 performs a case-sensitive comparison.

InStrRev(str, find, start,
mode)

Return the position of the first occurrence of one string within another, starting from the right
side of the string. Only available with “Option VBASupport 1”. Start and mode are optional.

Join(s())
Join(s(), str)

Concatenate the array elements, separated by the optional string delimiter, and return the value
as a string. The default delimiter is a single space. Inverse of the Split function.

LCase(str) Return a lowercase copy of the string.

Left(str, n) Return the leftmost n characters from the string.

Len(str) Return the length of the string.

LSet str1 = str2 Left-justify a string into the space taken by another string.

LTrim(str) Return a copy of the string with all leading spaces removed.

Mid(str, start)

Mid(str, start, len)

Mid(str, start, len, str)

Return the substring, starting at start. If the length is omitted, the entire end of the string is
returned. If the final string argument is included, this replaces the specified portion of the first
string with the last string.

Oct(n) Return the octal representation of a number as a string.

144

Function Description

Replace(str, find, rpl,
start, count, mode)

Search str for find and replace it with rpl. Optionally, specify the start, count, and mode.

Right(str, n) Return the rightmost n characters.

RSet str1 = str2 Right-justify a string into the space taken by another string.

RTrim(str) Return a copy of the string with all trailing spaces removed.

Space(n) Return a string with the number of specified spaces.

Split(str)

Split(str, str)

Split a string into an array based on an optional delimiter. Inverse of the Join function.

Str(n) Convert a number to a string with no localization.

StrComp(s1, s2)

StrComp(s1, s2, mode)

Compare two strings returning -1, 0, or 1 if the first string is less than, equal to, or greater than
the second in alphabetical order. Set the optional third argument to zero for a case-insensitive
comparison. The default is 1 for a case-sensitive comparison.

StrConv(str, mode[,
local])

Converts a string based on the mode: 1=upper, 2=lower, 4=wide, 8=narrow, 16=Katakana,
32=Hiragana, 64=to unicode, 128=from unicode.

String(n, char)

String(n, ascii)

Return a string with a single character repeated multiple times. The first argument is the
number of times to repeat; the second argument is the character or ASCII value.

StrReverse Reverse a string. Must use “Option VBASupport 1”, or precede it with
CompatibiltyMode(True).

Trim(str) Return a copy of the string with all leading and trailing spaces removed.

UCase(str) Return an uppercase copy of the string.

Val(str) Convert a string to a double. This is very tolerant to non-numeric text.

The subroutines and functions related to string handling in OOo Basic are listed in Table 48. Some of these
functions (see Table 49) have in-depth coverage in other chapters, because they are directly related to the
content in those chapters. They are covered briefly near the end of this chapter, in the section titled
“Converting data to a string.”

Table 49. These string-related functions are covered in other chapters.
Function Covered In Description

Join(s())
Join(s(), str)

5Array Routines Concatenate the array elements, separated by the optional string delimiter,
and return the value as a string.

Split(str)

Split(str, str)

5Array Routines Split a string into an array based on an optional delimiter.

CStr(obj) 4Numerical Routines Convert standard types to a string.

Str(n) 4Numerical Routines Convert a number to a string with no localization.

Hex(n) 4Numerical Routines Return the hexadecimal representation of a number as a string.

Oct(n) 4Numerical Routines Return the octal representation of a number as a string.

Val(str) 4Numerical Routines Convert a string to a double. This is very tolerant to non-numeric text.

145

 7.1. ASCII and Unicode values

In the early days of computers there were different types of data-processing equipment, and there was no
common method of representing text. To alleviate this problem, the American National Standards Institute
(ANSI) proposed the American Standard Code for Information Interchange (ASCII) in 1963. The standard
was finalized in 1968 as a mapping of 128 characters, numbers, punctuation, and control codes to the
numbers from 0 to 127 (see Table 50). The computer-minded reader may notice that this requires 7 bits and
does not use an entire byte.

Table 50. The original 128 ASCII characters.
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Table 50 lists the original 127 ASCII characters. The top row and the left column are used to identify the
hexadecimal ASCII value. For example, the capital letter A has an ASCII value of 41 in hexadecimal format,
and z has an ASCII value of 5A. If more than one letter occupies a box, that value represents a special
command character (see Table 51). Some of these special commands are designed for communications,
some for file formats, and some are even available on the keyboard.

Table 51. Non-printable ASCII characters.
Hex DEC Symbol Description

00 0 NUL Null, usually signifying nothing

01 1 SOH Start of heading

02 2 STX Start of text

03 3 ETX End of text

04 4 EOT End of transmission — not the same as ETB

05 5 ENQ Enquiry

06 6 ACK Acknowledge — I am here or data successfully received

07 7 BEL Bell — Causes teletype machines and many terminals to ring a bell

08 8 BS Backspace — Moves the cursor or print head backward (left) one space

09 9 TAB Horizontal tab — Moves the cursor (or print head) right to the next tab
stop

0A 10 LF Line feed or new line — Moves the cursor (or print head) to a new line

0B 11 VT Vertical tab

0C 12 FF Form feed — Advances paper to the top of the next page

0D 13 CR Carriage return — Moves the cursor (or print head) to the left margin

0E 14 SO Shift out — Switches the output device to an alternate character set

146

Hex DEC Symbol Description

0F 15 SI Shift in — Switches the output device back to the default character set

10 16 DLE Data link escape

11 17 DC1 Device control 1

12 18 DC2 Device control 2

13 19 DC3 Device control 3

14 20 DC4 Device control 4

15 21 NAK Negative acknowledge

16 22 SYN Synchronous idle

17 23 ETB End of transmission block — not the same as EOT

18 24 CAN Cancel

19 25 EM End of medium

1A 26 SUB Substitute

1B 27 ESC Escape — This is the Esc key on your keyboard

1C 28 FS File separator

1D 29 GS Group separator

1E 30 RS Record separator

1F 31 US Unit separator

7F 127 DEL Delete — This is the Del key on your keyboard

For most computers, the smallest easily stored and retrieved piece of data is a byte, which is composed of 8
bits. The characters in Table 50 require only 7 bits. To avoid wasting space, the Extended ASCII characters
were introduced; these used the numbers 128 through 255. Although these characters introduce special,
mathematical, graphic, and foreign characters, it just wasn’t enough to satisfy international use. Around
1986, Xerox started working to extend the character set to work with Asian characters. This work eventually
led to the current Unicode set, which uses 16-bit integers and allows for 65,536 unique characters.

OOo stores characters as 16-bit unsigned integer Unicode values. The ASC and CHR functions convert
between the integer value and the character value, for example, between 65 and A. Use the ASC function to
determine the numerical ASCII value of the first character in a string. The return value is a 16-bit integer
allowing for Unicode values. Only the first character in the string is used; the rest of the characters are
ignored. A run-time error occurs if the string has zero length. This is essentially the inverse of the CHR$
function, which converts the number back into a character.

TIP The CHR function is frequently written as CHR$. In Visual Basic, CHR$ returns a string and can’t handle
null input values, and CHR returns a variant that’s able to accept and propagate null values. In OOo Basic,
they are the same; they both return strings and they both generate a run-time error with a null input value.

Use the CHR function to convert a 16-bit ASCII value to the character that it represents. This is useful when
you want to insert special characters into a string. For example, CHR(10) is the new-line character. The
CHR function is the inverse of the ASC function. Although the ASC function returns the Unicode numbers,
these numbers are frequently generically referred to as “the ASCII value.” Strictly speaking, this is incorrect,
but it’s a widely used slang expression. The numbers correspond directly to the ASCII values for the

147

numbers 0 through 255, and having used the terminology for years, programmers aren’t likely to stop. So,
when you see the term “ASCII value” in this book, think “Unicode value.”

Listing 123. Demonstrate new line.
Sub ShowChrAsc
 Dim s$
 Print CHR$(65) 'A
 Print ASC("Andrew") '65
 s = "1" & CHR$(10) & "2" 'New line between 1 and 2
 MsgBox s
End Sub

TIP Use the MsgBox statement to print strings that contain CHR$(10) or CHR$(13) — they both cause OOo
Basic to print a new line. The Print statement displays a new dialog for each new line. MsgBox, however,
properly displays new lines in a single dialog.

While attempting to decipher the internal functions of OpenOffice.org, I frequently find strings that contain
characters that aren’t immediately visible, such as trailing spaces, new lines, and carriage returns.
Converting the string to a sequence of ASCII characters simplifies the process of recognizing the true
contents of the string. See Listing 124 and Figure 52.

Listing 124. Convert a string to ASCII.
Sub ExampleStringToASCII
 Dim s As String
 s = "AB"""" """"BA"
 MsgBox s & CHR$(10) & StringToASCII(s), 0, "String To ASCII"
End Sub

Function StringToASCII(sInput$) As String
 Dim s As String
 Dim i As Integer
 For i = 1 To Len(sInput$)
 s = s & CStr(ASC(Mid(sInput$, i, 1))) & " "
 Next
 StringToASCII = s
End Function

Figure 52. A string followed by its corresponding ASCII values: A=65, B=66, "=34, and so on ...

On more than one occasion, I needed to know exactly how OOo stored data in a text document. One
common example is trying to manipulate new lines and new paragraphs in a manner not easily supported by
regular expressions. The subroutine in Listing 125 displays the currently selected text as a string of ASCII
values. The important thing to learn in this chapter is how to view the ASCII values associated with the text.
This will show the characters used between paragraphs, for example. The methods to properly retrieve and
manipulate selected text are covered later. To test this macro, select run the macro.

148

Listing 125. Display the selected text as ASCII characters.
Sub SelectedTextAsASCII()
 Dim vSelections 'Multiple disjointed selections
 Dim vSel 'A single selection
 Dim vCursor 'OOo document cursor
 Dim i As Integer 'Index variable
 Dim s As String 'Temporary utility string variable
 Dim bIsSelected As Boolean 'Is any text selected?
 bIsSelected = True 'Assume that text is selected

 'The current selection in the current controller.
 'If there is no current controller, it returns NULL.
 'Thiscomponent refers to the current document
 vSelections = ThisComponent.getCurrentSelection()
 If IsNull(vSelections) OR IsEmpty(vSelections) Then
 bIsSelected = False
 ElseIf vSelections.getCount() = 0 Then
 bIsSelected = False
 End If

 If NOT bIsSelected Then 'If nothing is selected then say so
 Print "Nothing is selected" 'and then exit the subroutine
 Exit Sub
 End If

 'The selections are numbered from zero
 'Print the ASCII values of each
 For i = 0 To vSelections.getCount() - 1
 vSel = vSelections.getByIndex(i)
 vCursor = ThisComponent.Text.CreateTextCursorByRange(vSel)
 s = vCursor.getString()
 If Len(s) > 0 Then
 MsgBox StringToASCII(vCursor.getString()), 0, "ASCII of Selection " & i
 ElseIf vSelections.getCount() = 1 Then
 Print "Nothing is selected"
 End If
 Next
End Sub

 7.2. Standard string functions

The comparison operators (=, <, <=, >, >=, and <>) work with strings and numbers performing a case-
sensitive comparisons. This means that the strings “a” and “A” are not equal. The built-in StrComp function
can compare strings with and without case sensitivity. The StrComp function, which defaults to a case-
sensitive comparison, returns -1, 0, or 1 if the first string argument is less than, equal to, or greater than the
second string argument. Set the optional third argument to zero for a case-insensitive comparison.

TIP Use StrComp(string1, string2, 0) to alphabetize strings using a locale based case-sensitive compare.

The following pseudo code shows a simplified version of how StrComp could work for a case-sensitive
comparison. A case-insensitive comparison would convert both strings to all uppercase before performing
the comparison; I have no idea if StrComp is locale specific.

149

Let s1 = string1
Let s2 = string2
Let min_len = minimum(Len(s1), Len(s2))
For i = 1 To min_len
 If ASC(Mid(s1, i, 1)) < ASC(Mid(s2, i, 1)) Then
 set return value to -1
 Exit Function
 End If
 If ASC(Mid(s1, i, 1)) > ASC(Mid(s2, i, 1)) Then
 set return value to 1
 Exit Function
 End If
Next
If Len(s1) < Len(s2) Then
 set return value to -1
 Exit Function
End If
If Len(s1) > Len(s2) Then
 set return value to 1
 Exit Function
End If
set return value to 0
Exit Function

The numerical Unicode value of the first character in the first string is compared to the numerical Unicode
value of the first character in the second string. If the first character is numerically less than the second
character, -1 is returned. If the first character is numerically greater than the second character, 1 is returned.
If the first character in each string is the same, the second character in each string is compared. If the
corresponding numerical Unicode value of each character is the same and the strings are the same length, 0
is returned. If corresponding characters all match, but the strings are of different lengths, the shorter string is
considered less than the longer string.

Listing 126. Demonstrate StrComp.
Print StrComp("A", "AA") '-1 because "A" < "AA"
Print StrComp("AA", "AA") ' 0 because "AA" = "AA"
Print StrComp("AA", "A") ' 1 because "AA" > "A"

Print StrComp("a", "A") ' 1 because "a" > "A"
Print StrComp("a", "A", 1)' 1 because "a" > "A"
Print StrComp("a", "A", 0)' 0 because "a" = "A" if case is ignored

Use the UCase and LCase functions to return a copy of the string with all characters in uppercase or
lowercase.

Listing 127. Demonstrate UCase and LCase.
S$ = "Las Vegas"
Print LCase(s) REM Returns "las vegas"
Print UCase(s) REM Returns "LAS VEGAS"

If numerous comparisons will be made, using LCase or UCase is sometimes faster than performing a case-
insensitive comparison each time. And sometimes, it is simply easier to use.

If LCase(Right(sFileName, 3)) = "odt" Then

150

Use StrConv(string, mode, locale_id) to convert a string with more flexibility than the individual methods
UCase and LCase. The supported modes (shown in Table 52) are bit values that can be used together; for
example, 1+64=65 causes all characters to be converted to uppercase and to Unicode. The final argument,
locale_id, is an optional integer locale identifier that is not currently supported (as of OOo version 3.2.1)

Table 52. Modes supported by the StrConv statement.
Mode Description

0 No change.

1 Convert all characters to uppercase.

2 Convert all characters to lowercase.

4 Convert narrow (half-width) characters in the string to wide (full-width) characters.

8 Convert wide (full-width) characters in the string to narrow (half-width) characters.

16 Convert Hiragana characters in the string to Katakana characters.

32 Convert Katakana characters in the string to Hiragana characters.

64 Converst all characters to Unicode.

128 Convert all characters from Unicode.

Use the LTrim, RTrim, and Trim functions to return copies of a string with leading, trailing, or both leading
and trailing spaces removed. I usually do this with data retrieved from files and databases, and directly from
users. The original string is unchanged, as are all internal spaces. Some trim routines in other programming
languages trim all sorts of invisible characters, such as carriage returns, new-line characters, and tabs. In
OOo Basic, only the space character with an ASCII value of 32 is trimmed.

Listing 128. Demonstrate LTrim and RTrim.
s = " hello world "
Print "(" & LTrim(s) & ")" '(hello world)
Print "(" & RTrim(s) & ")" '(hello world)
Print "(" & Trim(s) & ")" '(hello world)

Use the Len function to return the number of characters in the string. If the argument is not a string, it is
converted to a string first. It’s probably safer to use CStr to convert nonstring arguments to strings, rather
than to rely on the automatic behavior. For example, types such as Byte will not convert automatically as
expected. The value held in the Byte data type is treated as an ASCII value and converted to a single
character. The CStr function avoids this problem.

Listing 129. Demonstrate Len.
Print Len("") '0
Print Len("1") '1
Print Len("123") '3
Print Len(12) '2 the number is converted to a string

To create a string with a single character repeated multiple times, use the String function. The first argument
is an integer indicating how many times the character is repeated. Zero is a valid value for the first argument,
returning an empty string. The second argument is the character to repeat. Just like the ASC function, the
String function uses the first character from the string and ignores the rest. If the second argument is a
number, it’s treated as an ASCII value and the character is created from the number.

Listing 130. Demonstrate String.
Print String(2, 65) 'AA 65 is ASCII for A
Print String(2, "AB") 'AA Only the first character is used

151

Print ASC(String(2)) '0 Bug: Created string with two ASCII 0 characters
Print Len(Space(4)) '4 Four spaces

Use the function InStr to find where (and if) one string is contained inside another. The InStr function can
take four arguments. The first argument is an optional integer that indicates the first character to check. This
defaults to 1, the first character, if it is not included. InStr then searches the second argument to see if it
contains the third argument. The fourth optional argument determines if the comparison is case sensitive (0)
or case insensitive (1). The default search is case insensitive. You can’t use the fourth argument unless you
also use the first argument.

TIP The StrComp function uses a 0 to indicate a case-insensitive comparison and a 1 — the default — to
indicate a case-sensitive comparison. The InStr function, however, uses a 0 to indicate a case-sensitive
comparison and a 1 — the default — to indicate a case-insensitive comparison. The only similarity is that
the value 1 is the default.

Listing 131. Demonstrate InStr.
Print InStr("CBAABC", "abc") '4 default to case insensitive
Print InStr(1, "CBAABC", "b") '2 first argument is 1 by default
Print InStr(2, "CBAABC", "b") '2 start with second character
Print InStr(3, "CBAABC", "b") '5 start with third character
Print InStr(1, "CBAABC", "b", 0) '0 case-sensitive comparison
Print InStr(1, "CBAABC", "b", 1) '2 case-insensitive comparison
Print InStr(1, "CBAABC", "B", 0) '2 case-sensitive comparison

InStrRev is only available while VB compatibility mode is true. The start location is argument 3, as opposed
to the first argument in InStr. A start location of -1 means start at the right most character; I wish that -2 was
the second character from the right, but it causes a run-time exception.

Listing 132. Demonstrate InStrRev.
Sub ExampleInStrRev
 CompatibilityMode(True)
 Print InStrRev("CBAABC", "ABC") '4 default to case sensitive
 Print InStrRev("CBAABC", "abc") '0 default to case sensitive
 Print InStrRev("CBAABC", "abc", -1, 1) '4 force case insensitive
 Print InStrRev("CBAABC", "B", 1) '0 start with first character
 Print InStrRev("CBAABC", "B", 2) '2 start with second character
 Print InStrRev("CBAABC", "B", -1) '5 start with last character
 Print InStrRev("CBAABC", "B", 5) '5 start with fifth character
 Print InStrRev("CBAABC", "B", 4) '2 start with fourth character
 Print InStrRev("CBAABC", "b", -1, 0) '0 case-sensitive comparison
 Print InStrRev("CBAABC", "b", -1, 1) '5 case-insensitive comparison
 Print InStrRev("CBAABC", "B", -1, 0) '5 case-sensitive comparison
End Sub

Prior to OOo 2.0, the return value from InStr is an integer, which is limited to values from -32,768 through
32,767. A string can be up to 65,535 characters in length, which causes problems when InStr searches large
strings. Starting with OOo 2.0, however, the return type is a long.

Listing 133. Demonstrate InStr and a long string.
Dim s1 As String
s1 = String(44000, "*") & "XX" 'This string has 44002 characters.
Print InStr(s1, "XX") '44001 in OOo 2.0 and -21535 in OOo 1.1.1.

152

 7.3. Locale and strings

Use Tools | Options | Language Settings | Languages to view the Locale used by OO. My Locale setting is
“Default – English (USA)”. After changing the Locale, you must exit and restart for the changes to be used.
The following macro returns different results based on the configured locale. Notice the difference when run
as English – US and Turkish locales.

Listing 134. Some string functions use Locale.
Sub LocaleStringTests
 Dim s$
 ' compare Turkish dotless i with upper case i
 ' Turkish Locale returns 0, English returns -1
 s = "Compare dotless i with upper case i : " & StrComp("ı", "I", 0) & CHR$(10)

 ' compare lower case i to upper case i
 ' English Locale returns 0, Turkish Locale returns 1.
 s = s & "Compare i with upper case i : " & StrComp("i", "I", 0) & CHR$(10)

 s = s & "Lower Case I = " & LCase("I") & CHR$(10)
 s = s & "Upper Case i = " & UCase("i")
 MsgBox s
End Sub

Figure 53. English – US Locale on the Left, Turkish Locale on the Right.
I did not explore other areas that may also rely on Locale specific settings.

 7.4. Substrings

Use the Left function to retrieve a portion of the string from the start. The first argument is the string from
which to extract the characters, and the second argument indicates how many characters to return.
Analogously, the Right function returns strings from the end of a string. If the requested length is zero, an
empty string is returned. If the requested length is too large, the entire string is returned.

Print Left("12345", 2) '12
Print Left("12345", 8) '12345
Print Right("12345", 2) '45

The length argument for the Left and Right functions is a long, correctly handling strings, which can contain
up to 65,535 characters (see Listing 135).

Listing 135. Strings can contain up to 65,535 characters.
Dim s1 As String
s1 = String(44002, "*") 'This string has 44002 characters

153

Print Len(s1) '44002
Print Len(Left(s1, 44000)) '44000 (fixed in OOo 2.0)
Print Len(Right(s1, 44000)) '44000

Use the Mid function to extract arbitrary substrings and to replace substrings in an existing string. In general,
the string functions return a new string rather than modifying the existing string. For example, the Trim
function returns a new string with leading and trailing spaces removed, rather than removing leading and
trailing spaces from the existing string. The Mid function, however, can be used to modify the string rather
than simply returning a new one. In its simplest form, the Mid function has functionality to the Right
function. The first argument is a string, and the second argument is a starting position. The optional third
argument indicates the length of the string to return.

Listing 136. Demonstrate Mid.
Print Mid("123456", 3) '3456
Print Mid("123456", 3, 2) '34
s1 = String(44000, "*")&"XX"
Print Mid(s1, 44000) '*XX No problem with large arguments
Print Len(Mid(s1, 2, 40000)) '40000 No problem with large arguments

The Mid function can provide the same functionality as the Left function.

Left(s, n) = Mid(s, 1, n)

The Mid function takes an optional fourth argument, a string, that replaces the specified substring in the first
argument. In other words, if four arguments are present, the first three arguments specify a substring in the
string and the fourth argument replaces the substring. This may shorten the length of a string, but in OOo
Basic this will never cause the string to become longer. If the final argument is longer than the specified
substring, only the first characters are used from the final argument to replace the substring.

Listing 137. Demonstrate Mid to replace strings.
s = "123456789"
Mid(s, 3, 5, "") 'Replace five characters with nothing
Print s '1289

s = "123456789"
Mid(s, 3, 5, "XX") 'Replace five characters with two
Print s '12XX89

s = "123456789"
Mid(s, 3, 5, "ABCDEFG") 'Cannot add more than you replace from the middle
Print s '12ABCDE89

s = "123456789"
Mid(s, 7, 12, "ABCDEFG")'You can add more than you remove from the end
Print s '123456ABCDEFG

 7.5. Replace

The ReplaceInString function (see Listing 138) emulates the Mid function, with two exceptions: It puts the
entire new string in place, even if it’s longer than the substring that it replaces, and it doesn’t modify the
original string.

Listing 138. A general replace string method.
REM This function is similar to Mid with four arguments.
REM This function does not modify the original string.

154

REM This function handles replacement text larger than n.
Function ReplaceInString(s$, i&, n&, sNew$) As String
 If i <= 1 Then
 'Place the string in front.
 'The only question is how much string must be removed.

 If n < 1 Then 'Remove nothing
 ReplaceInString = sNew & s
 ElseIf n >= Len(s) Then 'Remove everything
 ReplaceInString = sNew
 Else 'Remove a portion from the left
 ReplaceInString = sNew & Right(s, Len(s) - n)
 End If

 ElseIf i + n > Len(s) Then
 'Replacing past the end, then extract the leftmost parts
 'Mid works to find if the length argument is larger than the
 'string, so this is fine! Append the new text to the end.

 ReplaceInString = Mid(s, 1, i - 1) & sNew

 Else
 'Replace somewhere in the middle of the string.
 'First, obtain the leftmost text.
 'Second, insert the new text, if any.
 'Finally, obtain the rightmost text.

 ReplaceInString = Mid(s, 1, i - 1) & sNew & Right(s, Len(s) - i - n + 1)
 End If
End Function

But wait, there is an undocumented statement Replace(strng, find, rpl, start, Count, mode), which finds all
occurrences of find and replaces them with rpl. The last three arguments are optional.

The start value indicates what part of the string to return, not where to start replace. A value of one for the
start value returns all of the characters. A start value of three ignores the first two characters in the return
string.

The count indicates the maximum number of times to replace the found text. A value of -1 replaces all
values.

A mode value of 1, the default, indicates a case-insensitive compare is used to find matching text. A mode
value of 0 causes a case-sensitive compare.

 7.6. Aligning strings with LSet and RSet

Use the LSet and RSet statements to left-justify and right-justify strings into the space taken by another
string. This is useful, for example, to create column headings that are left or right justified with leading or
trailing spaces. The RSet and LSet functions use the same syntax.

LSet string_1 = expression
RSet string_1 = expression

155

The string on the left-hand side can contain any data as long as it is the length that you want. The right-hand
side must evaluate to a string; that string will be displayed in the space defined by the length of the left-hand
string. Unlike the behavior for many functions in OOo Basic, the expression is not automatically converted
to a string.

Listing 139. RSet.
Dim s As String 'String variable to contain the result
s = String(10, "*") 'The result is 10 characters wide
RSet s = CStr(1.23) 'The number is not automatically converted to a string
Print "$" & s '$ 1.23

The important thing about the string on the left is its length — the width of the field in which the value of
interest will be displayed. The easiest way to get a string of a specified length is to use the String function.
The character that you use is not important because all of the extra characters in the final result are replaced
with spaces.

Listing 140. LSet.
Dim s As String 'String variable to contain the result
s = String(10, "X") 'The result is 10 characters wide
LSet s = CStr(1.23) 'The number is not automatically converted to a string
Print s & "%" '1.23 %

If the string on the left is shorter than the string expression on the right, the expression is truncated to fit.
Both LSet and RSet chop characters from the end of the expression to make it fit within the defined string
length.

Listing 141. LSet and RSet truncate.
Dim s As String 'String variable to contain the result
s = String(4, "X") 'The result will be four characters wide
LSet s = CStr(21.23)'Truncated on the right
Print "$" & s & "%" '$21.2%
RSet s = CStr(21.23)'Truncated on the right
Print "$" & s & "%" '$21.2%

The code in Listing 142 demonstrates the behavior of the LSet and RSet commands. The results are
displayed in Figure 54.

Listing 142. Complete LSet and RSet example.
Sub ExampleLSetAndRSet
 Dim s As String
 Dim sVar As String
 Dim sTmp As String

 sTmp = "12345"
 sVar = String(10,"*")
 LSet sVar = sTmp
 s = "LSet " & String(10, "*") & " = " & STmp &_
 " == >" & sVar & "<" & CHR$(10)

 sVar = String(10,"*")
 RSet sVar = sTmp
 s = s & "RSet " & String(10, "*") & " = " & STmp &_
 " == >" & sVar & "<" & CHR$(10) & CHR$(10)

 sVar = String(2,"*")

156

 LSet sVar = sTmp
 s = s & "LSet " & String(2, "*") & " = " & STmp &_
 " == >" & sVar & "<" & CHR$(10)

 sVar = String(2,"*")
 RSet sVar = sTmp
 s = s & "RSet " & String(2, "*") & " = " & STmp &_
 " == >" & sVar & "<" & CHR$(10)

 MsgBox s, 0, "RSet and LSet"
End Sub

Figure 54. RSet and LSet justify strings.

TIP In Visual Basic, LSet allows you to overlay data from one user-defined type with data from another,
overlaying all the bytes from one data structure on top of the other; ignoring the underlying structure. In
OOo Basic, LSet only manipulates strings.

 7.7. Fancy formatting with Format

You can convert a number to a string formatted according to the optional format string. And you can include
multiple formats in a single format string. See Table 53. The current locale influences the returned formatted
string. Set the locale using Tools | Options | Language Settings | Languages. If the format string is
omitted, Format produces output similar to the CStr function.

Listing 143. Simple Format statement.
 Print Format(1223, "00.00") '1223.00
 Print Format(1234.56789, "###00.00") '1234.57

Each individual format is separated by a semicolon (;). The first format is used for positive numbers, the
second for negative numbers, and the third for zero. If only one format code is present, it applies to all
numbers.

Listing 144. Format string may specify formatting for positive , negative, and zero numbers.
 Dim s As String
 s = "P 00000.000;N ####.00;Z 0.0"
 Print Format(-12.3, s) 'N 12.30
 Print Format(0, s) 'Z 0.0
 Print Format(12.3, s) 'P 000012.300

Table 53. Numeric Format specifiers.
Code Description

0 If the number has a digit at the position of the 0 in the format code, the digit is displayed;
otherwise a zero appears. This means that leading and trailing zeros are displayed, leading digits

157

Code Description

are not truncated, and trailing decimals are rounded.

This works like the 0, but leading and trailing zeros are not displayed.

.
The decimal placeholder determines the number of decimal places to the left and right of the
decimal separator. Although the period is used in the format string regardless of locale, the output
correctly uses the locale-specific decimal separator.

% Multiply the number by 100 and insert the percent sign (%) where it appears in the format code.

E-

E+

e-

e+

If the format code contains at least one numerical digit placeholder (0 or #) to the right of the
symbol, the number is formatted in the scientific notation. The letter E or e is inserted between the
number and the exponent. The number of placeholders for digits to the right of the symbol
determines the number of digits in the exponent. If the exponent is negative, a minus sign (-) is
displayed directly before an exponent. If the exponent is positive, a plus sign (+) is only displayed
before exponents with E+ or e+.

,
The comma is a placeholder for the thousands separator. It separates thousands from hundreds in a
number with at least four digits. The thousands delimiter is displayed if the format code contains
the placeholder surrounded by digit placeholders (0 or #).

- + $ () space Plus signs (+), minus signs (-), dollar signs ($), spaces, or brackets entered directly in the format
code are displayed as the literal character.

\

The backslash displays the next character in the format code. In other words, it prevents the next
character from being seen as a special character. The backslash is not displayed unless you enter a
double backslash (\\) in the format code. Characters that must be preceded by a backslash in the
format code in order to be displayed as literal characters are the date- and time-formatting
characters (a, c, d, h, m, n, p, q, s, t, w, y, /, :), numeric-formatting characters (#, 0, %, E, e,
comma, period), and string-formatting characters (<, >). You may also enclose characters in
double quotation marks.

General Number Numbers are displayed as entered.

Currency A currency symbol is placed in front of the number, and negative numbers are in brackets.

Fixed At least one digit is displayed in front of the decimal separator. Two decimals are displayed.

Percent Multiply the number by 100 and append a percent sign (%).

Standard Displays numbers with a locale-specific thousands separator. Two decimals are displayed.

Scientific Displays numbers in scientific notation. Two decimals are displayed.

The format function has been dramatically improved over the years and most of the bugs have been fixed.
Format specifiers related to numbers are shown in Table 53.

Listing 145. Demonstrate numeric format specifiers.
Sub ExampleFormat
 MsgBox Format(6328.2, "##,##0.00") REM 6,328.20
 MsgBox Format(123456789.5555, "##,##0.00") REM 123,456,789.56
 MsgBox Format(0.555, ".##") REM .56
 MsgBox Format(123.555, "#.##") REM 123.56
 MsgBox Format(123.555, ".##") REM 123.56
 MsgBox Format(0.555, "0.##") REM 0.56
 MsgBox Format(0.1255555, "%#.##") REM %12.56
 MsgBox Format(123.45678, "##E-####") REM 12E1
 MsgBox Format(.0012345678, "0.0E-####") REM 1.2E-003
 MsgBox Format(123.45678, "#.e-###") REM 1.e002
 MsgBox Format(.0012345678, "#.e-###") REM 1.e-003

158

 MsgBox Format(123.456789, "#.## is ###") REM 123.46
 MsgBox Format(8123.456789, "General Number") REM 8123.456789
 MsgBox Format(8123.456789, "Fixed") REM 8123.46
 MsgBox Format(8123.456789, "Currency") REM 8,123.46 $ (broken)
 MsgBox Format(8123.456789, "Standard") REM 8,123.46
 MsgBox Format(8123.456789, "Scientific") REM 8.12E+03
 MsgBox Format(0.00123456789, "Scientific") REM 1.23E-03
 MsgBox Format(0.00123456789, "Percent") REM 0.12%
End Sub

Format specifiers related to date and time formatting are shown in Table 54. For reasons that I do not
understand, they are not included with the standard documentation.

Table 54. Date and time format specifiers.
Code Description

q The quarter of the year (1 through 4).

qq The quarter of the year as 1st quarter through 4th quarter

y The day in the year (1 through 365).

yy Two-digit year.

yyyy Complete four-digit year.

m Month number with no leading zero.

mm Two-digit month number; leading zeros are added as required.

mmm Month name abbreviated to three letters.

mmmm Full month name as text.

mmmmm First letter of month name.

d Day of the month with no leading zero.

dd Day of the month; leading zeros are added as required.

ddd Day as text abbreviated to three letters (Sun, Mon, Tue, Wed, Thu, Fri, Sat).

dddd Day as text (Sunday through Saturday).

ddddd Full date in a short date format.

dddddd Full date in a long format.

w Day of the week as returned by WeekDay (1 through 7).

ww Week in the year (1 though 52).

h Hour with no leading zero.

hh Two-digit hour; leading zeros are added as required.

n Minute with no leading zero.

nn Two-digit minute; leading zeros are added as required.

s Second with no leading zero.

ss Two-digit second; leading zeros are added as required.

ttttt Display complete time in a long time format.

c Display a complete date and time.

/ Date separator. A locale-specific value is used.

: Time separator. A locale-specific value is used.

159

The date and time format specifiers are now implemented. I am aware of at least one bug that is
demonstrated in Listing 146 with the format string “d/mmmm/yyyy h:nn:ss”; Figure 55 shows that “nn”
does not expand properly on the last line.

Listing 146. Demonstrate date and time format specifiers.
Sub FormatDateTimeStrings
 Dim i%
 Dim d As Date
 d = now()
 Dim s$
 Dim formats
 formats = Array("q", "qq", "y", "yy", "yyyy", _
 "m", "mm", "mmm", "mmmm", "mmmmm", _
 "d", "dd", "ddd", "dddd", "ddddd", "dddddd", _
 "w", "ww", "h", "hh", "n", "nn", "nnn", "s", "ss", _
 "ttttt", "c", "d/mmmm/yyyy h:nn:ss")
 For i = LBound(formats) To UBound(formats)
 s = s & formats(i) & " => " & Format(d, formats(i)) & CHR$(10)
 Next
 MsgBox s
End Sub

160

Figure 55. Date and time format specifiers.
Format specifiers related to strings are shown in Table 55.

Table 55. String format specifiers.
Code Description

< String in lowercase.

> String in uppercase.

Other string format specifiers used to be documented, but have never been implemented (see Table 56). I
include them because the specifiers in Table 54 and Table 55 used to be documented but not implemented;
now they are implemented but not documented.

161

Table 56. String format specifiers.
Code Description

@ Character placeholder. If the input character is empty, place a space in the output
string. For example, “(@@@)” formats to “()” with an empty string.

& Character placeholder. If the input character is empty, place nothing in the output
string. For example, “(&&&)” formats to “()” with an empty string.

! Normally, character placeholders are filled right to left; the ! forces the placeholders to
be filled left to right.

As of this writing with OOo version 3.2.1, only the upper / lower case string format specifiers are
implemented.

Listing 147. String format specifiers.
Sub FormatStrings
 Dim i%
 Dim s$
 Dim formats
 formats = Array("<", ">", _
 "@@", "(@@@)", "[@@@@]", _
 "&&", "(&&&)", "[&&&&]", _
)
 For i = LBound(formats) To UBound(formats)
 s = s & formats(i) & " => (" & Format("On", formats(i)) & ")" & CHR$(10)
 Next
 MsgBox s
End Sub

 7.8. Converting data to a string

OOo Basic contains functions that convert other data types to a string. Although the Format function is the
most versatile method of converting a number to a string, that level of control is typically not required. The
Str function converts a number to a string with no localization, and the Val function converts it back to a
number.

The Hex and Oct functions convert a Long to its corresponding hexadecimal or octal notation. The leading
“&H” and “&O” are not included. To convert back to a number, these strings must be manually prepended to
the string.

The CStr function is able to intelligently convert almost any data type to a string in a locale-specific way
(see Table 57). The Str function is limited to numbers and does not perform a locale-specific conversion.

Table 57. Converting data types with CStr.
Type Converted to String

Boolean True or False

Date Formatted date string such as 06/08/2010

Null, uninitialized object Run-time error

Empty, uninitialized variant Zero-length string

any numeric value Number as a string

162

Listing 148. CStr with a few data types.
Sub ExampleCStr
 On Error Goto Handler
 Dim b As Boolean
 Dim o As Object
 Dim v As Variant ' This is empty
 Dim d As Double : d = PI()

 Print "Boolean (" & CStr(b) & ")"
 Print "Date (" & CStr(Now) & ")"
 Print "Empty Variant (" & CStr(v) & ")"
 Print "Double (" & CStr(d) & ")"
 Print "Null object (" & CStr(o) & ")"
 Exit Sub
Handler:
 Print "Encountered error: " & Error
 Resume Next
End Sub

The CStr function is useful when you need to explicitly convert a value to a string to avoid incorrect default
conversions to other types. For example, the first operand to the addition operator determines if the result is
a string or a number. This is also an argument against the use of the addition operator (+) for string
concatenation rather than the operator specifically designed for string concatenation (&).

Print 3 + "4" '7
Print CStr(3) + "4" '34

The Join function concatenates all of the elements in a one-dimensional array into a single string. If no
delimiter is specified, a space separates each element.

Print Join(Array(3, 4, 5)) '3 4 5
Print Join(Array(3, 4, 5), "X") '3X4X5

The Split function is used to split a string into pieces based on an optional delimiter. This is essentially the
opposite of the Join function and is the fastest method to parse a string into a series of substrings based on a
delimiter.

Split("3 4 5") 'returns the array (3, 4, 5)
Split("3X4X5", "X") 'returns the array (3, 4, 5)

 7.9. Advanced searching

The usual search methods are StrComp (Listing 126), InStr (Listing 131), and InStrRev (Listing 132).
Advanced searching can be done using the TextSearch service. Searching can be done using ABSOLUTE,
REGEXP, or APPROXIMATE mode. I will not take the time to pursue the TextSearch service in depth; for
example, to investigate replacing text.

Listing 149. using the TextSearch service.
Sub StringTextSearch
 Dim oTextSearch ' TextSearch service.
 Dim sStrToSearch As String ' String to search.
 Dim sMatchString As String ' String that was found.
 Dim aSearchResult ' com.sun.star.util.SearchResult
 Dim rank As Long
 Dim iMatchStartPos As Long
 Dim iMatchLen As Long

163

 Dim aSrcOpt As New com.sun.star.util.SearchOptions
 Dim s$
 Dim enLocale As New com.sun.star.lang.Locale

 enLocale.Language = "en"
 enLocale.Country = "US"

 oTextSearch = CreateUnoService("com.sun.star.util.TextSearch")
 s = ""

 With aSrcOpt
 'http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchFlags.html
 .searchFlag = com.sun.star.util.SearchFlags.REG_EXTENDED
 .Locale = enLocale
 'Supports ABSOLUTE, REGEXP, and APPROXIMATE
 .algorithmType = com.sun.star.util.SearchAlgorithms.REGEXP
 .searchString = "a+"

 'This does not work.
 '.transliterateFlags = com.sun.star.i18n.TransliterationModulesNew.IGNORE_CASE

 'This works
 .transliterateFlags = com.sun.star.i18n.TransliterationModulesNew.UPPERCASE_LOWERCASE
 End With

 oTextSearch.setOptions(aSrcOpt)

 sStrToSearch = "aaa hello AAA"
 aSearchResult = oTextSearch.searchForward(sStrToSearch, 0,Len(sStrToSearch)-1)
 'Print aSearchResult.subRegExpressions

 REM subRegExpressions has value zero if no match...
 Do While aSearchResult.subRegExpressions > 0
 'Print "" + LBound(aSearchResult.startOffset) + ":" + UBound(aSearchResult.startOffset)
 rank = aSearchResult.subRegExpressions - 1
 iMatchStartPos = aSearchResult.startOffset(rank) + 1
 iMatchLen = aSearchResult.endOffset(rank) - aSearchResult.startOffset(rank)
 sMatchString = Mid(sStrToSearch, iMatchStartPos, iMatchLen)
 s = s & "(" + LBound(aSearchResult.startOffset) & ":" & _
 UBound(aSearchResult.startOffset)& ") => " & sMatchString & CHR$(10)

 aSearchResult = oTextSearch.searchForward(sStrToSearch, _
 aSearchResult.endOffset(rank)+1,Len(sStrToSearch)-1)
 Loop
 MsgBox s
End Sub

 7.10. Conclusion

It pays to know the different functions supported by OOo Basic. Before I was aware of the Split function, I
spent a lot of time writing a macro that parsed a string into pieces. I rewrote my code using the Split function

164

and the macro was significantly faster. It’s also important to know the limitations of strings. I saw a macro
that counted words in a document by first converting the entire document into a single string. This technique
worked well, and it was very fast, but it failed when the number of characters in the document exceeded
65,535.

There are a lot of very powerful capabilities for formatting text in OOo Basic. Among other things, the use
of the Unicode character set allows processing of nearly any language in the world. There are also a number
of good functions for joining, splitting, and formatting text strings.

165

 8. File Routines
This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that are related to
files and directories. After reading this chapter you’ll be able to create, delete, rename, and move files and
directories. You’ll learn methods that inspect files, both open and closed, and directories. This chapter also
explains the idiosyncrasies and bugs related to reading and writing files, along with differences between
operating systems.

OOo Basic includes functions that allow you to interact with the file system (see Table 58). You can perform
simple and complex tasks such as creating and deleting directories, or even opening and parsing files. In this
chapter I’ll spend a fair amount of time on directories, file attributes, and the different file types. I will
examine how files are organized and manipulated, how the different file types are structured, and which
functions read and write data for those different file types. I was happy with how easily I was able to write
macros to move and rename files. On the other hand, the functions to manipulate binary and random files
feel rough around the edges.

Table 58. File functions in OOo Basic.
Function Description
ChDir(path) Change the currently logged directory or drive. Deprecated; do not use.

ChDrive(path) Change the currently logged drive. Deprecated; do not use.

Close #n Close a previously opened file or files. Separate file numbers with a comma.

ConvertFromURL(str) Convert a path expressed as a URL to a system-specific path.

ConvertToURL(str) Convert a system-specific path to a URL.

CurDir

CurDir(drive)

Return the current directory as a system-specific path. If the optional drive is specified, the
current directory for the specified drive is returned.

Dir(path)

Dir(path, attr)

Return a listing of files based on an included path. The path may contain a file specification
— for example, “/home/andy/*.txt”. Optional attributes determine if a listing of files or
directories is returned.

EOF(number) Return True if the file denoted by “number” is at the end of the file.

FileAttr(number, 1) Return the mode used to open the file given by “number”. The second argument specifies if
the file-access or the operating-system mode is desired, but only the file mode is currently
supported.

FileCopy(src, dest) Copy a file from source to destination.

FileDateTime(path) Return the date and time of the specified file as a string.

FileExists(path) Return True if the specified file or directory exists.

FileLen(path) Return the length of the specified file as a long.

FreeFile() Return the next available file number for use.

Get #number, variable

Get #number, pos, variable

Read a record from a relative file, or a sequence of bytes from a binary file, into a variable.
If the position argument is omitted, data is read from the current position in the file. For files
opened in binary mode, the position is the byte position in the file.

GetAttr(path) Return a bit pattern identifying the file type.

GetPathSeparator() Return the system-specific path separator.

Input #number, var Sequentially read numeric or string records from an open file and assign the data to one or
more variables. The carriage return (ASC=13), line feed (ASC=10), and comma act as
delimiters. Input cannot read commas or quotation marks (") because they delimit the text.
Use the Line Input statement if you must do this.

Kill(path) Delete a file from disk.

Line Input #number, var Sequentially read strings to a variable line-by-line up to the first carriage return (ASC=13)

166

Function Description
or line feed (ASC=10). Line end marks are not returned.

Loc(number) Return the current position in an open file.

LOF(number) Return the size of an open file, in bytes.

MkDir(path) Create the directory.

Name src As dest Rename a file or directory.

Open path For Mode As #n Open a data channel (file) for Mode (Input = read, Output = write)

Put #n, var

Put #n, pos, var

Write a record to a relative file or a sequence of bytes to a binary file.

Reset Close all open files and flush all files to disk.

RmDir(path) Remove a directory.

Seek #n, pos Set the position for the next writing or reading in a file.

SetAttr(path, attr) Set file attributes.

Write #n, string Write data to a file.

 8.1. Using URL notation to specify a file

Many of the functions in Table 58 specify a file or path. These functions accept both system-specific names
and Uniform Resource Locator (URL) notation. This is the same notation used by your Web browser. Table
59 shows examples.

Table 59. URL examples.
System System Path URL Path
Windows c:\Temp\help.txt file:///c:/Temp/help.txt

Windows c:\My Documents file:///c:/My%20Documents

Unix /home/andy/Temp/help.txt file:///home/andy/Temp/help.txt

Unix /home/andy/My Documents file:///home/andy/My%20Documents

TIP The statement “Shell("C:\Prog Files\calc.exe",2)” failed because there is a space in the path. The Shell
statement passes the string to the command shell, which interprets the portion of the path before the space
as the program to run. URL notation avoids this problem.

One advantage of URL notation is that special characters are encoded. Arguments that are passed to a shell,
for example, frequently have problems with paths that contain a space. In URL notation, spaces are encoded
as “%20” (see Table 59). Use the functions ConvertToURL to convert a system-specific path to URL
notation and ConvertFromURL to convert to a system-specific path.

Listing 150. Converting to and from a URL.
Sub ToFromURL
 Print ConvertToURL("/home/andy/logo.miff")
 Print ConvertFromURL("file:///home/andy/logo.miff") 'This requires UNIX
 Print ConvertToURL("c:\My Documents") 'This requires Windows
 Print ConvertFromURL("file:///c:/My%20Documents") 'This requires windows
End Sub

167

Special characters, such as the space, are encoded with a percent sign (%) followed by the ASCII value of
the character encoded as a two-digit hexadecimal number. The space character has an ASCII value of 32,
which is 20 in hexadecimal format. This is why a space is encoded as %20.

Listing 151. Special URL characters.
Sub URLSpecialEncoding
 Print ConvertFromURL("file:///%41%42%43/%61%62%63") '/ABC/abc (UNIX)
 Print ConvertFromURL("file://c:/%41%42%43/%61%62%63")'/ABC/abc (Windows)
End Sub

URL notation is system independent, so URL paths work as well on an Apple computer as they do on a
Windows computer. To create a system-specific path, use the function GetPathSeparator to obtain the
system-specific path separator. Listing 152 demonstrates how to use GetPathSeparator to build a complete
path. Windows-based computers use “\” as the path separator, and Unix-based computers use “/” as the path
separator. URL notation uses “/” as the separator regardless of the operating system.

Listing 152. Use GetPathSeparator() rather than “\” or “/”.
sPathToFile = "C:\temp"
sBookName = "OOME.odt"
sPathToBook = sPathToFile & GetPathSeparator() & sBookName

TIP Visual Basic for Applications (VBA) does not support the function GetPathSeparator, but it does have the
property Application.PathSeparator, which always returns a backslash, even on a Macintosh computer.
VBA also does not support ConvertToURL or ConvertFromURL.

 8.2. Directory manipulation functions

Some functions apply equally well to directories as well as files. This section is concerned with those that
apply only to directories.

The function CurDir, with a drive specifier as the argument, returns the current directory for the specified
drive. See Listing 153 and Figure 56. If the argument is omitted, the current directory for the current drive is
returned. The drive specifier is ignored on Unix systems. The initial value of the current directory is system
dependent and may change depending upon how OOo is started. If you start OOo from a command-line
prompt, you’ll likely have a different current directory than if you start OOo from a menu or another
application. For some operating systems, using File | Open to open an existing document sets the current
directory to the directory containing the opened document (I have seen this in Windows). In some operating
systems, such as Linux, this does not affect the current directory. Do not rely on this behavior!

Listing 153. Print the current directory.
Sub ExampleCurDir
 MsgBox "Current directory on this computer is " &_
 CurDir, 0, "Current Directory Example"
End Sub

Figure 56. CurDir returns the current directory.
The functions ChDir and ChDrive, although present in OOo Basic, do nothing and will likely be removed
from the language. Their original purpose was to change the current drive and directory, but this was a

168

system wide change, which is dangerous in multitasking environments like we use today. The initial current
directory is dependent upon the operating system and how OOo was opened. The initial values, therefore,
cannot be assumed.

Use the MkDir function to create a directory, and RmDir to remove a directory. In Listing 154, a directory
path is created from the argument to MkDir. If an absolute path is not provided, the created directory is
relative to the current directory as obtained with the function CurDir. The function RmDir removes the
directory, all directories below it, and all files contained in the directories. This macro calls OOMEWorkDir
in Listing 165.

Listing 154. Create and then remove directories in the OOME Work Directory.
Sub ExampleCreateRmDirs
 If NOT CreateOOMEWorkDir() Then
 Exit Sub
 End If
 Dim sWorkDir$
 Dim sPath$
 sWorkDir = OOMEWorkDir()
 sPath = sWorkDir & "a" & GetPathSeparator() & "b"
 MkDir sPath
 Print "Created " & sPath
 RmOOMEWorkDir()
 Print "Removed " & sWorkDir
End Sub

The code in Listing 154 uses absolute paths. It’s possible to use relative paths, but I strongly discourage it.
The behavior of the current directory is operating-system dependent.

File-related functions that also work with directories include Dir, FileDateTime, FileExists, FileLen,
GetAttr, and Name. These are discussed later.

 8.3. File manipulation functions

This section explores functions that deal with inspecting and manipulating entire files, rather than the
contents of those files. Some of these functions have a dual purpose, acting on both files and directories. In
each case, the function accepts at least one argument that identifies a file or directory. The following things
are true about arguments that identify files or directories:

If the path is not present, the current directory — as returned by CurDir — is used.

The system representation and the URL notation are both allowed. For example, “C:\tmp\foo.txt” and
“file:///c:/tmp/foo.txt” refer to the same file.

Unless it is explicitly stated, a single file or directory must be uniquely identified. The only function that
accepts a file specification is Dir, which returns a listing of files matching the file specification.

Each file and directory has attributes (see Table 60). Each attribute represents a single bit in a number,
allowing each item in a path to have multiple attributes set at the same time. Some attributes have been
deprecated to be more system dependent. Not all systems support hidden or system files, for example. Use
GetAttr to return the attributes.

169

Table 60. File and directory attributes.
Deprecated Attribute Description
No 0 Normal; no bits set

No 1 Read-Only

Yes 2 Hidden

Yes 4 System

No 8 Volume

No 16 Directory

No 32 Archive bit (file changed since last backed up)

The function in Listing 155 accepts an attribute from the GetAttr function and returns an easy-to-understand
string. If no bits are set, the attributes indicate a normal file.

Listing 155. Print attributes as a string.
REM uses bitwise comparison to read the attributes
Function FileAttributeString(x As Integer) As String
 Dim s As String
 If (x = 0) Then
 s = "Normal"
 Else
 If (x AND 16) <> 0 Then s = "Directory" 'Directory bit 00010000 set
 If (x AND 1) <> 0 Then s = s & " Read-Only" 'read-only bit 00000001 set
 If (x AND 2) <> 0 Then s = s & " Hidden" 'Deprecated
 If (x AND 4) <> 0 Then s = s & " System" 'Deprecated
 If (x AND 8) <> 0 Then s = s & " Volume" 'Volume bit 00001000 set
 If (x AND 32) <> 0 Then s = s & " Archive" 'Archive bit 00100000 set
 End If
 FileAttributeString = s
End Function

TIP Listing 155 performs bit operations (explained later) to determine which attributes are set.

Use the GetAttr function to get the attributes of a file, and use SetAttr to set the attributes. The first
argument to the function SetAttr is the name of the file — relative or absolute — and the second argument is
a number representing the attributes to set or clear. In other words, after calling SetAttr(name, n), the
function GetAttr(name) should return the integer n. For example, calling SetAttr with the attribute set to 32
sets the archive bit and clears all the others so GetAttr returns 32. To set more than one bit at the same time,
use the OR operator to combine attributes. Use SetAttr(fileName, 1 OR 32) to set both the archive bit and
the read-only bit. SetAttr works on directories as well as files.

TIP Attributes favor the Windows environment. On Unix-based operating systems such as Linux and Sun,
setting attributes affects the user, group, and world settings. Setting the attribute to 0 (not read-only)
corresponds to “rwxrwxrwx”. Setting the attribute to 1 (read-only) corresponds to “r r r”.

Use the FileLen function to determine the length of a file. The return value is a long. The function in Listing
156 obtains the file length and then creates a pretty string to display the length. The file length is returned in
bytes — K, MB, G, or T — depending on the length. This produces a more easily understood result than a
simple number.

170

Listing 156. Display a number in a nice readable form such as 2K rather than 2048.
Function PrettyFileLen(path$) As String
 PrettyFileLen = nPrettyFileLen(FileLen(path))
End Function

Function nPrettyFileLen(ByVal n As Double) As String
 Dim i As Integer 'Count number of iterations
 Dim v() As Variant 'Holds abbreviations for Kilobytes, Megabytes, ...
 v() = Array("bytes", "K", "MB", "G", "T") 'Abbreviations

 REM Every time that the number is reduced by 1 kilobyte,
 REM the counter is increased by 1.
 REM Do not decrease the size to less than 1 kilobyte.
 REM Do not increase the counter by more than the size of the array.
 Do While n > 1024 AND i+1 < UBound(v())
 n = Fix(n / 1024) 'Truncate after the division
 i = i + 1 'Started at i=0 (bytes) increment to next abbreviation
 Loop
 nPrettyFileLen = CStr(n) & v(i)
End Function

Use the FileExists function to determine if a file or directory exists. Use FileDateTime to return a string with
the date and time that a file was created or last modified. The returned string is in a system-dependent
format. On my computer, the format is “MM/DD/YYYY HH:MM:SS”. The returned string can be passed
directly to the function CDate. The GetFileInfo macro in Listing 157 uses all of the file and directory
inspection functions to return information in an easy-to-read format. Also see Figure 57.

Listing 157. Get information about a file.
Function GetFileInfo(path) As String
 Dim s As String
 Dim iAttr As Integer
 s = "The path """ & path & """"
 If Not FileExists(path) Then
 GetFileInfo = s & " does not exist"
 Exit Function
 End If
 s = s & " exists" & CHR$(10)
 s = s & "Date and Time = " & FileDateTime(path) & CHR$(10)
 iAttr = GetAttr(path)
 REM The length of a directory is always zero
 If (iAttr AND 16) = 0 Then
 s = s & "File length = " & PrettyFileLen(path) & CHR$(10)
 End If
 s = s & "Attributes = " & FileAttributeString(iAttr) & CHR$(10)
 GetFileInfo = s
End Function

171

Figure 57. You can learn a lot about a file by using the file-inspection functions.
Use the Kill statement to delete a file from the disk. A run-time error occurs if the file does not exist.

Kill("C:\temp\BadFile.txt")

Use the FileCopy function to copy files. The first argument is the file to copy and the second argument is the
destination file. See Table 61. The FileCopy function is able to recursively copy entire directories, but it
can’t handle file specifications. Surprisingly, if the first argument is a file, the second argument must also be
a file — I expected that I could copy a file to a directory with FileCopy("C:\auto.bat", "C:\bak\").

Table 61. Arguments to FileCopy.
Valid Source Destination Comment
Yes File File Copy the file. The names do not have to be the same.

Yes Directory Directory Recursively copy all files and directories contained in one directory
to another directory.

No file spec File specifications (wildcards, for example, *.*) are not allowed.

No File Directory If the source is a file, the destination must also be a file.

FileCopy("C:\auto.bat", "C:\auto.bak") 'Copy file
FileCopy("C:\auto.bat", "C:\tmp\auto.bat") 'Copy file
FileCopy("C:\logs", "C:\bak") 'Copy directory

TIP Do not recursively copy a directory into itself — this creates an infinite loop. For example,
FileCopy("C:\logs", "C:\logs\bak") will never finish because the “bak” subdirectory immediately becomes
part of the contents of “logs”, which then has to be copied as well. Bad idea.

Use the Name statement to rename a file or directory. This statement has an unusual syntax: It places the
keyword As between the source and destination names.

Name "C:\Joe.txt" As "C:\bill.txt" 'Rename a file
Name "C:\logs" As "C:\oldlogs" 'Rename a directory
Name "C:\Joe.txt" As "C:\tmp\joe.txt" 'Move the file to the tmp directory
Name "C:\logs" As "C:\bak\logs" 'Move the logs directory

TIP A common power-user trick is to use the Name command to move a file or directory from one location to
another.

 8.4. File attributes, bitmasks, and binary numbers

It isn’t necessary to understand binary numbers and bitmasks to use either file attributes or bitmasks in OOo
Basic, so don’t panic; simply skip the parts that make your head spin. Understanding this material, however,
makes it simpler to understand what is happening with file attributes and how to use them.

172

The file and directory attributes in Table 60 were strategically chosen to have a nice property when written
in base 2 (see Table 62) — each attribute has only one bit set. Zero is a special case — it has no bits set.

Table 62. File and directory attributes.
Decimal
Attribute

Binary
Attribute

Description Comment

00 0000 0000 Normal No bits set

01 0000 0001 Read-Only Bit 1 set

02 0000 0010 Hidden Bit 2 set

04 0000 0100 System Bit 3 set

08 0000 1000 Volume Bit 4 set

16 0001 0000 Directory Bit 5 set

32 0010 0000 Archive Bit 6 set

Use GetAttr to obtain the attributes of a file or path. If the file or path is a directory, then bit 5 is set. If the
file or path is read-only, then bit 1 is set. A returned attribute of 0 means that no bits are set and that this is a
normal file. Consider an attribute value of 33, which in binary is 0010 0001. Bit 1 is set, so this is read-only.
Bit 6 is set, so this file has changed since it was last archived. You can see that you don’t need to know how
to convert a decimal number into a binary number. However, you do need to know how to write a macro to
determine which bits are set and which bits are not set. Use the AND operator to determine which bits are
set. With AND, two things must both be true for the answer to be true. For example, my flashlight works if it
has a light bulb AND it has batteries.

The AND operator works with numbers by performing this logical operation on each of the bits. For
example, “3 AND 5” represented as base 2 is “0011 AND 0101 = 0001”. Bit 1 — the bit in the rightmost
position — in each number is equal to 1, so bit 1 in the result is also 1. All of the other bits do not have
corresponding 1s in the same position, so all of the other bits in the result equal zero.

Now I’ll apply this idea to the problem at hand. If the numeric value of an attribute is not zero, then at least
one property is set. Given this, you can then check each attribute as illustrated by the example in Table 63.

Table 63. Check attribute value 33 (100001) for each file property.
Read-Only Hidden System Volume Directory Archive

 10 0001
AND 00 0001
(1) 00 0001

 10 0001
AND 00 0010
(0) 00 0000

 10 0001
AND 00 0100
(0) 00 0000

 10 0001
AND 00 1000
(0) 00 0000

 10 0001
AND 01 0000
(0) 00 0000

 10 0001
AND 10 0000
(32)10 0000

To do this in OOo Basic, use code similar to the following:

If TheAttribute = 0 Then
 REM No attributes set
Else
 If (TheAttribute AND 1) = 1 Then ... 'Read-Only file: bit 1 is set
 If (TheAttribute AND 16) = 16 Then ... 'Directory: bit 5 is set.
 If (TheAttribute AND 4) <> 0 Then ... 'Another way to code the same logic.
End If

Each file and directory has an attribute defined as these bit patterns. If a bit in the attribute that corresponds
to a particular property is set, then the file has that property. Performing the AND operator with the

173

individual bit positions determines if the file has that property. The function FileAttributeString in Listing
155 uses this method.

To set the archive bit and read-only bit on a file, combine the bits and call the function once. Use the OR
operator to combine bit patterns. With the OR operator, if either bit is set, the resulting bit is a 1. To set the
read-only and the archive bits, use “1 OR 32”. If you set the attributes to 1, then all of the other attributes
will be cleared and only the read-only bit will be set.

 8.5. Obtaining a directory listing

Use the Dir function to obtain a directory listing. The first argument is a file specification. Although a file or
directory may be uniquely identified, file specs (also called wildcards) are allowed. For example, the
command Dir("C:\temp*.txt") returns a list of all files that have the extension TXT. The second argument
specifies attributes, for which there are two valid values: 0 (the default) returns files; set the second
argument to 16 to retrieve a list of directories.

TIP Most operating systems contain two special directory names, represented by a single period (.) and a
double period (..). A single period references the current directory, and two periods reference the parent
directory. These special directories are included in the directory list as returned by the Dir function. If you
write a macro that looks at each directory recursively but you don’t take these two into consideration, your
macro will erroneously run forever.

The first call to Dir starts reading a directory and returns the first file that matches. Each additional call,
which takes no arguments, returns the next file that matches.

sFileName = Dir(path, attribute) 'Get the first one
Do While (sFileName <> "") 'While something found
 sFileName = Dir() 'Get the next one
Loop

If the path uniquely identifies a file or directory, only one entry is returned. For example, the command
Dir("C:\tmp\autoexec.bat") returns the single file “autoexec.bat”. Less obviously, the command
Dir("C:\tmp") returns the single directory “tmp”. To determine what a directory contains, the path must
either contain a file specifier (C:\tmp*.*) or the path must contain a trailing path separator (C:\tmp\). The
code in Listing 158 performs a simple listing of the current directory; it uses the function GetPathSeparator
to obtain the path separator in an operating-system-independent way.

Listing 158. List the files in the current directory.
Sub ExampleDir
 Dim s As String 'Temporary string
 Dim sFileName As String 'Last name returned from DIR
 Dim i As Integer 'Count number of dirs and files
 Dim sPath 'Current path with path separator at end
 sPath = CurDir & GetPathSeparator() 'With no separator, DIR returns the
 sFileName = Dir(sPath, 16) 'directory rather than what it contains
 i = 0 'Initialize the variable
 Do While (sFileName <> "") 'While something returned
 i = i + 1 'Count the directories
 s = s & "Dir " & CStr(i) &_
 " = " & sFileName & CHR$(10) 'Store in string for later printing
 sFileName = Dir() 'Get the next directory name
 Loop
 i = 0 'Start counting over for files

174

 sFileName = Dir(sPath, 0) 'Get files this time!
 Do While (sFileName <> "")
 i = i + 1
 s = s & "File " & CStr(i) & " = " & sFileName & " " &_
 PrettyFileLen(sPath & sFileName) & CHR$(10)
 sFileName = Dir()
 Loop
 MsgBox s, 0, ConvertToURL(sPath)
End Sub

Sample output from Listing 158 is shown in Figure 58. First, the directories are listed. The first two
directories, “.” and “..”, represent the following:

file:///home/andy/My%20Documents/OpenOffice/
file:///home/andy/My%20Documents/

The inclusion of “.” and “..” is a common source of problems. A listing of directories contains these two
directories, which should usually be ignored.

Figure 58. Directory listing of the current directory.

 8.6. Open a file

OpenOffice.org uses low-level, system-specific methods to manipulate files. The operating system maintains
a list of the open files and identifies them with a number, which is called a “file handle.” In the world of
Basic, this is usually called the “file number” or “data channel.”

To open a file, you must tell it what file number (file handle) to use. Use the FreeFile function to obtain an
unused file number, which will be used when opening a file, referencing the open file, and when closing the
file. The Open statement is used to open a file before it is usable for reading or writing. The Open statement
requires a file number, which should always be obtained from the FreeFile function. Use the Close statement
when you are finished with the file. You can close multiple files in a single statement by providing a comma-
separated list of numbers after the Close statement. Use the Reset function to close all of the open files at
one time without having to explicitly list the file numbers. All open file numbers are closed and their data is
flushed to disk.

n = FreeFile()

175

Open FileName For Mode [Access ioMode] [Lock Mode] As #n [Len=Datalen]
Close #n

“FileName” is the name of the file that you want to open. If the file name does not include the path, the
current directory is assumed. “For Mode” specifies the state of the file when it is opened and how you intend
to use the file (see Table 64).

Table 64. Valid “For Mode” values and the resulting configuration if Access is not used.
For Mode File Pointer File Exists No File Read Write Comment

For Append end Open Create Yes Yes Sequential access

For Input start Open error Yes No Sequential access

For Output start Delete Create Yes Yes Sequential access

For Binary start Delete Create Yes Yes Random access

For Random start Delete Create Yes Yes Random access

Each mode has its own set of behaviors as shown in Table 64. Consider the row For Input, this can be read
to say: When a file is opened “For Input”:

1. The file pointer is positioned at the start of the file.

2. If the file exists, it is opened (and not deleted).

3. If the file does not exist, an error is generated.

4. The file is opened with read access, but not write access (assuming that Access is not explicitly
provided).

5. Sequential access is used for reading the file.

Unfortunately, the precise implementation is dependent on the operating system and even the compiler used
to create your version of OOo; for example, on some systems, you can write to a file opened for Input.

When a file is open, a pointer into the file is maintained. This pointer identifies where the next read or write
operation will occur. For example, if the file pointer is at the start of the file, the next “read” command will
read the first thing in the file. If the file pointer is at the end of the file, the next “write” command will
append data to the end of the file. You have some control over the initial position of the file pointer when the
file is opened, and you can move this file pointer around when the file is open. All of the “For” modes,
except “For Append,” position the file pointer at the start of the file.

You can access a file sequentially or randomly. A sequential file is similar to a video tape. Although you can
fast forward and rewind the tape to a specific location on the tape, the entire tape moves past the read/write
head. You then press Play or Record and the data is either sequentially read from or written to the tape. A
random file is similar to a music CD. Although you can play the CD sequentially, it isn’t required; you can
quickly jump to any song and play it. To make the analogy more accurate, however, each song on the CD
must be the same size. This is the disadvantage to the “For Random” mode.

Consider storing names of different lengths in a file on the disk. Storing one name per line in the file is
efficient with respect to space. You can use a new-line character between each name. To find a specific name
in the file, you start at the beginning and read until you find the person’s name. On the other hand, if you
know that the longest name is 100 characters, you can store each name on the disk, and store enough spaces
after the name to use a total of 100 characters for each name. This wastes space, but it allows you to quickly
move between names on the disk, because of the regular file structure. To read or write the 1000th name in
the file, you simply move directly to that record. You have wasted space in this design, but you have gained
speed performance. All of the “For” modes,” except “For Binary” and “For Random,” specify sequential file

176

access. Random files use this ability to fix the record length to the maximum size of interest in order to
permit very rapid file access and retrieval.

The access modes in Table 65 affect the default treatment of a file when it is opened. When an access mode
is specified, it also verifies that you have access to either read or write the file. If you do not have write
access to a file opened with “Access Write,” a run-time error occurs. The access mode affects every open
“For” mode except “For Append” — which never deletes an existing file when it is opened.

Table 65. Valid Access ioModes.
Access ioMode Description
Access Read Do not delete an existing file. Verify that you have read access.

Access Write Delete an existing file. Verify that you have write access.

Access Read Write Delete an existing file. Verify that you have read and write access.

Using “Access Write” while opening a file “For Input” allows you to write to the file after it is opened; first
the file is erased and then a new file is created. After the file is open, different operating systems enforce the
access rights differently. As of OOo version 1.1.1, opening a binary or random file with “Access Read”
allows you to write to the file when using Windows, but not on Linux. It is always safe to open a file “For
Append” and then move the file pointer to the start of the file manually.

TIP The only safe way to open a file for both reading and writing without erasing the contents of the file is to
open the file “For Append,” and then move the file pointer to the start of the file.

To limit access to a file while it’s open, use the “Lock” modes (see Table 66). This prevents others from
reading and/or writing to the file while you have it open. This is primarily used in multi-user environments
because you can’t control what others might try to do while you are using the file.

Table 66. Valid protected keywords.
Lock Mode Description
Lock Read Others cannot read the file while it’s open, but they can write to it.

Lock Write Others cannot write the file while it’s open, but they can read from it.

Lock Read Write Others cannot read or write the file while it is open.

Use the Len keywords to specify the size of each record when the file is opened “For Random” (discussed
later).

 8.7. Information about open files

OOo Basic has functions that return file information by using the file name (see Listing 157). It is also
possible to obtain information about open files from the file number. The FileAttr function returns how the
file associated with the given file number was opened. Table 67 lists the return values and their meanings.

FileAttr(n, 1) 'How the file was opened in BASIC using Open For ...

Table 67. Description of FileAttr() return values.
Return Value Description
1 Open For Input

2 Open For Output

4 Open For Random

177

Return Value Description
8 Open for Append

16 Open For Binary

32 Documentation incorrectly states that this is for open for binary.

TIP FileAttr is incorrectly documented. FileAttr(n, 2) does not return a system file handle, if the second
argument is not 1, the return value is always 0. Another problem is that the included help incorrectly states
that Binary has a return value of 32.

Use the EOF function to determine if the end of the file has been reached. A typical use is to read all of the
data until “End Of File.”

n = FreeFile 'Always find the next free file number
Open FileName For Input As #n 'Open the file for input
Do While NOT EOF(n) 'While NOT End Of File
 Input #n, s 'Read some data!
 REM Process the input here!
Loop

Use the LOF function to determine the length of an open file. This number is always in bytes.

LOF(n)

Use the Loc function to obtain the current location of the file pointer. This number is not always accurate
and the return value has a different meaning depending on how the file was opened. Loc returns the actual
byte position for files opened in Binary mode. For Random files, Loc returns the record number of the last
record read or written. For sequential files opened with Input, Output, or Append, however, the number
returned by Loc is the current byte position divided by 128. This is done to maintain compatibility with other
versions of BASIC.

Loc(n)

TIP If a file is opened in a mode other than Random, and OOo Basic considers the file a text file, Loc returns
the line number that will be read next. I cannot decide if this is a bug or just incomplete documentation.
Sometimes the return values from Loc are just wrong. For example, if you open a file for output and then
write some text, Loc returns 0.

The Seek function, when used with only one argument, returns the next position that will be read or written.
This is similar to the Loc function except that for sequential files, the absolute byte position is always
returned. If you want to save the position in a file and return to it later, use the Seek function to obtain the
current file pointer; then you can use the Seek function to return the file pointer to the original location.

position = Seek(n) 'Obtain and save the current position.
statements 'Do arbitrary stuff.
Seek(n, position) 'Move the file pointer back to the original position.

The argument for setting the file pointer using the Seek function is the same as the value returned by the
Seek function. For Random files, the position is the number of the object to read, not the byte position. For
sequential files, the position is the byte position in the file. The macro in Listing 159 returns information
about an open file from the file number, including the open mode, file length, and file pointer location.
Listing 160 uses Listing 159, and the result is shown in Figure 59.

178

Listing 159. Return information about an open file as a string.
Function GetOpenFileInfo(n As Integer) As String
 Dim s As String
 Dim iAttr As Integer
 On Error GoTo BadFileNumber
 iAttr = FileAttr(n, 1)
 If iAttr = 0 Then
 s = "File handle " & CStr(n) & " is not currently open" & CHR$(10)
 Else
 s = "File handle " & CStr(n) & " was opened in mode:"
 If (iAttr AND 1) = 1 Then s = s & " Input"
 If (iAttr AND 2) = 2 Then s = s & " Output"
 If (iAttr AND 4) = 4 Then s = s & " Random"
 If (iAttr AND 8) = 8 Then s = s & " Append"
 If (iAttr AND 16) = 16 Then s = s & " Binary"
 iAttr = iAttr AND NOT (1 OR 2 OR 4 OR 8 OR 16)
 If iAttr AND NOT (1 OR 2 OR 4 OR 8 OR 16) <> 0 Then
 s = s & " unsupported attribute " & CStr(iAttr)
 End If
 s = s & CHR$(10)
 s = s & "File length = " & nPrettyFileLen(LOF(n)) & CHR$(10)
 s = s & "File location = " & CStr(LOC(n)) & CHR$(10)
 s = s & "Seek = " & CStr(Seek(n)) & CHR$(10)
 s = s & "End Of File = " & CStr(EOF(n)) & CHR$(10)
 End If
AllDone:
 On Error GoTo 0
 GetOpenFileInfo = s
 Exit Function
BadFileNumber:
 s = s & "Error with file handle " & CStr(n) & CHR$(10) &_
 "The file is probably not open" & CHR$(10) & Error()
 Resume AllDone
End Function

TIP The position argument passed to the Seek function is one-based, not zero-based. This means that the first
byte or record is 1, not 0. For example, Seek(n, 1) positions the file pointer to the first byte or record in the
file.

The macro in Listing 160 opens a file for output. A large amount of data is written to the file to give it some
size. At this point, the Loc function returns 0 and EOF returns True. The Seek function is used to move the
file pointer to a position in the file that allows some data to be read. The Loc function still returns 0. One
hundred pieces of data are read from the file in order to advance the value returned by the Loc function.
Finally, the file is deleted from the disk. Figure 59 shows information based on a file number.

Listing 160. Create delme.txt in the current directory and print file information.
Sub WriteExampleGetOpenFileInfo
 Dim FileName As String 'Holds the file name
 Dim n As Integer 'Holds the file number
 Dim i As Integer 'Index variable
 Dim s As String 'Temporary string for input
 FileName = ConvertToURL(CurDir) & "/delme.txt"
 n = FreeFile() 'Next free file number

179

 Open FileName For Output Access Read Write As #n 'Open for read/write
 For i = 1 To 15032 'Write a lot of data
 Write #n, "This is line ",CStr(i),"or",i 'Write some text
 Next
 Seek #n, 1022 'Move the file pointer to location 1022
 For i = 1 To 100 'Read 100 pieces of data; this will set Loc
 Input #n, s 'Read one piece of data into the variable s
 Next
 MsgBox GetOpenFileInfo(n), 0, FileName
 Close #n
 Kill(FileName) 'Delete this file, I do not want it
End Sub

Figure 59. Information based on a file number.

 8.8. Reading and writing data

Files opened for Random and Binary data use the statements Put and Get for writing and reading data. Files
opened in any other mode use the Line Input, Input, Print, and Write statements for reading and writing. If
no expressions are entered, a blank line is written to the file. The Write statement accepts multiple
arguments to print to the file and it automatically adds delimiters as it writes. In the created file, each
expression is separated by a comma. Strings are enclosed in double quotation marks, numbers are not
enclosed in anything, and dates and Boolean values are enclosed between octothorpe (#) characters.

Write #n, expression1, expression2, expression3, ...
Print #n, expression1, expression2, expression3, ...

TIP The character “#” has many names, including number sign, pound sign, hash, sharp, crunch, hex, grid,
pigpen, tic-tac-toe, splat, crosshatch, and octothorpe, to name a few.

The Print statement does not write any useful delimiters. Instead, it writes spaces between each expression.
Numbers typically use 13 spaces.

 Write #n, i, "the time # is", Now, CDbl(1.221), CBool(0)
 Print #n, i, "the time # is", Now, CDbl(1.221), Cbool(0)

The code above produces the text below.

0,"the time # is",#07/01/2010 21:05:49#,1.221,#False#
 0 the time # is 07/01/2010 21:05:49 1.221 False

Listing 161 demonstrates the difference between Write and Print.

Listing 161. Demonstrate Write versus Print.
Sub ExampleWriteOrPrint
 Dim FileName As String 'Holds the file name

180

 Dim n As Integer 'Holds the file number
 Dim i As Integer 'Index variable
 Dim s As String 'Temporary string for input
 Dim sTemp$
 FileName = ConvertToURL(CurDir) & "/delme.txt"
 n = FreeFile() 'Next free file number
 Open FileName For Output Access Read Write As #n 'Open for read/write

 Write #n, i, "the time # is", Now, CDbl(1.221), CBool(0)
 Print #n, i, "the time # is", Now, CDbl(1.221), CBool(0)

 Seek #n, 1 'Move the file pointer to location 1
 Line Input #n, s
 Line Input #n, sTemp
 s = s & CHR$(10) & sTemp
 MsgBox s
 Close #n
 Kill(FileName) 'Delete this file, I do not want it
End Sub

As its name implies, the Line Input statement reads an entire line of text (see Listing 161), but it does not
return the delimiter. Each line is delimited by either a carriage return (ASCII value 13) or a line-feed
character (ASCII value 10). These two delimiters work to read lines on every operating system supported by
OpenOffice.org.

Line Input #n, stringVar 'Read an entire line but not the delimiter.

The Input statement reads text based on the following delimiters: comma, carriage return, or line-feed
characters. The Input statement can read multiple variables of differing types in a single command.
Changing Line Input to Input in Listing 161 causes only the first two items to be read rather than two lines.

Input #n, var1, var2, var3, ...

The Write command adds appropriate delimiters automatically so that you can read string and numeric data
into the appropriate variable types. The Input command automatically removes commas and double
quotation marks from the input when these characters are used as the delimiters. See Listing 162 and Figure
60 for input examples.

Listing 162. Use Input to read text written with Write.
Sub ExampleInput
 Dim sFileName As String
 Dim n As Integer
 Dim t As String, d As Double, s As String
 sFileName = ConvertToURL(CurDir) & "/delme.txt"
 n = FreeFile()
 Open sFileName For Output Access Read Write As #n
 Write #n, 1.33, Now, "I am a string"
 Seek(n, 1)
 Input #n, d, t, s
 close #n
 Kill(sFileName)
 s = "string (" & s & ")" & CHR$(10) &_
 "number (" & d & ")" & CHR$(10) &_
 "time (" & t & ") <== read as a string" & CHR$(10)
 MsgBox s, 0, "Example Input"

181

End Sub

Figure 60. Input cannot read time delimited with “#”.

TIP A friend in Germany had different results, because the number 1.33 is written as 1,33. While reading the
values, the comma is seen as a delimiter rather than as part of the number.

Unfortunately, the delimiters produced by the Write statement are not supported by the Input statement.
Numbers and simple strings read with no problems. Date and Boolean values delimited with the # character,
however, fail. These values must be read into string variables and then parsed.

Do not use the Input statement if you do not have a lot of control over the input text file. Double-quotation
marks and commas in text strings are assumed to be text delimiters. The end result is that the text is not
properly parsed when it is read. If your input data may contain these characters, use the Line Input command
and then manually parse the text. If you must read the carriage return or line-feed characters, the file should
be read as a binary file.

A binary file is a random file with a block length of zero. Use the Put statement to write random and binary
files. The simplest case involves putting a simple variable directly to the file.

int_var = 4 : long_var = 2
Put #n,,int_var '04 00 (two bytes written)
Put #n,,long_var '02 00 00 00 (four bytes written)

The first argument is the file number and the third argument is the variable or data to write. The second
argument is the position in the file where the date should be written. If you omit the position, as shown in
the example, you must still include the comma.

Put #n,,variable 'Write to the next record or byte position
Put #n, position, variable 'Specify the next record or byte position

Random files assume that the position identifies a record number. Binary files assume that the position
identifies an absolute byte position. If the position is not specified, the data is written at the current file
pointer, which is advanced with the data that is written.

If the data variable is a Variant, an integer identifying the data type precedes the data. This integer is the
same integer returned by the VarType function, to be detailed later.

v = 4 'A Variant variable
Put #n,,v '02 00 04 00 (first two bytes says type is 2)
Put #n,,4 '02 00 04 00 (first two bytes says type is 2)
Put #n,,CInt(4) '02 00 04 00 (first two bytes says type is 2)

A string stored as a Variant includes the VarType if it is “Put” to a file that was opened as any type other than
Binary. When an array is Put to a file, each element of the array is written. If the array contains a String
Variant, it includes the VarType even if the file type is Binary. When Put places a string as a Variant, it
actually writes the VarType, the string length, and then the string.

182

v() = Array("ABCD") 'ASCII in hexadecimal is 41 42 43 44
Put #n,,v() '08 00 04 00 41 42 43 44 (08 00 = type)(04 00 = length)

When data is Put to a file, the current file pointer is saved and then all of the data is written. If a non-zero
block length is used, the file pointer is positioned one block length past the saved file position regardless of
how much data was written. For example, if the block length is 32 and the current file position is 64, the file
pointer is positioned to byte 96 after the data is written. If more than 32 bytes are written, part of the next
record is overwritten. If fewer than 32 bytes are written, then the previous data is left unchanged. Because of
this, some people initialize every record that will be written when the file is created. Numeric values are
usually initialized to zero, and string values are usually initialized to spaces.

On the other hand, even though I don’t recommend it, you can use the Put statement with a file opened in a
sequential mode. Likewise, you can use the Write, Line Input, and Input statements for files opened in
Binary or Random mode. The actual bytes written for writing methods used for files of the “wrong” file
structure are not documented, and I had difficulty understanding the output. I finally read the source code to
determine what is written in each case, but undocumented behavior determined in this way should not be
assumed to be stable, reliable behavior for OOo Basic. If you want to use these methods for other file
structures than those documented, I recommend that you test the output for your specific data. When a piece
of data is written to a file, the specific context is used to determine what to write. See Table 68.

Table 68. Summary of what the Put statement writes.
Type Bytes Comment
Boolean 1 OOo Basic stores a Boolean in an integer. The True value has all of the bits set, which

incorrectly cast down to one byte, causing a run-time error. False writes with no problem.

Byte 3 Although the byte variable uses only one byte when writing the data, byte variables are
supported only when stored in a Variant, so the data is preceded by two bytes of type
information.

Currency 8 Internally stored as a Double.

Date 8 Internally stored as a Double.

Double 8

Integer 2

Long 4

Object Error Run-time error: Only the basic types are supported.

Single 4

String Len(s) Each character is one byte. Characters with an ASCII value larger than 255 are written with
incomplete data. In Binary mode, the Put statement will not write characters with an ASCII
value of zero. This is written fine in Random mode and the string is preceded by the string
length.

Variant Varies Two bytes of type information are written, followed by the data. A string also includes the
length of the string in two bytes.

Empty 4 An empty Variant variable writes two bytes of type information indicating an integer value,
and then it writes two bytes with zeros.

Null Error Only an object can contain the value Null, and the Put statement does not work with objects.

TIP OOo Basic only supports using Get and Put with the standard data types.

183

TIP Numbers written to binary files are written in reverse byte order.

TIP The Put statement cannot write a Boolean with a True value, and it doesn’t properly write strings with
Unicode values greater than 255; writing then trying to read the value causes OOo to crash.

TIP The Get statement fails for binary files if the position is not provided.

Use Get to read Binary data and Random files. The syntax for the Get statement is similar to the Put
statement.

Get #n,,variable 'Read from next record or byte position
Get #n, position, variable 'Specify the next record or byte position

If the argument to the Get statement is a Variant, the type information is always read, regardless of the
context. When a string is read, it is assumed to be preceded by an integer that contains the length of the
string. This required string length is not written automatically to binary files but it is to random files. Listing
163 shows an example of reading and writing a binary file. Also see Figure 61.

Listing 163. Create and then read a binary file.
Sub ExampleReadWriteBinaryFile
 Dim sFileName As String 'File name from which to read and write
 Dim n As Integer 'File number to use
 Dim i As Integer 'Scrap Integer variable
 Dim l As Long 'Scrap Long variable
 Dim s As String 'Scrap String variable
 Dim s2 As String 'Another scrap String variable
 Dim v 'Scrap Variant variable
 sFileName = ConvertToURL(CurDir) & "/delme.txt"
 If FileExists (sFileName) Then
 Kill(sFileName)
 End If
 n = FreeFile()
 Open sFileName For Binary As #n
 i = 10 : Put #n,,i '0A 00
 i = 255 : Put #n,,i 'FF 00
 i = -2 : Put #n,,i 'FE FF
 l = 10 : Put #n,,l '0A 00 00 00
 l = 255 : Put #n,,l 'FF 00 00 00
 l = -2 : Put #n,,l 'FE FF FF FF

 REM Put string data, precede it with a length
 i = 8 : Put #n,,i '08 00 (about to put eight characters to the file)
 s = "ABCD"
 Put #n,,s '41 42 43 44 (ASCII for ABCD)
 Put #n,,s '41 42 43 44 (ASCII for ABCD)

 REM Put data contained in a Variant
 Put #n,,CInt(10) '02 00 0A 00
 i = -2 : Put #n,,CInt(i) '02 00 FE FF (Functions return a Variant)
 Put #n,,CLng(255) '03 00 FF 00 00 00 (Functions return a Variant)
 v = 255 : Put #n,,v '02 00 FF 00 (This IS a Variant)

184

 v = "ABCD" : Put #n,,v '41 42 43 44 (Not in an array)
 v = Array(255, "ABCDE") 'The string contains type information and length
 Put #n,,v() '02 00 FF 00 08 00 05 00 41 42 43 44 45
 close #n

 REM now, read the file.
 s = ""
 n = FreeFile()
 Open sFileName For Binary Access Read As #n
 Get #n, 1, i : s = s & "Read Integer " & i & CHR$(10)
 Get #n, 3, i : s = s & "Read Integer " & i & CHR$(10)
 Get #n, 5, i : s = s & "Read Integer " & i & CHR$(10)
 Get #n, 7, l : s = s & "Read Long " & l & CHR$(10)
 Get #n, 11, l : s = s & "Read Long " & l & CHR$(10)
 Get #n, 15, l : s = s & "Read Long " & l & CHR$(10)
 Get #n, 19, s2 : s = s & "Read String " & s2 & CHR$(10)
 close #n
 MsgBox s, 0, "Read Write Binary File"
End Sub

Figure 61. Use Get and Put to read and write binary files.
Random files are usually used to store a user-defined data type, but this is not supported in OOo Basic; use
“Open FileName For Random” to open a file for random access. The code in Listing 164 writes numerous
types and sizes of data to the file with a block length of 8. If the Put statement had no bugs, then after
writing the first block, the file pointer would be positioned to the second block for writing. It is instead
positioned to the end of the file. To avoid this bug, explicitly include the position to write in the statement. If
the position points to a position beyond the end of the file, the file pointer is moved to the end of the file.
This is the primary reason why the code in Listing 164 initializes the file to all zeros before starting; the file
is initialized with locations for the subsequent operations. Notice that the string includes the string length
before the text when it is Put to the file. The output is essentially the same as Listing 163 shown in Figure
61.

Listing 164. Write and then read a random access file.
Sub ExampleReadWriteRandomFile
 Dim sFileName As String 'File name from which to read and write
 Dim n As Integer 'File number to use
 Dim i As Integer 'Scrap Integer variable
 Dim l As Long 'Scrap Long variable
 Dim s As String 'Scrap String variable
 Dim s2 As String 'Another scrap String variable
 sFileName = ConvertToURL(CurDir) & "/delme.txt"

185

 REM Now the file is initialized so it can be used!
 REM Must use Access Read so that the file is not created new
 REM I cannot write this as a binary file because then ASCII
 REM zeros are not written.
 n = FreeFile()
 Open sFileName For Random As #n Len = 8
 REM First, create a file with all zeros with enough room
 REM for 20 8-byte records.
 s = String(8 * 20-2, 0) 'String has 158 characters with ASCII value 0
 Put #n,1,s 'Written as Random so Len(s) is written first
 i = 0 : Put #n,1,i 'Write over the length with zeros.

 REM Now write the data
 i = 10 : Put #n,1,i '0A 00
 i = 255 : Put #n,2,i 'FF 00
 i = -2 : Put #n,3,i 'FE FF
 l = 10 : Put #n,4,l '0A 00 00 00
 l = 255 : Put #n,5,l 'FF 00 00 00
 l = -2 : Put #n,6,l 'FE FF FF FF

 REM Put string data, precede it with a length (integer value) automatically
 s = "ABCD" : Put #n,7,s '04 00 41 42 43 44 (Length, then ASCII for ABCD)
 close #n

 REM Now read the file.
 s = ""
 n = FreeFile()
 Open sFileName For Random Access Read As #n Len=8
 Get #n, 1, i : s = s & "Read Integer " & i & CHR$(10)
 Get #n, 2, i : s = s & "Read Integer " & i & CHR$(10)
 Get #n, 3, i : s = s & "Read Integer " & i & CHR$(10)
 Get #n, 4, l : s = s & "Read Long " & l & CHR$(10)
 Get #n, 5, l : s = s & "Read Long " & l & CHR$(10)
 Get #n, 6, l : s = s & "Read Long " & l & CHR$(10)
 Get #n, 7, s2 : s = s & "Read String " & s2 & CHR$(10)
 close #n
 MsgBox s, 0, "Read Write Random File"
End Sub

 8.9. File and directory related services

Some of the OO methods for file manipulation are buggy and unreliable. You may want to consider some of
the built-in OO services; services are discussed later.

 8.9.1. Path Settings

Most of the macros in this chapter use the CurDir function to choose a place to store files. The PathSettings
service provides read/write access (and the ability to register a listener) for the paths properties used by
OOo. Although the documentation is not clear on this, my examples indicate that the path is returned as a
URL. On the other hand, the PathSettings service uses the PathSubstitution service, which specifically states
that it returns URLS. OOMEWorkDir in Listing 165 demonstrates obtaining the Work directory.

186

Listing 165. Determine the work directory to use.
Function OOMEWorkDir() As String
 Dim s$
 Dim oPathSettings
 oPathSettings = CreateUnoService("com.sun.star.util.PathSettings")
 s$ = oPathSettings.Work
 If s = "" Then
 s = GetPathSeparator()
 ElseIf Right(s,1) <> "/" AND Right(s,1) <> "\\" Then
 If Left(s, 5) = "file:" Then
 s = s & "/"
 Else
 s = s & GetPathSeparator()
 End If
 End If
 OOMEWorkDir() = s & "OOMEWork" & GetPathSeparator()
End Function

A macro that creates temporary files or directories for example purposes will use Listing 166 to create and
remove the working directory.

Listing 166. Create and remove the OOME work directory.
Function CreateOOMEWorkDir() As Boolean
 CreateOOMEWorkDir() = False
 Dim s$
 s = OOMEWorkDir()
 If NOT FileExists(s) Then
 MkDir s
 End If
 CreateOOMEWorkDir() = FileExists(s)
End Function

Function RmOOMEWorkDir() As Boolean
 RmOOMEWorkDir() = False
 Dim s$
 s = OOMEWorkDir()
 If FileExists(s) Then
 RmDir s
 End If
 RmOOMEWorkDir() = NOT FileExists(s)
End Function

The documentation lists properties that are supported. By inspecting the object, I found more properties than
those that are documented.

Table 69. Documented PathSettings properties.
Property Number Which Directory

Addin Single Contains spreadsheet add-ins that use the old add-in API.

AutoCorrect Multiple Contains the settings for the AutoCorrect dialog.

AutoText Multiple Contains the AutoText modules.

Backup Single Where automatic document backups are stored.

Basic Multiple Contains Basic files used by the AutoPilots.

187

Property Number Which Directory

Bitmap Single Contains the external icons for the toolbars.

Config Single Contains configuration files. This property is not visible in the path options dialog
and cannot be modified.

Dictionary Single Contains the OpenOffice.org dictionaries.

Favorite Single Contains the saved folder bookmarks.

Filter Single Where the filters are stored.

Gallery Multiple Contains the Gallery database and multimedia files.

Graphic Single Displayed when the dialog for opening a graphic or saving a new graphic is used.

Help Single Contains the OOo help files.

Linguistic Single Contains the OOo spellcheck files.

Module Single Contains the OOo modules.

Palette Single Contains the palette files that contain user-defined colors and patterns (*.SOB and
*.SOF).

Plugin Multiple Contains the Plugins.

Storage Single Where information about mail, news, and FTP servers is stored.

Temp Single Contains the OOo temp-files.

Template Multiple Contains the OOo document templates.

UIConfig Multiple Global directories for user interface configuration files. The user interface
configuration is merged with the user settings stored in the directory specified by
UserConfig.

UserConfig Single Contains the user settings, including the user interface configuration files for menus,
toolbars, accelerators and status bars.

UserDictionary Single Contains the custom dictionaries.

Work Single The work folder. This path can be modified according to the user's needs and can be
seen in the Open or Save dialog.

To see the path settings on your computer, run the macro in Listing 167. On my computer, I find numerous
extra paths such as Work_internal, Work_user, Work_writable. DisplayPathSettings demonstrates numerous
advanced techniques that are not explained in this chapter.

• Creating and using an OOo service.

• Creating a new document.

• Inserting text into a document.

• Setting paragraph style.

• Inserting paragraph breaks into a text object.

The following macro was originally written by Danny Brewer, who did much to advance the knowledge of
OOo macros before he went on to other things. I modified the macro so that it declares all variables and
handles property types returned as array values.

Listing 167. Display the PathSettings in a new text document.
Sub DisplayPathSettings
 Dim oPathSettings ' PathSettings service.

188

 Dim oPropertySetInfo ' Access the service properties.
 Dim aProperties ' Contains all of the service properties.
 Dim oDoc ' Reference a newly created document.
 Dim oText ' Document's text object.
 Dim oCursor ' Cursor in the text object.
 Dim oProperty ' A property of the service.
 Dim cPropertyName$ ' Property name.
 Dim cPropertyValue ' Property value may be an array or multiple strings.
 Dim aPaths ' The paths as an array.
 Dim cPath$ ' A single path from the array.
 Dim j As Integer ' Index variable.
 Dim i As Integer ' Index variable.

 oPathSettings = CreateUnoService("com.sun.star.util.PathSettings")

 ' Example of how to get a single property you are after.
 'oPathSettings.Work

 ' Get information about the properties of the path settings.
 oPropertySetInfo = oPathSettings.getPropertySetInfo()

 ' Get an array of the properties.
 aProperties = oPropertySetInfo.getProperties()

 ' Create an output document.
 oDoc = StarDesktop.loadComponentFromURL("private:factory/swriter", _
 "_blank", 0, Array())
 oText = oDoc.getText()
 oCursor = oText.createTextCursor()

 oText.insertString(oCursor, "Path Settings", False)
 oCursor.ParaStyleName = "Heading 1"
 oText.insertControlCharacter(oCursor, _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)

 ' Iterate over the array of properties,
 ' and write information about each property to the output.
 For i = LBound(aProperties) To UBound(aProperties)
 oProperty = aProperties(i)
 cPropertyName = oProperty.Name
 cPropertyValue = oPathSettings.getPropertyValue(cPropertyName)

 oText.insertString(oCursor, cPropertyName, False)
 oCursor.ParaStyleName = "Heading 3"
 oText.insertControlCharacter(oCursor, _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)
 If IsArray(cPropertyValue) Then
 ' Multiple URLs are somtimes returned as an array.
 aPaths = cPropertyValue
 ElseIf Len(cPropertyValue) > 0 Then
 ' Multiple URLs are somtimes separated by a semicolon.
 ' Split them up into an array of strings.
 aPaths = Split(cPropertyValue, ";")

189

 Else
 aPaths = Array()
 End If
 For j = LBound(aPaths) To UBound(aPaths)
 cPath = aPaths(j)
 oText.insertString(oCursor, cPath, False)
 oText.insertControlCharacter(oCursor, _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)
 Next

 oText.insertControlCharacter(oCursor, _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)
 Next i
End Sub

Setting a path value is trivially done using either direct assignment, or by using the property set information
object. OOo requires these values to be correct, so, if you write bad values, it will negatively affect OOo.

oPathSettings.Work = ConvertToUrl("C:\MyWorkDir")
oPathSettings.setPropertyValue("Work", "C:\MyWorkDir")

The properties supported by the PathSetting service are stored, at least on my computer, in the file:
openoffice.org/basis3.2/share/registry/schema/org/openoffice/Office/Common.xcs. The documentation still
references the old filename Common.xml, which caused me some level of consternation.

 8.9.2. Path Substitution

My file Common.xcs contains entries such as $(userpath)/store and $(work), which are very different from
what is returned by the PathSettings service. This is because the path setting service changes shortcuts such
as $(userpath) to the real value before returning a string. Analogously, it substitutes the shortcuts back into
the string before storing the value. You can call the PathSubstitution service directly to make your own
substitutions.

Table 70. Path substitution variables.
Name Description

$(inst) Installation path of the OOo Basis layer.

$(prog) Program path of the OOo Basis layer.

$(brandbaseurl) Installation path of the the OOo Brand layer.

$(user) The user installation directory.

$(work) The work directory of the user;"MyDocuments" for Windows, the user's home-directory for
Linux.

$(home) The user's home directory; Documents and Settings for Windows, the user's home-directory for
Linux.

$(temp) The current temporary directory.

$(path) The value of PATH environment variable.

$(lang) The country code used by OOo; 01=english.

$(langid) The language code used by OOo; 1033=english us.

$(vlang) The language used by OOo as a string. Like "en-US" for a US English OOo.

190

Use getSubstituteVariableValue to convert one name at a time. If the name is not known, a run-time error
occurs.

Listing 168. Substitute one variable with PathSubstitution.
Sub UsePathSubstitution()
 Dim oPathSub ' PathSubstitution service.
 Dim names ' List of names to substitute.
 Dim subName$ ' Single name to check.
 Dim i As Integer ' Index variable.
 Dim s$ ' Accumulate the value to print.

 names = Array("inst", "prog", "brandbaseurl", "user", _
 "work", "home", "temp", "path", _
 "lang", "langid", "vlang")

 oPathSub = CreateUnoService("com.sun.star.util.PathSubstitution")

 ' Use getSubstituteVariableValue with a single variable.
 ' Runtime error if the name is not know.

 'Print oPathSub.getSubstituteVariableValue("$(inst)")
 For i = LBound(names) To UBound(names)
 subName = "$(" & names(i) & ")"
 s = s & names(i) & " = "
 s = s & oPathSub.getSubstituteVariableValue(subName) & CHR$(10)
 Next
 MsgBox s, 0, "Supported Names"
End Sub

Use substituteVariables to substitute multiple values at the same time. Use reSubstituteVariables to place the
variable names back into a regular string.

Listing 169. ReSubstitute variables.
Sub UsePathReSubstitution()
 Dim oPathSub ' PathSubstitution service.
 Dim s$ ' Accumulate the value to print.
 Dim sTemp$

 oPathSub = CreateUnoService("com.sun.star.util.PathSubstitution")

 ' There are two variables to substitute.
 ' False means do not generate an error
 ' if an unknown variable is used.
 s = "$(temp)/OOME/ or $(work)"
 sTemp = oPathSub.substituteVariables(s, False)
 s = s & " = " & sTemp & CHR$(10)

 ' This direction encodes the entire thing as though it were a single
 ' path. This means that spaces are encoded in URL notation.
 s = s & sTemp & " = " & oPathSub.reSubstituteVariables(sTemp) & CHR$(10)
 MsgBox s
End Sub

191

Figure 62. PathSubstitution service.

 8.9.3. Simple File Access

OOo uses the SimpleFileAccess service, rather than the file methods used by Basic, for file operations. The
methods supported by the SimpleFileAccess service are shown in the following table.

Table 71. Methods supported by SimpleFileAccess.
Method Description

copy(fromURL, toURL) Copy a file.

move(fromURL, toURL) Move a file.

kill(url) Delete a file or directory, even if the folder is not empty.

isFolder(url) Return true if the URL represents a folder.

isReadOnly(url) Return true if the file is read-only.

setReadOnly(url, bool) Set file as read-only if the boolean argument is true, otherwise, clear the read-only flag.

createFolder(url) Creates a new Folder.

getSize(url) Returns the size of a file as a long integer.

getContentType(url) Return the content type of a file as a string. On my computer, an odt file has type
application/vnd.sun.staroffice.fsys-file.

getDateTimeModified(url) Return the last modified date for the file as a com.sun.star.util.DateTime structure, which
supports the properties: HundredthSeconds, Seconds, Minutes, Hours, Day, Month, and
Year.

getFolderContents(url, bool) Returns the contents of a folder as an array of strings. Each string is the full path as a URL.
If the bool is True, then files and directories are listed. If the bool is False, then only files
are returned.

exists(url) Return true if a file or directory exists.

openFileRead(url) Open file to read, return an input stream.

openFileWrite(url) Open file to write, return an output stream.

openFileReadWrite(url) Open file to read and write, return a stream.

setInteractionHandler(handler) Set an interaction handler to be used for further operations. This is a more advanced topic
and I will not discuss this here.

writeFile(toUrl, inputStream) Overwrite the file content with the given data.

 8.9.4. Streams

A stream supports reading and writing data from some input source to some output source that may go
beyond a file system. As an example, I use streams to transfer entire files between the regular file system and
a field in a database. In other words, streams are powerful and worth knowing and understanding. This

192

section does not cover all of the stream capabilities and does not even touch on Markable streams and
Object streams. Streams support all sorts of fancy things such as listeners that are automatically called when
specific events occur. A motivated reader will read the streams document:

• http://www.openoffice.org/udk/common/man/concept/streams.html

• http://www.openoffice.org/api/docs/common/ref/com/sun/star/io/module-ix.html

• http://api.libreoffice.org/docs/common/ref/com/sun/star/io/module-ix.html

TIP The readLine() method does not remove the end of line character if the end of file is reached.

Table 72. Stream methods.
Method Stream Description

available() InputStream Returns the number of available bytes as a long.

closeInput() InputStream Close the input stream.

closeOutput() OutputStream Close the stream.

flush() OutputStream Flush buffers.

getLength() XSeekable Get length of the stream.

getPosition() XSeekable Return the stream offset as a 64-bit integer.

isEOF() TextInputStream Returns true if the end of file has been reached.

readBoolean() DataInputStream Read an 8 bit value and return a byte. 0 means FALSE; all other
values mean TRUE.

readByte() DataInputStream Read and return an 8 bit value and return a byte.

readBytes(byteArray, long) InputStream Read the specified number of bytes and return the number of
bytes read. If the number of bytes requested was not read, then
the end of file has been reached.

readChar() DataInputStream Read and return a 16-bit Unicode character.

readDouble() DataInputStream Read and return a 64-bit IEEE double.

readFloat() DataInputStream Read and return a 32-bit IEEE float.

readHyper() DataInputStream Read and return a 64-bit big endian integer.

readLine() TextInputStream Read text until a line break (CR, LF, or CR/LF) or EOF is
found and returns it as string (without CR, LF).

readLong() DataInputStream Read and return a 32-bit big endian integer.

readShort() DataInputStream Read and return a 16-bit big endian integer.

readSomeBytes(byteArray, long) InputStream Read up to the specified number of bytes and return the number
of bytes read. If the number of bytes read is zero, then the end
of file has been reached.

readString(charArray, boolean) TextInputStream Read text until one of the given delimiter characters or EOF is
found and returns it as string. The boolean argument determines
if the delimiter is returned (false) or removed (true).

readUTF() DataInputStream Read and return a string of UTF encoded characters.

seek (INT64) XSeekable Change the stream pointer to the specified location.

setEncoding(string) TextInputStream Set the character encoding (see
http://www.iana.org/assignments/character-sets).

193

http://www.iana.org/assignments/character-sets
http://api.libreoffice.org/docs/common/ref/com/sun/star/io/module-ix.html
http://www.openoffice.org/api/docs/common/ref/com/sun/star/io/module-ix.html
http://www.openoffice.org/udk/common/man/concept/streams.html

Method Stream Description

skipBytes(long) InputStream Skips the specified number of bytes.

truncate() XTruncate Set the size of the file to zero.

writeBoolean(boolean) DataOutputStream Write a boolean as an 8 bit value. 0 means FALSE; all other
values mean TRUE.

writeByte(byte) DataOutputStream Write an 8 bit value and return a byte.

writeBytes(byteArray()) OutputStream Write all bytes to the stream.

writeChar(char) DataOutputStream Write a 16-bit Unicode character.

writeDouble(double) DataOutputStream Write a 64-bit IEEE double.

writeFloat(float) DataOutputStream Write a 32-bit IEEE float.

writeHyper(INT64) DataOutputStream Write a 64-bit big endian integer.

writeLong(long) DataOutputStream Write a 32-bit big endian integer.

writeShort(short) DataOutputStream Write a 16-bit big endian integer.

There are many different types of stream services and interfaces (see Table 72). A simple stream returned by
SimpleFileAccess only supports reading and writing raw bytes and you must convert the data to an array of
bytes. It is more common to manually create an appropriate stream (such as DataOutputStream or
TextInputStream) and use that to wrap the simple stream returned by SimpleFileAccess.

Listing 170. Using SimpleFileAccess to read and write text files.
Sub ExampleSimpleFileAccess
 Dim oSFA ' SimpleFileAccess service.
 Dim sFileName$ ' Name of file to open.
 Dim oStream ' Stream returned from SimpleFileAccess.
 Dim oTextStream ' TextStream service.
 Dim sStrings ' Strings to test write / read.
 Dim sInput$ ' The string that is read.
 Dim s$ ' Accumulate result to print.
 Dim i% ' Index variable.

 sStrings = Array("One", "UTF:Āā", "1@3")

 ' File to use.
 sFileName = CurDir() & "/delme.out"

 ' Create the SimpleFileAccess service.
 oSFA = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

 'Create the Specialized stream.
 oTextStream = CreateUnoService("com.sun.star.io.TextOutputStream")

 'If the file already exists, delete it.
 If oSFA.exists(sFileName) Then
 oSFA.kill(sFileName)
 End If

 ' Open the file for writing.

194

 oStream = oSFA.openFileWrite(sFileName)

 ' Attach the simple stream to the text stream.
 ' The text stream will use the simple stream.
 oTextStream.setOutputStream(oStream)

 ' Write the strings.
 For i = LBound(sStrings) To UBound(sStrings)
 oTextStream.writeString(sStrings(i) & CHR$(10))
 Next

 ' Close the stream.
 oTextStream.closeOutput()

 oTextStream = CreateUnoService("com.sun.star.io.TextInputStream")
 oStream = oSFA.openFileRead(sFileName)
 oTextStream.setInputStream(oStream)
 For i = LBound(sStrings) To UBound(sStrings)
 sInput = oTextStream.readLine()
 s = s & CStr(i)

 ' If the EOF is reached then the new line delimiters are
 ' not removed. I consider this a bug.
 If oTextStream.isEOF() Then
 If Right(sInput, 1) = CHR$(10) Then
 sInput = Left(sInput, Len(sInput) - 1)
 End If
 End If

 ' Verify that the read string is the same as the written string.
 If sInput <> sStrings(i) Then
 s = s & " : BAD "
 Else
 s = s & " : OK "
 End If
 s = s & "(" & sStrings(i) & ")"
 s = s & "(" & sInput & ")" & CHR$(10)
 Next
 oTextStream.closeInput()
 MsgBox s
End Sub

Figure 63. Text files with SimpleFileAccess.

195

 8.9.5. Pipes

A pipe is an output stream and an input stream. Data written to the outputstream is buffered until it is read
from the input stream. The Pipe service allows an outputstream to be converted into an input stream at the
cost of an additional buffer. It is simple to create and close a pipe. Although CreatePipe in Listing 171
creates data streams, a very simple change would use a text stream instead.

Listing 171. Create and close a pipe.
Function CreatePipe() As Object
 Dim oPipe ' Pipe Service.
 Dim oDataInp ' DataInputStream Service.
 Dim oDataOut ' DataOutputStream Service.

 oPipe = createUNOService ("com.sun.star.io.Pipe")
 oDataInp = createUNOService ("com.sun.star.io.DataInputStream")
 oDataOut = createUNOService ("com.sun.star.io.DataOutputStream")
 oDataInp.setInputStream(oPipe)
 oDataOut.setOutputStream(oPipe)
 CreatePipe = oPipe
End Function

Sub ClosePipe(oPipe)
 oPipe.Successor.closeInput
 oPipe.Predecessor.closeOutput
 oPipe.closeInput
 oPipe.closeOutput
End Sub

TestPipes in Listing 172 uses a pipe to convert a byte array to a double and a double to a byte array.

Listing 172. Convert a byte array to a double and a double to a binary array.
Sub TestPipes
 Dim oPipe ' Pipe service.
 Dim d As Double
 Dim i As Integer
 Dim s$

 oPipe = CreatePipe()

 ' First, write a series of bytes that represents 3.1415
 oPipe.Predecessor.writeBytes(Array(64, 9, 33, -7, -16, 27, -122, 110))
 d = 2.6 '4004CCCCCCCCCCCD
 oPipe.Predecessor.writeDouble(d)

 ' Now, read the pipe.
 d = oPipe.Successor.readDouble()
 s = "Read the array of bytes as: " & CStr(d) & CHR$(10) & CHR$(10)

 ' Now read the double that was written as a series of bytes.
 s = s & "2.6 = "
 Do While oPipe.Successor.available() > 0
 i = oPipe.Successor.readByte()
 REM In case the byte was negative
 i = i AND 255

196

 If i < 16 Then s = s & "0"
 s = s & Hex(i) & " "
 Loop
 ClosePipe(oPipe)
 MsgBox s
End Sub

 8.10. Conclusion

The file and directory functions in OOo Basic are able to manipulate directories and files. With the
exception of reading and writing binary and random files, the directory and file manipulation functions work
with few surprises. On the other hand, some of the functions are broken and have been broken for years; you
may need to use more advanced methods, such as Streams and SimpleFileAccess for anything other than
simple file reading and writing.

197

 9. Miscellaneous Routines
This chapter introduces the subroutines and functions supported by OpenOffice.org Basic that do not easily
fit into another larger category — for example, routines related to flow control, user input, user output, error
handling, inspecting variables, color, and display — as well as a few routines that you should not use.

I was tempted to call this chapter “Leftovers” because it contains the routines that were left over after I
grouped the others into chapters. Although the word “leftovers” frequently has a negative connotation, this is
certainly not the case for the routines discussed in this chapter. The eclectic mix of routines includes some of
the more interesting and useful routines that are varied enough to prevent boredom from lulling you off to
sleep.

 9.1. Display and color

The OOo Basic functions related to color manipulations and determining screen metrics are shown in Table
73. The screen metrics provide the size of each pixel so that you can write macros to create objects at a
given size and position objects more precisely.

Table 73. Display- and color-related functions in OOo Basic.
Function Description

Blue(color) Get the blue component

GetGuiType Get the GUI type: Mac, Windows, Unix

Green(color) Get the green component

QBColor(dos_color) Return RGB for standard color

Red(color) Get the red component

RGB(red, green, blue) RGB to colorNumber

TwipsPerPixelX Width of each pixel in twips

TwipsPerPixelY Height of each pixel in twips

 9.1.1. Determine the GUI type

The GetGuiType function returns an integer corresponding to the graphical user interface (GUI). In other
words, you can find out what type of computer is running the macro ... well, sort of. This function only
mentions the GUI type, not the operating system — for example, just Windows, not Windows 98 or
Windows XP. The function GetGuiType is only included for backward compatibility with previous versions
of OOo Basic.

One of my associates runs OpenOffice.org as a server on his computer at home. He then connects to his
home computer from work as a client. The value returned by GetGuiType is not defined while OOo is
running in a client/server environment.

Table 74 shows the return values, as documented by the OOo help and seen in the source code as of version
3.2.1.

198

Table 74. Return values from GetGuiType.
OOo Help Source Code

1 Windows Windows (sometimes OS/2, which runs Windows)

2 Not mentioned OS/2

3 Not mentioned Used to be Mac, not returned.

4 Unix Unix

-1 Mentioned as an undefined value Unsupported OS

The macro in Listing 173 demonstrates the GetGuiType function.

Listing 173. Display the GUI type as a string.
Sub DisplayGUIType()
 Dim s As String
 Select Case GetGUIType()
 Case 1
 s = "Windows"
 Case 2
 s = "OS/2" ' Set in the source code, but no longer documented.
 Case 3
 s = "Mac OS" ' Used to be documented, never supported, I expect Mac to return 4.
 Case 4
 s = "UNIX"
 Case Else
 s = "Unknown value " & CStr(GetGUIType()) & CHR$(10) &_
 "Probably running in Client/Server mode"
 End Select
 MsgBox "GUI type is " & s, 0, "GetGUIType()"
End Sub

The value -1 is returned if the type is not known, but that is not specifically documented. This probably
means that you are running in a client / server mode, but, I have not checked that.

 9.1.2. Determine pixel size (in twips)

OOo Basic has two functions to determine the size of each display pixel (dot) in twips: TwipsPerPixelX and
TwipsPerPixelY. The word “twip” is short for “twentieth of a PostScript point.” There are 72 PostScript
points in an inch, thus 1440 twips in an inch.

In 1886, the American Typefounders Association proposed a unit of measure for typesetting called the
“American Printer’s Point.” There are approximately 72.27000072 Printer’s Points in an inch. Years later
while developing the PostScript page description language for Adobe Systems, Jim Warnock and Charles
Geschke defined the PostScript point as exactly 72 points to an inch. When dot-matrix printers were
released, they could print at either 10 or 12 characters per inch. Twips were created as a unit of measure that
worked well for both dot-matrix printers and PostScript points.

TIP There are 1440 twips in an inch. This number is important because OOo uses twips for many
measurements.

Twips are the standard on which all Microsoft Windows graphics routines are based. Twips are used in the
Rich Text Format, printer drivers, screen drivers, and many other products and platforms — including

199

OpenOffice.org. The macro in Listing 174 obtains the number of twips per pixel in both the X and Y
direction (horizontal and vertical) and displays the number of pixels per inch.

Listing 174. Determine how many pixels per inch.
Sub DisplayPixelSize
 Dim s As String
 s = s & TwipsPerPixelX() & " Twips per X-Pixel or " &_
 CStr(1440 \ TwipsPerPixelX()) & " X-Pixels per Inch" & CHR$(10)
 s = s & TwipsPerPixelY() & " Twips per Y-Pixel or " &_
 CStr(1440 \ TwipsPerPixelY()) & " Y-Pixels per Inch"
 MsgBox s, 0, "Pixel Size"
End Sub

Figure 64. Number of pixels per inch on my computer.
Unfortunately, it is not clear to me what is returned when there are multiple monitors with different values.
The source code returns values from the “Default Device”.

 9.1.3. Use color functions

Colors on computer monitors, digital cameras, scanners — and those seen by the human eye — are produced
by adding the three primary colors of light: red, green, and blue (RGB). When printing or painting, color is
produced by absorbing some colors and reflecting others. Color printing uses a different set of colors, called
primary pigments: cyan, magenta, yellow, and black (CMYK). These two different systems are based on real
physical models. The RGB model is based on how light combines to form colors. The CMYK model is
based on what happens when you mix paint of different colors.

OOo Basic uses the RGB model, allowing for 256 different shades of each of the primary colors. This
number is stored as a Long Integer. Use the functions Red, Green, and Blue to extract the red, green, and
blue components from a color in OOo. Use the RGB function to combine the individual color components
and obtain the long integer used by OOo. The RGB function accepts three arguments, each representing one
of the primary colors. Each of the color components must be a value from 0 through 255. The RGB function
performs no validity checking, so consider the results undefined if you break the rules. In summary, OOo
Basic represents RGB colors as a single integer; the functions Red, Green, and Blue extract the red, green
and blue components; and the function RGB accepts the red, green, and blue components and returns the
OOo Basic representation of the RGB color.

Dim nRed As Integer 'Can only be 0 through 255
Dim nGreen As Integer 'Can only be 0 through 255
Dim nBlue As Integer 'Can only be 0 through 255
Dim nOOoColor As Long 'Can only be 0 through 16,581,375
nOOoColor = RGB(128, 3, 101) '8,389,477
nRed = Red(nOOoColor) '128
nGreen = Green(nOOoColor) '3
nBlue = Blue(nOOoColor) '101

In the old days of DOS, BASIC supported 16 colors. In Table 75, which shows the color name and the DOS
the number used by DOS to represent the color. The OOo Color column contains the corresponding number

200

as represented by OOo. The Red, Green, and Blue columns contain the values returned by the corresponding
OOo Basic functions. The QBColor function is designed to accept the DOS Color as an argument and return
the corresponding OOo Color.

Listing 175. Demonstrate QBColor values.
Sub DisplayQBColor
 Dim i%
 Dim s$
 For i = 0 To 15
 s = s & i & " = " & QBColor(i) & " = ("
 s = s & Red(QBColor(i)) & ", "
 s = s & Green(QBColor(i)) & ", "
 s = s & Blue(QBColor(i)) & ")"
 s = s & CHR$(10)
 Next
 MsgBox s
End Sub

Figure 65. Results from QGColor.

201

Table 75. Color representation in OpenOffice.org.
DOS Color OOo Color Red Green Blue

0 0 0 0 0

4 128 0 0 128

2 32768 0 128 0

6 32896 0 128 128

1 8388608 128 0 0

5 8388736 128 0 128

3 8421376 128 128 0

8 8421504 128 128 128

7 12632256 192 192 192

12 255 0 0 255

10 65280 0 255 0

14 65535 0 255 255

9 16711680 255 0 0

13 16711935 255 0 255

11 16776960 255 255 0

15 16777215 255 255 255

 9.2. Flow control

The flow-control functions listed in Table 76 either direct flow or provide functionality similar to flow
control. For example, the IIF (immediate if) function provides functionality that would otherwise require an
If-Then-Else statement.

Table 76. OOo Basic functions related to flow control.
Function Description

Choose(number, argument_list) Flow control

IIF(condition, TrueExpression, FalseExpression) Flow control

Stop Stop execution now

Wait(milliseconds) Pause the macro for a short time

WaitUntil(aTime) Wait until a time has been reached.

Declare Declare a DLL that you want to call

DDEExecute(nDDEChannel, command) Execute a DDE command

DDEInitiate(Server, Topic) Open a DDE channel

DDEPoke(nDDEChannel, item, data) Set data on the DDE server through the channel

DDERequest(nDDEChannel, item) Post a DDE request over an open channel

DDETerminateAll() Close all DDE connections

FreeLibrary Free a DLL library

Shell Run a command through the command shell

202

 9.2.1. Return an argument

The IIF function (Immediate If) and the Choose function both return an argument based on the value of the
first argument. The IIF function returns one of two values based on a conditional expression. This works as a
great one-line If-Then-Else statement.

max_age = IIF(johns_age > bills_age, johns_age, bills_age)

The IIF function takes three arguments. The first argument is a Boolean value, which determines what
argument to return; one of the next two arguments is returned. Listing 176 shows how you can write the IIF
function yourself.

Listing 176. The IIF function, if you wrote it yourself.
Function myIIF(conditional, true_arg, false_arg) As Variant
 If CBool(conditional) Then
 myIIF = true_arg
 Else
 myIIF = false_arg
 End If
End Function

All arguments to a routine are evaluated before the routine is called. Because IIF is a function, all arguments
are evaluated when the function runs. With an If statement, the conditional code runs only if necessary. See
Listing 177.

Listing 177. If the denominator is zero, the division does not occur.
If denominator <> 0 Then
 result = numerator / denominator
else
 result = 0
End If

In Listing 177, if the denominator is zero, the division is not done and zero is returned instead. In case your
mathematical skills are a little rusty, it is not valid to divide a number by zero; a run-time error occurs. On
the other hand, if your mathematical skills are not rusty, you know that returning zero when the denominator
is zero isn’t really correct, either. The macro in Listing 178 demonstrates that the functions f1 and f2 are
both called, even though only the value from f2 is returned. In other words, IIF(x <> 0, 1/x, 0) causes a
division-by-zero error if x is zero.

Listing 178. All IIF arguments are called.
Sub ExampleIIF
 REM This demonstrates that ALL expressions are evaluated
 REM This prints
 REM "I am in function f1"
 REM "I am in function f2"
 REM "f2"
 Print IIF(1>2, f1(), f2())
End Sub
Function f1$
 Print "I am in function f1"
 f1 = "f1"
End Function
Function f2$
 Print "I am in function f2"
 f2 = "f2"

203

End Function

The Choose function is similar to the IIF function in that it returns an argument based on the value in the
first argument. However, it differs because it can have more than two possible return values, and the first
argument is an integer, rather than a Boolean, that indicates which of those possibly many arguments to
return.

Choose (expression, Select_1[, Select_2, ... [,Select_n]])

The Choose statement returns a null if the expression is less than 1 or greater than the number of selection
arguments. Choose returns Select_1 if the expression evaluates to 1 and Select_2 if the expression evaluates
to 2. The result is similar to storing the selections in an array with a lower bound of 1 and then indexing into
the array. Each argument is evaluated regardless of which one is returned. See Listing 179.

Listing 179. Demonstrate the Choose statement.
Sub ExampleChoose
 Dim i%, v
 i% = CStr(InputBox("Enter an integer 1–4 (negative number is an error)"))
 v = Choose(i, "one", "two", "three", "four")
 If IsNull(v) Then
 Print "V is null"
 Else
 Print CStr(v)
 End If
End Sub

 9.2.2. Pause or end the macro

The Stop command causes the macro to stop running. That’s it, it is done, finished! You must start again.
The Wait statement, on the other hand, only pauses macro execution (see Listing 180). After the specified
number of milliseconds, the macro starts running again. A run-time error occurs if the number of
milliseconds to wait is negative.

Listing 180. Demonstrate the wait function.
Sub ExampleWait
 On Error Goto BadInput
 Dim nMillis As Long
 Dim nStart As Long
 Dim nEnd As Long
 Dim nElapsed As Long
 nMillis = CLng(InputBox("How many milliseconds to wait?"))
 nStart = GetSystemTicks()
 Wait(nMillis)
 nEnd = GetSystemTicks()
 nElapsed = nEnd - nStart
 MsgBox "You requested to wait for " & nMillis & " milliseconds" &_
 CHR$(10) & "Waited for " & nElapsed & " milliseconds", 0, "Example Wait"
BadInput:
 If Err <> 0 Then
 Print Error() & " at line " & Erl
 End If
 On Error Goto 0
End Sub

204

In all of my experiments, the Wait statement has been accurate. The macro waits and then starts when it
should. In previous versions of OOo, the Wait statement was inefficient and it used a lot of CPU time while
running. This problem has been fixed in the current versions of OOo.

WaitUntil is new and provides more compatibility with VB. The following code waits two seconds.

WaitUntil Now + TimeValue("00:00:02")

 9.2.3. Dynamic Link Libraries

While a macro runs, it may directly call numerous subroutines and functions. A macro can also call routines
and applications that are not related to OpenOffice.org. A Dynamic Link Library (DLL) is a collection of
routines, or programs, that can be called when required. Each DLL is packaged into a single file with the
extension DLL — the file does not always have the suffix “.dll”, but it usually does. There are two very nice
things about DLL files: Many programs can share a single DLL, and they are not usually loaded into
memory until they are needed. The usage of DLLs promotes code reuse and does not waste memory. To tell
OOo Basic about a routine in a DLL, use the Declare statement.

TIP DLLs are not supported on Linux.

Declare Sub Name Lib "LibName" (arguments)
Declare Function Name Lib "LibName" (arguments) As Type

LibName is the name of the DLL that contains the routine named Name. It is common to use a DLL that you
did not write, so you often have no control over the name of the routine that you call. Naming can be a
problem if your macro already contains a routine with the same name or if you call another routine by the
same name in another DLL. As a result, the Declare statement supports the Alias keyword, which you can
use to overcome this hurdle. In this case, the RealName is the name used by the DLL, and myName is the
name used by your macro.

Declare Sub myName Lib "LibName" Alias "RealName" (arguments)
Declare Function myName Lib "Libname" Alias "RealName" (arguments) As Type

For functions, the type declaration should use the standard types. You must, of course, know the type so that
you can declare it. The argument list contains the arguments that are passed to the external routine. You must
use the keyword ByVal if an argument is passed by value rather than by reference. Listing 181 calls a DLL.

TIP By default OOo Basic passes arguments by reference. This means that if the called subroutine changes the
argument, it is also changed in the calling program. The ByVal keyword causes an argument to be passed
by value rather than by reference.

Listing 181. Call a DLL. This will only work on windows (and if the DLL is present).
Declare Sub MyMessageBeep Lib "user32.dll" Alias "MessageBeep" (Long)
Declare Function CharUpper Lib "user32.dll" Alias "CharUpperA"_
 (ByVal lpsz As String) As String

Sub ExampleCallDLL
 REM Convert a string to uppercase
 Dim strIn As String
 Dim strOut As String
 strIn = "i Have Upper and Lower"
 strOut = CharUpper(strIn)
 MsgBox "Converted:" & CHR$(10) & strIn & CHR$(10) &_

205

 "To:" & CHR$(10) & strOut, 0, "Call a DLL Function"
 REM On my computer, this plays a system sound
 Dim nBeepLen As Long
 nBeepLen = 5000
 MyMessageBeep(nBeepLen)
 FreeLibrary("user32.dll")
End Sub

A DLL is not loaded until a routine in the DLL is called. To remove the DLL from memory, use the
FreeLibrary statement. The FreeLibrary statement accepts one argument: the name of the DLL to unload.

 9.2.4. Calling external applications

Use the Shell statement to run an external application. The Shell command is disabled for users connecting
by a virtual portal unless they happen to be the same user that started OOo in the first place. This statement
does not obtain any information from an application; it simply runs another application or command.

Shell(Pathname, Windowstyle, Param, bSync)

TIP The Shell command is a potential security hole.

The only required argument is the first; the rest are optional. The first argument is the full path name of the
external application. The application path may be in URL notation, but need not be. The Shell statement has
problems if the path or application name contains a space. You can solve this problem the same way that
your Web browser solves it: Substitute “%20” for each space. The ASCII value of a space is 32, which is 20
in hexadecimal. This technique can also be used to substitute other characters if they cause you problems.

Shell("file:///C|/Andy/My%20Documents/oo/tmp/h.bat",2) 'URL notation uses /
Shell("C:\Andy\My%20Documents\oo\tmp\h.bat",2) 'Windows notation uses \

The second argument (optional) indicates the window style of the started application. Table 77 lists valid
values for the Shell window style argument.

Table 77. Window styles for the Shell statement.
Style Description

0 Focus is on the hidden program window.

1 Focus is on the program window in standard size.

2 Focus is on the minimized program window.

3 Focus is on the maximized program window.

4 Standard size program window, without focus.

6 Minimized program window, but focus remains on the active window.

10 Full-screen display.

The third argument (optional) is a string that is passed to the application. Each space in the argument string
is read by the called application as delimiting a separate argument. To pass an argument with an embedded
space, place an extra set of double quotation marks around the arguments.

Shell("/home/andy/foo.ksh", 10, """one argument"" another") ' two arguments

TIP The string """one argument"" another" is correct and as intended; think about it!

206

The final optional argument determines if the Shell command returns immediately while the application is
running (the default behavior) or if it waits until the application is finished. Setting the final argument to
True causes the Shell statement to wait.

Sub ExampleShell
 Dim rc As Long
 rc = Shell("C:\andy\TSEProWin\g32.exe", 2, "c:\Macro.txt")
 Print "I just returned and the returned code is " & rc ' rc = 0
 Rem These two have spaces in their names
 Shell("file:///C|/Andy/My%20Documents/oo/tmp/h.bat",2)
 Shell("C:\Andy\My%20Documents\oo\tmp\h.bat",2)
End Sub

The Shell function returns a long with the value zero. If the program does not exist, a run-time error occurs
and nothing is returned. When some applications run, they return a value that can be used to indicate an
error. This value is not available from the Shell command. Intuitively, it isn’t possible to obtain the final
return value from an application when the Shell function returns before the application is finished running.

TIP In Visual Basic, the arguments for the Shell function are different: Shell(path, window_style, bsync,
Timeout). The Timeout value indicates how long to wait for the external application to finish. Arguments
follow the application name as part of the same string, delimited by spaces.

VB does not use a separate argument to specify the arguments to send to the application launched by the
Shell command. Instead, the arguments follow the name of the application, separated by spaces, inside the
same quotation marks that contain the function path and name. This method also works with OOo Basic, as
an alternative way to specify the Shell command arguments. If only function, arguments, and window style
are required, this alternative way to write the Shell command allows you to have identical statements for VB
or OOo routines. If you want to specify bsync or Timeout arguments, the VB and OOo environments are not
compatible.

Shell("/home/andy/foo.ksh hello you") ' two arguments, "hello" and "you"

 9.2.5. Dynamic Data Exchange

Dynamic Data Exchange (DDE) is a mechanism that allows information to be shared between programs.
Data may be updated in real time or it may work as a request response.

Although the DDE commands accepted by a DDE server are specific to the individual server, the general
syntax is the same. Most DDE commands require a Server, Topic, and Item. The Server is the DDE name for
the application that contains the data. The Topic, usually a file name, contains the location of the referenced
Item. The example in Listing 182 uses the DDE function in a Calc spreadsheet to extract data in cell A1
from an Excel spreadsheet.

Listing 182. Use DDE as a Calc function to extract cell A1 from a document.
=DDE("soffice";"/home/andy/tstdoc.xls";"a1") 'DDE in Calc to obtain a cell
='file:///home/andy/TST.sxc'#$sheet1.A1 'Direct reference to a cell

The second line shows how a cell can be directly referenced in another Calc spreadsheet without using DDE.
OOo Basic supports DDE commands directly (see Table 78).

207

Table 78. DDE commands supported by OOo Basic.
Command Description

DDEExecute(nDDEChannel, command) Execute a DDE command.

DDEInitiate(Server, Topic) Open a DDE channel and return the channel number.

DDEPoke(nDDEChannel, item, data) Set data on the DDE server.

DDERequest(nDDEChannel, item) Post a DDE request over an open channel.

DDETerminateAll() Close all DDE connections.

First, the DDEInitiate function makes a connection to the DDE server. The first argument is the name of the
server — for example, “soffice” or “excel”. The second argument specifies the channel to use. A common
value for a channel is a file name. The opened channel is identified by an integer, which is returned by the
DDEInitiate command. A channel number of 0 indicates that the channel was not opened. Attempting to
establish a DDE connection to OOo for a file that is not currently open returns 0 for the channel. See Listing
183.

Listing 183. Use DDE to access a Calc document.
Sub ExampleDDE
 Dim nDDEChannel As Integer
 Dim s As String
 REM OOo must have the file open or the channel will not be opened
 nDDEChannel = DDEInitiate("soffice", "c:\TST.sxc")
 If nDDEChannel = 0 Then
 Print "Sorry, failed to open a DDE channel"
 Else
 Print "Using channel " & nDDEChannel & " to request cell A1"
 s = DDERequest(nDDEChannel, "A1")
 Print "Returned " & s
 DDETerminate(nDDEChannel)
 End If
End Sub

 The usable commands and syntax for each server are server dependent, so a complete coverage of DDE is
beyond the scope of this book.

TIP Listing 183 runs and returns a value, but it crashes OOo when I run it.

 9.3. User input and output

OOo Basic provides a very simple mechanism for presenting information to the user and obtaining
information from the user at run time (see Table 79). These routines aren’t used to access files; they’re used
strictly for user input from the keyboard and output to the screen.

Table 79. User input and output functions.
Function Description

InputBox(Msg, Title, Default, x_pos, y_pos) Request user input as a String.

MsgBox (Message, Type, Title) Display a message in a nice dialog.

Print expression1; expression2, expression3;... Print expressions.

208

 9.3.1. Simple output

Use the Print statement for simple, single-line output. A list of expressions follows the Print statement. If
two expressions are separated by a semicolon, the expressions are printed adjacent to each other. If two
expressions are separated by a comma, the expressions are printed with a tab between them; you cannot
change the size of the tabs.

Print expression1, expression2, ... ' Print with tabs between expressions
Print expression1; expression2; ... ' Print with nothing between expressions
Print 1,Now;"hello","again";34.3 ' Mixing semicolons and commas is fine

Arguments are converted to a locale-specific string representation before they are printed. In other words,
dates and numbers appear as you expect based on the locale set in your configuration (Tools | Options |
Language Settings | Languages). Boolean values, however, always print the text True or False.

The help included with OOo lists two special expressions that work with the Print statement: Spc and Tab.
In OOo Basic, the Spc function works the same as the Space function. It accepts one numeric argument and
returns a string composed completely of spaces. The Tab function, although documented, does not exist. See
Listing 184 for a Print example.

TIP Although the Tab function has been documented since OOo version 1, as of version 3.2, the Tab function
still does not exist and it is still documented.

Listing 184. Demonstrate the Spc() function.
Sub ExamplePrint
 Print "It is now";Spc(12);Now()
End Sub

The Print statement is usually used for simple, single-line output while debugging, because it allows you to
stop a macro from running by clicking the Cancel button (see Figure 66). This is a great tool for debugging.
Place a Print statement before or after lines that may cause a problem. If the values don’t appear to be
correct, you can click the Cancel button to stop the macro.

TIP The print statement is nice because you can cause a macro to stop running by clicking Cancel. An
advantage, and a disadvantage, however, is that it leaves the user in the IDE at the print statement.

Figure 66. The Spc function returns a string with spaces.
When using many Print statements for debugging purposes, print explanatory information with the data to
remind yourself what it is.

Print "Before the loop, x= ";x
For i=0 To 10
 Print "In the loop, i = ";i;" and x = ";x

When you print a string that contains a new-line character (ASCII 10 or 13), a new dialog is displayed for
each new line. The code in Listing 185 displays three consecutive dialogs with text that reads “one”, “two”,
and “three”. The Print dialog is able to print using more than one line. If a single line of text becomes too

209

long, the line wraps and appears on more than one line. In other words, although Print will wrap by itself,
the user has no way to force a new line in the dialog.

Listing 185. New lines print in their own dialog.
Print "one" & CHR$(10) & "two" & CHR$(13) & "three" ' Displays three dialogs

The Print statement uses a simple, defined protocol for numeric formatting. Positive numeric expressions
contain a leading space. Negative numeric expressions contain a leading minus sign. Numbers with a
decimal are printed in exponential notation if they become too large.

The Print statement displays a print dialog each time, unless the statement ends with either a semicolon or a
comma. In this case it stores the text from each Print statement and adds to it until it encounters a Print
statement that doesn’t end with a semicolon or a comma.

Print "one", 'Do not print yet, ends with a comma
Print "two" 'Print "one two"
Print "three",'Do not print yet, ends with a comma
Print "four"; 'Do not print yet, ends with a semicolon
Print 'Print "three four"

 9.3.2. Multi-line output

The MsgBox statement provides more control over the dialog that is displayed than does the Print statement,
but can print only one string expression at a time. String expressions that contain a new-line character
(ASCII 10 or 13) are printed in the same dialog. Each new-line character starts a new line in the dialog.

Listing 186. Display a simple message box with a new line.
Sub ExampleMsgBoxWithReturn
 MsgBox "one" & CHR$(10) & "two"
End Sub

Figure 67. This simple MsgBox dialog contains only an OK button.
The dialog in Figure 67 is very simple. The MsgBox function accepts two new arguments, as shown in
Listing 187. The DialogTitle is displayed as the title line of the dialog. Valid values for DialogType are
shown in Table 80. The DialogType determines which buttons are displayed in the dialog, which button is
the default button, and which icon is displayed on the dialog.

Listing 187. The MsgBox function can accept a type and a dialog title.
MsgBox(Message)
MsgBox(Message, DialogType)
MsgBox(Message, DialogType, DialogTitle)

210

Table 80. Valid values for DialogType.
Value Description

0 Display OK button only.

1 Display OK and Cancel buttons.

2 Display Abort, Retry and Ignore buttons.

3 Display Yes, No, and Cancel buttons.

4 Display Yes and No buttons.

5 Display Retry and Cancel buttons.

16 Add the Stop icon to the dialog.

32 Add the Question icon to the dialog.

48 Add the Exclamation Point icon to the dialog.

64 Add the Information icon to the dialog.

128 First button in the dialog is the default button. This is the default behavior.

256 Second button in the dialog is the default button.

512 Third button in the dialog is the default button.

Listing 188. Demonstrate the MsgBox type behavior.
Sub MsgBoxExamples()
 Dim i%
 Dim values
 values = Array(0, 1, 2, 3, 4, 5)
 For i = LBound(values) To UBound(values)
 MsgBox ("Dialog Type: " + values(i), values(i))
 Next
 values = Array(16, 32, 48, 64, 128, 256, 512)
 For i = LBound(values) To UBound(values)
 MsgBox ("Yes, No, Cancel, with Type: " + values(i), values(i) + 3)
 Next
End Sub

You can use more than one DialogType at the same time to achieve your desired buttons, icon, and default
behavior. The display choices are encoded in the first four bits (values 0-15 are binary 0000-1111); the icons
and default behavior are encoded in higher bits (for example, 64 is 01000000 in binary). To combine
attributes, use OR or add the values together. (This is similar to the behavior described for file attributes.)

Although you can display a dialog with a Cancel button, this won’t cause the macro to stop running, as
happens with the Print statement. Instead, the MsgBox function returns an integer that identifies the selected
button (see Table 81). Clicking the Cancel button returns the value 2, and the Abort button returns a 3, which
can then be tested by your code; then you (in your code) can decide whether or not you really want to cancel
the macro.

Table 81. Return values from MsgBox.
Value Description

1 OK

2 Cancel

3 Abort

211

Value Description

4 Retry

5 Ignore

6 Yes

7 No

In other words, if you want the macro to stop when a user clicks the Cancel button, you must check the
return value, as demonstrated in Listing 189. The message contains a new-line character so the message
contains two lines of text. The dialog type requests three buttons and an icon, and sets the second button to
be default (see Figure 68). The macro does different things based on the selected button.

Listing 189. Demonstrate how MsgBox works.
Sub ExampleMsgBox
 Dim nReturnCode As Integer
 Dim nDialogType As Integer
 Dim sMessage As String
 sMessage = "An error occurred!" & CHR$(10) & "Do the important work anyway?"
 REM 3 means Yes, No, Cancel
 REM 48 displays an Exclamation Point icon
 REM 256 second button is default.
 nDialogType = 3 OR 48 OR 256
 nReturnCode = MsgBox(sMessage, nDialogType, "My Title")
 If nReturnCode = 2 Then
 Print "Stopping the macro now!"
 Stop
 ElseIf nReturnCode = 6 Then
 Print "You chose Yes"
 ElseIf nReturnCode = 7 Then
 Print "You chose No"
 Else
 Print "I will never get here!",nReturnCode
 End If
 Print "Ready to exit the subroutine"
End Sub

Figure 68. Fancy MsgBox with an icon and multiple buttons.

 9.3.3. Prompting for input

Use the InputBox function to prompt users for input. You can specify the dialog title. If a Default value is
provided, it’s displayed in the input box. The displayed dialog contains a text-input box, an OK button, and a
Cancel button. The InputBox function returns a string to the calling statement. Clicking Cancel returns a
zero-length string.

InputBox(Message)

212

InputBox(Message, Title)
InputBox(Message, Title, Default)
InputBox(Message, Title, Default, x_pos, y_pos)

The position arguments are in twips and are relative to the upper-left corner of the current window; one inch
is 1440 twips. If the position is not specified, the dialog is centered both horizontally and vertically over the
current window. The example in Listing 190 displays the input box two inches from the left edge of the
window and four inches from the top. The size of the InputBox is defined automatically from the Message
and buttons; OOo configures the layout of this box, as it does for the other basic input and output dialogs.

Listing 190. Demonstrate InputBox.
Sub ExampleInputBox
 Dim sReturn As String 'Return value
 Dim sMsg As String 'Holds the prompt
 Dim sTitle As String 'Window title
 Dim sDefault As String 'Default value
 Dim nXPos As Integer 'Twips from left edge
 Dim nYPos As Integer 'Twips from top edge
 nXPos = 1440 * 2 'Two inches from left edge of the window
 nYPos = 1440 * 4 'Four inches from top of the window
 sMsg = "Please enter some meaningful text"
 sTitle = "Meaningful Title"
 sDefault = "Hello"
 sReturn = InputBox(sMsg, sTitle, sDefault, nXPos, nYPos)
 If sReturn <> "" Then
 REM Print the entered string surrounded by double quotes
 Print "You entered """;sReturn;""""
 Else
 Print "You either entered an empty string or chose Cancel"
 End If
End Sub

Figure 69 shows the dialog when it is first displayed. Pressing any key replaces the default text, because this
text is highlighted when the dialog first opens. The macro in Listing 190 inspects the return value and
checks for a zero-length string. A zero-length string could mean that the Cancel button was used to close the
dialog, or it could mean that the user entered a zero-length string and then used the OK button to close the
dialog. These two cases are not distinguishable from each other.

Figure 69. InputBox with default text selected.

213

 9.4. Error-related routines

The error-related routines (see Table 82) in OOo Basic return information related to the last error. These
routines are used to determine what happened and where. The error information is reset when the error
handler is cleared, so save the error information if your macro program will require it later.

Table 82. Error functions in OOo Basic.
Function Description

CVErr Convert an expression to an error object.

Erl Line number of last error.

Err Error number of last error.

Error

Error(error_number)

Get error message either for the last error or for the specified error
message.

The macro in Listing 191 checks for an error before the error handler is reset. Error information is then
saved. Although the macro in Listing 191 does not save the error message, the Error function accepts an
error number as an optional argument for which the error message is returned. Also see Figure 70.

Listing 191. Demonstrate error related statements.
Sub ExampleError
 On Error Goto BadError 'Set up the error handler
 Print 1/ CInt(0.2) 'Do a division by zero
BadError: 'Error handler starts here
 Dim s As String 'Accumulate the message
 Dim oldError As Integer 'Save the error number
 Dim lineNum As Integer 'Save the line number
 If Err <> 0 Then 'If an error occurred
 oldError = Err 'Save the error number
 lineNum = Erl 'Save the error line number
 s = "Before clearing the error handler" & CHR$(10) &_
 "Error number " & Err & " Occurred at line number " & Erl & CHR$(10) &_
 "Err message: " & Error() & CHR$(10)
 End If
 On Error Goto 0 'Reset the error handler

 REM There is now no information to print
 s = s & CHR$(10) & "After clearing handler:" & CHR$(10) &_
 "Error number " & Err & " Occurred at line number " & Erl & CHR$(10)

 REM Use the saved information
 s = s & CHR$(10) & "Error info was saved so:" & CHR$(10) &_
 "Error number " & oldError & " Occurred at line number " &_
 lineNum & CHR$(10) & "Err message: " & Error(oldError)
 MsgBox s, 0, "Error Handling"
End Sub

214

Figure 70. Error information must be saved if it is used after resetting the error handler.

 9.5. Miscellaneous routines

The miscellaneous routines described in this section are general-purpose routines that aren’t necessarily
related to each other (see Table 83).

Table 83. Miscellaneous functions in OOo Basic.
Function Description

Beep Make a system-dependent beep.

CBool(expression) Convert an integer or string to Boolean.

Environ(string) Return an environment variable.

GetSolarVersion Internal running version.

CreateObject(obj_type) Dynamic version of “Dim As New”.

Erase(obj) Free an objects memory.

The Beep statement generates a system-dependent beep. You can’t change the pitch or the length of the
generated beep. On some systems, this plays a configurable sound file through the built-in speaker, and on
others it generates a system event that plays a system-defined sound through low-level internal hardware.

Beep 'Generate a noise
Wait(500) 'Wait 1/2 second
Beep 'Generate a noise

Use the CBool function to convert a string or a number to a Boolean value. Any numeric expression that
evaluates to 0 returns False. Numeric expressions that are not 0 return True. String expressions that evaluate
to “True” or “False” return True or False respectively; case does not matter. A string that does not evaluate
exactly to True or False is evaluated as a number. If the string doesn’t contain a number or the text “true” or
“false”, a run-time error occurs.

Print CBool(False) 'False
Print CBool(13) 'True
Print CBool("13") 'True
Print CBool("trUe") 'True
Print CBool("&h1") 'True
Print CBool("13xx") 'run-time error
Print Cbool("Truee") 'run-time error

215

Use the Environ function to retrieve environment variables. If the environment variable does not exist, an
empty string is returned. No method is provided to set or change environment variables.

Print Environ("PATH")
Print Environ("TEMP")

Use getSolarVersion to obtain the integer internal build number of OOo. You can write your macro to work
around known issues, based on release documentation or discovered bugs for different versions of OOo.

Print GetSolarVersion

The CreateObject function allows objects to be created dynamically. If an object can be created using “Dim
v As New”, it can be created with the CreateObject function. In other words, if an object can be created as a
user-defined type, CreateObject can create one. The OOo underlying special data objects, which are covered
in depth later, are called Universal Network Objects (UNO). These objects cannot be created using
CreateObject. OOo does define structures that are not UNO objects that can be created using Dim As New
and CreateObject (see Listing 192).

Listing 192. Create an object using CreateObject or Dim As New.
Dim oProp As New com.sun.star.beans.PropertyValue
Dim o As Object
o = CreateObject("com.sun.star.beans.PropertyValue")

Listing 192 demonstrates creating a variable type defined by OOo that is like a user-defined type. The actual
type name of the object is “com.sun.star.beans.PropertyValue”. Many of the objects in OOo have similarly
long and cumbersome names. While writing about or discussing variable types such as this, it’s common to
abbreviate the type name as the last portion of the name. For example, set the Name property of the
PropertyValue variable (see Listing 193). Objects of type PropertyValue have two properties: Name as a
String and Value as a Variant.

Listing 193. Dim a PropertyValue and use CreateObject to create a new one.
Dim aProp As New com.sun.star.beans.PropertyValue
aProp.Name = "FirstName" 'Set the Name property
aProp.Value = "Paterton" 'Set the Value property
Erase aProp
Print IsNull(aProp) 'True

REM Create a new one!
Dim aPropr
aPropr = CreateObject("com.sun.star.beans.PropertyValue")
Erase aProp
Print IsNull(aProp) 'True
Print IsEmpty(aProp) 'False

Dim a
a = array("hello", 2)
Erase a
Print IsNull(a) 'False
Print IsEmpty(a) 'True

Dim b() As String
ReDim b(0 To 1) As String
b(0) = "Hello" : b(1) = "You"
'b() = "hello" 'Runtime error, variable not set (Expected)
'Print b() 'Runtime error, variable not set (Expected)

216

'Erase b() 'Syntax Error, not too surprised
Erase b 'I did not expect this to work.
Print IsNull(b()) 'False
Print IsEmpty(b()) 'False
Print IsArray(b()) 'False, This is probably bad.
'Print LBound(b()) 'Error, variable not set.
b() = "hello" 'Odd, now I can treat b() as a string variable
Print b() 'hello

Listing 193 demonstrates the Erase statement, introduced with OOo version 2.0. Use the Erase statement to
free memory that will no longer be used. Do not use Erase unless you are finished with the variable.

Use the CreateObject function to create an object dynamically — in other words, when you don’t want to
create the object when it’s declared. You can use CreateObject to create only one object at a time. Use the
Dim As New construction to create an array of a particular type (see Listing 194). You can even change the
dimension of the array and preserve the data. It is more cumbersome to declare an array and then fill it with
the appropriate values individually (see Listing 195).

Listing 194. Demonstrate ReDim with Preserve
Sub ExampleReDimPreserveProp
 REM this is easy to create this way
 Dim oProps(2) As New com.sun.star.beans.PropertyValue
 oProps(0).Name = "FirstName" : oProps(0).Value = "Joe"
 oProps(1).Name = "LastName" : oProps(1).Value = "Blather"
 oProps(2).Name = "Age" : oProps(1).Value = 53
 ReDim Preserve oProps(3) As New com.sun.star.beans.PropertyValue
 oProps(3).Name = "Weight" : oProps(3).value = 97
 Print oProps(2).Name 'Age
End Sub

Listing 195. You can add PropertyValue variables to a declared array.
REM This is more cumbersome, but you can still do it...
Dim oProps(2)
oProps(0) = CreateObject("com.sun.star.beans.PropertyValue")
oProps(1) = CreateObject("com.sun.star.beans.PropertyValue")
oProps(2) = CreateObject("com.sun.star.beans.PropertyValue")
oProps(0).Name = "FirstName" : oProps(0).Value = "Joe"
oProps(1).Name = "LastName" : oProps(1).Value = "Blather"
oProps(2).Name = "Age" : oProps(1).Value = 53

Assigning one array to another assigns a reference so that both arrays reference the same array object. With
variable types such as Integer and PropertyValue, assignment makes a copy. Failure to understand which
types copy by value and which types copy by reference is a common source of errors. Structures and integral
types (such as Integer and String) copy as a value, but arrays and UNO variables, as will be discussed later,
copy as a reference. Copying by value is demonstrated in an obvious way in Listing 196.

Listing 196. Properties copy by value.
Sub ExampleCopyAsValue
 Dim aProp1
 Dim aProp2
 aProp1 = CreateObject("com.sun.star.beans.PropertyValue")
 aProp1.Name = "Age" 'Set Name Property on one
 aProp1.Value = 27 'Set Value Property on one
 aProp2 = aProp1 'Make a copy
 aProp2.Name = "Weight"'Set Name Property on two

217

 aProp2.Value = 97 'Set Value Property on two
 Print aProp1.Name, aProp2.Name 'Age Weight
End Sub

TIP Standard object variables copy by value, and UNO variables copy by reference.

When one integer variable is assigned to another, it is understood that the value was copied and nothing
more. The two variables are still independent of each other. This is also true for structures. Text cursors,
discussed later, contain a property called CharLocale, which specifies the country and language for the text
selected by the text cursor. The common, incorrect method to set the locale is to access the variable directly.
This sets the language and country on a copy of the CharLocale property rather than on the copy used by the
text cursor. I see this type of error often.

oCursor.CharLocale.Language = "fr" 'set language to French on a copy
oCursor.CharLocale.Country = "CH" 'set country to Switzerland on a copy

One correct method to set the locale is to create a new Locale structure, modify the new structure, and copy
the new structure to the text cursor.

Dim aLocale As New com.sun.star.lang.Locale
aLocale.Language = "fr" 'Set Locale to use the French language
aLocale.Country = "CH" 'Set Locale to use Switzerland as the country
oCursor.CharLocale = aLocale 'Assign the value back

You can also obtain a copy of the structure, modify the copied structure, and copy the modified structure to
the text cursor.

Dim aLocale
aLocale = oCursor.CharLocale 'Or use a copy
aLocale.Language = "fr" 'Set Locale to use the French language
aLocale.Country = "CH" 'Set Locale to use Switzerland as the country
oCursor.CharLocale = aLocale 'Assign the value back

 9.6. Partition

Partition is not documented and was likely added for VB compatibility. Partition return a Variant (String)
indicating where a number occurs in a calculated series of ranges.

Partition(number, start_value, stop_value, interval)

Consider the following values:

start_value = 0
stop_value = 17
interval = 5

The following “partitions” are assumed:

1) “ :-1” Everything before 0

2) “0:4” Five numbers from 0 to 4.

3) “5:9” Five numbers from 5 to 9.

4) “10:14” Five numbers from 10 to 14.

5) “15:17” Three numbers from 15 to 17.

218

6) “18: ” Everything after 17.

The example in Listing 197 tests numbers before and after the interval. As expected, values before the first
interval run from “ :-1”. Values that fall into an interval are nicely identified. The only tricky part is that the
final interval claims to include values from “15:19” even though 18 and 19 are not in the interval.

Listing 197. Run partition through a series of values.
Sub ExamplePartition
 Dim i%
 Dim s$
 For i = -2 To 20
 s = s & "Partition(" & i & ", 0, 17, 5) = " & _
 Partition(i, 0, 17, 5) & CHR$(10)
 Next
 MsgBox s
End Sub

Figure 71. Partition shows the interval containing a number.

219

The values returned by Partition are carefully formatted. The lower value and upper value have the same
number of characters, which means that they will sort properly if you choose to do so. This also helps if you
want to parse the returned values.

 9.7. Inspection and identification of variables

OOo Basic contains numerous functions to inspect and identify variables (see Table 84). These routines are
frequently used when you call a function and aren’t certain of the return type. These routines are also useful
for debugging. For example, you could use these functions to verify that a return type is valid.

Table 84. Variable inspection functions in OOo Basic.
Function Description

IsArray Is the variable an array?

IsDate Does the string contain a valid date?

IsEmpty Is the variable an empty Variant variable?

IsMissing Is the variable a missing argument?

IsNull Is the variable an unassigned object?

IsNumeric Does the string contain a valid number?

IsObject Is the variable an object?

IsUnoStruct Is the variable a UNO structure?

TypeLen Space used by the variable type.

TypeName Return the type name of the object as a String.

VarType Return the variable type as an Integer.

Use IsArray to see if a variable is an array (see Listing 198). If IsArray returns True, it does not imply that
the variable has data or even that it is dimensioned — merely that it exists and is defined as an array. The
UBound and LBound functions, as already discussed, return the upper and lower bounds of the array.

Listing 198. Use IsArray to see if a variable is an array.
Dim n As Long 'This is NOT an array
Dim a() As String 'This is an array
Dim b(5) 'This is an array
Dim v As Variant 'This is not an array yet
Print IsArray(v) 'False
Print IsArray(n) 'False
Print IsArray(a) 'True
Print IsArray(b()) 'True
ReDim v(3) 'It is an array now!
Print IsArray(v()) 'True

Use the IsDate function to test if a string contains a valid date (see Listing 199). The arguments are
converted to a string before they are used, so numeric arguments return False. The IsDate function tests more
than just syntax; it checks to see if the string contains a valid date. The same check is not made on the time
component of the string.

Listing 199. IsDate verifies that a string contains a valid date.
Print IsDate("December 1, 1582 2:13:42") 'True
Print IsDate("2:13:42") 'True
Print IsDate("12/1/1582") 'True

220

Print IsDate(Now) 'True
Print IsDate("26:61:112") 'True
Print IsDate(True) 'False converts to string first
Print IsDate(32686.22332) 'False converts to string first
Print IsDate("02/29/2003") 'False, only 28 days in February 2003

Like the IsDate function, the IsNumeric function looks at strings (see Listing 200). If the argument is not
entirely a solitary valid number, except for leading or trailing spaces and enclosing quotation marks, it
returns False.

Listing 200. IsNumeric is very picky about what it accepts.
Print IsNumeric(" 123") 'True
Print IsNumeric(" 12 3") 'False
Print IsNumeric(1.23) 'True
Print IsNumeric(1,23) 'True
Print IsNumeric("123abc") 'False
Print IsNumeric(True) 'False
Print IsNumeric(Now) 'False

Variant variables start with no value at all; they are initially empty. Object variables are initialized with the
value null. Use the functions IsEmpty and IsNull to test these conditions. Use the IsObject function to
determine if a variable is an object.

Dim v As Variant 'Starts as not initialized, Empty
Dim o As Object 'Initialized to null

Print IsObject(v) 'False No, a Variant is not an Object
Print IsObject(o) 'True Yes, this is an Object

Print IsEmpty(v) 'True Variants start as Empty, not initialized
Print IsNull(v) 'False To be null, a Variant must contain something

Print IsEmpty(o) 'False Variants start as Empty, not Objects
Print IsNull(o) 'True Objects start as null

v = o
Print IsObject(v) 'True The variant just became an Object.
Print IsEmpty(v) 'False Variant now contains a value (an Object)
Print IsNull(v) 'True Variant contains a null Object

Use the IsMissing function to determine if an optional argument is missing. Usually, some default value is
used if an argument is missing.

Sub TestOptional
 Print "Arg is ";ExampleOptional() 'Arg is missing
 Print "Arg is ";ExampleOptional("hello") 'Arg is hello
End Sub

Function ExampleOptional(Optional x) As String
 ExampleOptional = IIF(IsMissing(x), "Missing", CStr(x))
End Function

Use the function IsUnoStruct to determine if a variable contains a structure defined by OpenOffice.org.

 Dim v
 Print IsUnoStruct(v) 'False

221

 v = CreateUnoStruct("com.sun.star.beans.Property") 'Create a UNO
 Print IsUnoStruct(v) 'True

Use the TypeName function for a string representation of the variable’s type. The VarType function returns
an integer corresponding to the variable type. Table 85 contains a list of the possible types. The first column,
labeled BASIC, indicates if the type is common to BASIC and therefore likely to be seen. The other values
represent types that are internal to OOo. OOo Basic typically maps internal types to standard OOo Basic
types, so you aren’t likely to see these other types. They are, however, contained in the source code and they
are included for completeness.

Table 85. Variable types and names.
BASIC VarType TypeName Len Description

yes 0 Empty 0 Variant variable is not initialized

yes 1 Null 0 No valid data in an Object variable

yes 2 Integer 2 Integer variable

yes 3 Long 4 Long Integer variable

yes 4 Single 4 Single floating-point variable

yes 5 Double 8 Double floating-point variable

yes 6 Currency 8 Currency variable

yes 7 Date 8 Date variable

yes 8 String strlen String variable

yes 9 Object 0 Object variable

no 10 Error 2 Internal OOo type

yes 11 Boolean 1 Boolean variable

yes 12 Variant 0 Variant variables act like any type

no 13 DataObject 0 Internal OOo type

no 14 Unknown Type 0 Internal OOo type

no 15 Unknown Type 0 Internal OOo type

no 16 Char 1 Internal OOo type, a single text character

yes 17 Byte 1 Internal OOo type, but you can use CByte to create one

no 18 UShort 2 Internal OOo type, unsigned short integer (16 bits)

no 19 ULong 4 Internal OOo type, unsigned long (32 bits)

no 20 Long64 8 Internal OOo type, long (64 bits)

no 21 ULong64 8 Internal OOo type, unsigned long (64 bits)

no 22 Int 2 Internal OOo type, integer (16 bits)

no 23 UInt 2 Internal OOo type, unsigned integer (16 bits)

no 24 Void 0 Internal OOo type, no value

no 25 HResult 0 Internal OOo type

no 26 Pointer 0 Internal OOo type, pointer to something

no 27 DimArray 0 Internal OOo type

no 28 CArray 0 Internal OOo type

no 29 Userdef 0 Internal OOo type, user-defined

222

BASIC VarType TypeName Len Description

no 30 Lpstr strlen Internal OOo type, long pointer to a string

no 31 Lpwstr strlen Internal OOo type, long pointer to a “Wide” Unicode
string

no 32 Unknown Type 0 Internal core string type

no 33 WString strlen Internal OOo type, “Wide” Unicode string

no 34 WChar 2 Internal OOo type, “Wide” Unicode character

no 35 Int64 8 Internal OOo type, integer (64 bits)

no 36 UInt64 8 Internal OOo type, unsigned integer (64 bits)

no 37 Decimal OLE Automation type available in VB.

Use the TypeLen function to determine how many bytes a variable uses. The returned value is hard coded for
every value except for the strings, which return the length of the string. Array variables always return a
length of zero. The macro in Listing 201 generates all of the standard BASIC types, places them into an
array, and builds a string containing the type, length, and type name, as shown in Figure 72.

Listing 201. Show type information for standard types.
Sub ExampleTypes
 Dim b As Boolean
 Dim c As Currency
 Dim t As Date
 Dim d As Double
 Dim i As Integer
 Dim l As Long
 Dim o As Object
 Dim f As Single
 Dim s As String
 Dim v As Variant
 Dim n As Variant
 Dim ta()
 Dim ss$
 n = null
 ta() = Array(v, n, i, l, f, d, c, t, s, o, b, CByte(3) _
 CreateUnoValue("unsigned long", 10)))
 For i = LBound(ta()) To UBound(ta())
 ss = ss & ADPTypeString(ta(i))
 Next
 MsgBox ss, 0, "Type, Length, and Name"
End Sub

Function ADPTypeString(v) As String
 Dim s As String 'Hold the return string
 Dim i As Integer 'Dummy integer value
 s = s & "Type = " 'Leading type string
 i = VarType(v) 'Get the type
 If i < 10 Then s = S & "0" 'Leading zero if required
 s = s & CStr(i) 'Add the type number
 If IsArray(v) Then
 s = s & " ("

223

 i = i AND NOT 8192
 If i < 10 Then s = S & "0" 'Leading zero if required
 s = s & CStr(i) & ")" 'Add the type number
 Else
 s = s & " Len = " 'Leading length string
 i = TypeLen(v) 'What is the length
 If i < 10 Then s = S & "0" 'Leading zero if required
 s = s & CStr(i) 'Add in the length
 End If
 s = s & " Name = " 'Leading Name string
 s = s & TypeName(v)& CHR$(10)'Add in the name and a new-line character
 ADPTypeString = s 'Return value for the function
End Function

Figure 72. Variable types, lengths, and names.
The function ADPTypeString does the work of generating the display string. It gives special handling to
arrays, because the returned type numbers for arrays are completely different than the type numbers for the
standard variables. At least they seem that way until you start looking very closely at the numbers. If the
thought of twiddling bits makes you tremble, skip the rest of this paragraph. The value returned by VarType
for an array always has bit 14 set — a 1 followed by 13 zeros in binary. This is 8192 in decimal and 2000 in
hexadecimal. The IsArray function is implemented by checking bit 14 of the VarType. If you clear bit 14, the
number that remains tells you what numeric type is used for the array. The NOT operator clears every bit
that is set and sets every bit that is clear, so NOT 8192 provides the number with every bit set except for bit
14. If you AND this with the type, it clears bit 14, leaving the rest of the bits intact.

i = i AND NOT 8192

The length of an array is always returned as zero, so I didn’t include this by VarType in Listing 201. The
code in Listing 202 is similar to Listing 201 but the types are arrays. Notice that the type name for array
types contains parentheses “()” following the name (see Figure 73).

Listing 202. Show type information for arrays.
Sub ExampleTypesArray
 Dim b() As Boolean
 Dim c() As Currency
 Dim t() As Date
 Dim d() As Double

224

 Dim i() As Integer
 Dim l() As Long
 Dim o() As Object
 Dim f() As Single
 Dim s() As String
 Dim v() As Variant
 Dim ta(), j%
 Dim ss$
 ta() = Array(i, l, f, d, c, t, s, o, b, v)
 For j% = LBound(ta()) To UBound(ta())
 ss = ss & ADPTypeString(ta(j%))
 Next
 MsgBox ss, 0, "Type, Length, and Name"
End Sub

Figure 73. Types, lengths, and names for array variables.

 9.8. Routines you should not use and other curiosities

I first heard my good friend Manfred say that “the book that is forbidden to read turns one reader into three.”
Do not apply this logic to the routines outlined in this section. These routines are not officially documented;
even if they work now, they may stop working in the near future. Deprecated routines may still exist and
they may work. They may also be removed at any time. Empty stubs exist, compile, and run, but do nothing.
You may find older code that uses these legacy functions (see Table 86). I include CDec in the list because it
is only listed on the Windows platform, which is just plain silly.

225

Table 86. Deprecated and questionable routines.
Routine Comment

AboutStarBasic Deprecated empty stub that used to be an information dialog.

SendKeys Deprecated, generates an error.

DumpAllObjects(path, bool) Internal debugging routine; no typical use known.

Load(Object) Deprecated.

Unload(Object) Deprecated.

LoadPicture(path) Deprecated. Loads an image file.

SavePicture(obj, path) Deprecated. Fails to save an image file.

CreatePropertySet(object) Deprecated. Early UNO support function.

CDec(expression) Generate a Decimal type; only implemented on Windows.

GetGUIVersion() Deprecated, returns -1.

DumpAllObjects is an internal debugging routine that accepts two arguments. The first argument is a file
name that will contain the text output. The second argument is a Boolean value that determines if each
object should be fully loaded before it is dumped. For performance reasons, some properties are not created
until they are accessed for the first time. This is true, even for BASIC objects that wrap UNO objects.

DumpAllObjects("C:\foo.txt", true) 'Fully load all objects before dumping

The LoadPicture and SavePicture routines refer to the old BASIC dialogs that are not implemented using
UNO. The object returned by LoadPicture was used to set a picture on an image control. There is now an
image control that uses the UNO API to set the picture.

Dim v
v = LoadPicture("C:\test1.jpg") 'This seems to load the picture
SavePicture(v, "C:\test2.jpg") 'This writes a zero length file

The CreatePropertySet function accepts an object as an argument and returns a property set. The property set
is empty and not very useful. This function was created when the UNO functionality was first introduced,
and will be removed from the source code in the future. If you find code that uses this function, I
recommend that you change it.

v = CreatePropertySet(ThisComponent.Text)

 9.9. Routines I do not understand

I find functions by reading the source code, some I understand and some I do not. This section contains the
functions that I have not been able to satisfactorily document.

Table 87. Functions I do not fully understand.
Function Description

EnableReschedule(bool)

Me

RTL

GetDialogZoomFactorX() The factor by which a dialog is scaled in the X direction. Used while determining how to
scale an image for preview.

GetDialogZoomFactorY() The factor by which a dialog is scaled in the Y direction.

226

EnableReschedule accepts a boolean argument. I have found neither usage nor documentation for this
method, so, I have only speculation as to its purpose. I speculate that OOo sometimes reschedules things,
perhaps events, and that sometimes rescheduling should not be allowed; say during a callback. Use
EnableReschedule to enable, or disable, the internal reschedule flag. It is problematic that there is no method
to determine the current state, so you cannot set it and then restore it. It appears, however, that the default
state is enabled.

Me is available in the .Net world to reference the class or structure in which the code is executing. It is not
clear to me how to generate a valid call using Me at this point. If Me is not used in the correct context, an
error occurs.

RTL appears to return a reference of the run time library, but, I am not clear on this point. My guess is that if
I could use this, then I might be able to do things such as access methods of the RTL and call them; but that
is a wild guess.

GetDialogZoomFactorX and GetDialogZoomFactorY appear to be used to determine the scale factor to use
so that a preview image will be properly displayed. In the very few examples that I have found, I always see
code similar to the following:

widthToUse = GetDialogZoomFactorX(imageWidth) * imageWidth
heightToUse = GetDialogZoomFactorY(imageHeight) * imageHeight

Brush up on your German and then read this: http://www.herger.net/staroffice/sbinteam/os/preview2.htm. It
is my opinion that you probably do not require these methods, but, I could be wrong.

 9.10. Conclusion

This chapter contains a lot of subtle information. If you are using OOo Basic for the first time, consider
reading the chapter again after you have more experience. The routines for inspecting variables are useful
while evaluating returned objects. Knowledge of twips is required while trying to determine spacing and
image sizes. Be certain to watch for deprecated routines so that can avoid using them.

227

http://www.herger.net/staroffice/sbinteam/os/preview2.htm

 10. Universal Network Objects
The internals of OpenOffice.org are based on Universal Network Objects (UNO). This chapter introduces
the subroutines and functions supported by OpenOffice.org Basic that are related to UNO. This chapter
covers methods that create and inspect objects that are vital to the internals of OpenOffice.org.

Up to this point, I have mostly dealt with simple single value things such as string and integer. An object,
however, usually contains many values and it also has methods; for example, you can access a document as
a variable and access information about the document (data or properties), and call methods that manipulate
the document.

In this chapter, I begin to discuss things related to the actual implementation of OOo — things that allow
you to exploit the internal capabilities of OOo. You’ll also begin to see more details about how OOo is
implemented — which you need to build the really cool stuff.

Are you a programmer or a highly technical person? If not, skip this paragraph and go directly to the tip.
Still reading? Great, so UNO is:

• The interface based component model for OOo.

• Enables interoperability between programming languages, object models and hardware architectures,
either in process or over process boundaries, as well as in the intranet or the Internet.

• New languages are supported by adding a language binding. This is also stated as adding a “bridge”
or “adapter”. This paradigm makes it easier to support multiple languages.

• UNO components may be implemented in, and accessed from, any programming language with a
complete language binding.

TIP You can write powerful macros without fully understand Universal Network Objects. Just think of a UNO
as any object that is used internally by OOo.

Stated more simply: The internal parts of OOo are used as Universal Network Objects. By using UNOs, it is
possible to access an instance of OOo running on a different computer and operating system. A vague
understanding of Universal Network Objects is important because most of the internals of OpenOffice.org
are implemented using UNO.

Table 88 lists the OOo Basic functions used to deal with UNO.

228

Table 88. Functions related to Universal Network Objects in OOo Basic.
Function Description

BasicLibraries Access Basic libraries stored in a document.

CreateObject(obj_type) Able to create any standard type, more flexible than
CreateUnoStruct and CreateUnoService.

CreateUnoDialog() Create an existing dialog.

CreateUnoListener() Create a listener.

CreateUnoService() Create a Universal Network Object Service.

CreateUnoStruct() Create a Universal Network Object Structure.

CreateUnoValue() Create a Universal Network Object value.

DialogLibraries Access dialog libraries stored in a document.

EqualUNOObjects() Determine if two UNO objects reference the same
instance.

FindObject() Find a named object; do not use.

FindPropertyObject() Find object property based on name; do not use.

GetDefaultContext() Get a copy of the default context.

GetProcessServiceManager() Get service manager.

GlobalScope Application-level libraries.

HasUnoInterfaces() Does an object support specified interfaces?

IsUnoStruct() Is this variable a Universal Network Object?

StarDesktop Special variable representing the desktop object.

ThisComponent Special variable representing the current document.

 10.1. Base types and structures

Most of the internal data used by OOo is based on standard types such as strings and numbers. These types
are combined into structures (called structs), which act like user-defined data types. The structures are
combined to form more complex UNO objects. A struct supports properties but not methods.

A structure provides a method of placing more than one value into a single variable. You access the values in
a structure based on a name that is decided when the struct type is designed by a programmer. A commonly
used struct is the PropertyValue, whose primary purpose is to hold a string name and a variant value. The
following listing demonstrates creating a PropertyValue structure and then setting the name and the value.
The contained properties are accessed by placing a period between the variable and the property name.

Listing 203. Use Dim As New to create a UNO structure.
Dim aProp As New com.sun.star.beans.PropertyValue
aProp.Name = "FirstName" 'Set the Name property
aProp.Value = "Paterton" 'Set the Value property

TIP OOo objects have long names such as com.sun.star.beans.PropertyValue; in the text I usually abbreviate the
name and simply write PropertyValue, but your macros must use the full name.

229

You must create (or obtain) a UNO structure before you can use it. The most common method to create a
UNO structure is to use Dim As New (see Listing 203). You can also use Dim to create an array of
structures.

Listing 204. Use Dim As New to create an array of UNO structures.
Dim aProp(4) As New com.sun.star.beans.PropertyValue
aProp(0).Name = "FirstName" 'Set the Name property
aProp(0).Value = "Clyde" 'Set the Value property

Use the CreateUnoStruct function to create a UNO structure when it is needed rather than declare it ahead of
time. Dynamically creating a UNO structure allows the name of the structure to be provided at run time
rather than compile time. Providing a name at run time is shown in Listing 205 and Listing 208. Providing a
name at compile time is shown in Listing 203.

Listing 205. Use CreateUnoStruct to create a UNO structure.
Dim aProp
aProp = CreateUnoStruct("com.sun.star.beans.PropertyValue")
aProp.Name = "FirstName" 'Set the Name property
aProp.Value = "Andrew" 'Set the Value property

The With statement simplifies the process of setting the properties of a structure.

Listing 206. Use With to simplify setting properties on structures.
Dim aProp(4) As New com.sun.star.beans.PropertyValue
With aProp(0)
 .Name = "FirstName" 'Set the Name property
 .Value = "Paterton" 'Set the Value property
End With

The function CreateUnoStruct used to be the only method to create a UNO structure. It is used less since the
introduction of the “Dim As New” syntax. The CreateObject function is a more general function than
CreateUnoStruct. It is able to create instances of all types supported by the Basic internal factory
mechanism. This includes user-defined types.

Listing 207. Create a user-defined type with CreateObject or Dim As.
Type PersonType
 FirstName As String
 LastName As String
End Type

Sub ExampleCreateNewType
 Dim Person As PersonType
 Person.FirstName = "Andrew"
 Person.LastName = "Pitonyak"
 PrintPerson(Person)
 Dim Me As Object
 Me = CreateObject("PersonType")
 Me.FirstName = "Andy"
 Me.LastName = "Pitonyak"
 PrintPerson(Me)
End Sub

Sub PrintPerson(x)
 Print "Person = " & x.FirstName & " " & x.LastName
End Sub

230

TIP For a user-defined type, “Dim As New” and “Dim As” both work. For a UNO struct, however, you must
use “Dim As New”.

The CreateObject function accepts the same arguments as CreateUnoStruct, but it works for all supported
types, whereas CreateUnoStruct works only for UNO structures. Therefore, there is no reason to use
CreateUnoStruct rather than CreateObject.

Listing 208. Use CreateObject to create a UNO structure.
Dim aProp
aProp = CreateObject("com.sun.star.beans.PropertyValue")
aProp.Name = "FirstName" 'Set the Name property
aProp.Value = "Paterton" 'Set the Value property

TIP CreateObject offers more flexibility than CreateUnoStruct to dynamically create objects based on a name.

I wrote a small test program that created 20000 structs. CreateUnoStruct and CreateObject took about the
same amount of time. Using Dim As New, however, used 500 clock ticks less, which is useful if you want to
make a macro run as fast as possible.

The TypeName function indicates that a UNO structure is an object. Use the IsUnoStruct function to
determine if a variable is a UNO structure.

Listing 209. Use IsUnoStruct to check if an object is an UNO Struct.
Dim aProp As New com.sun.star.beans.PropertyValue
Print TypeName(aProp) 'Object
Print IsUnoStruct(aProp) 'True

 10.2. UNO interface

An interface defines how something interacts with its environment. A UNO interface resembles a group of
subroutine and function declarations; arguments and return types are specified along with functionality.

You can use the interface to retrieve data from an object, set data in an object, or tell an object to do
something. The interface indicates how an object can be used, but it says nothing about the implementation.
For example, if an interface contains the method GetHeight that returns an integer, it’s natural to assume that
the object contains an integer property named Height. It’s possible, however, that the height is derived or
calculated from other properties. The interface does not specify how the height is obtained, just that it is
available. A UNO structure, however, contains properties that are accessed directly; the internal
representation is not hidden.

TIP UNO interface names start with the capital letter X.

When you want to know what methods are supported by an object, check the interfaces.

UNO interface names start with the capital letter X, which makes it easy to recognize an interface; for
example, the interface com.sun.star.text.XTextRange specifies a section of text with both a start and end
position. Objects that support the XTextRange interface are also used to identify an object’s position in text
document. The start and end positions may be the same. The XTextRange interface defines the methods in
Table 89.

231

Table 89. Methods defined by the com.sun.star.text.XTextRange interface.
Method Description

getText() Return the com.sun.star.text.XText interface that contains this XTextRange.

getStart() Return a com.sun.star.text.XTextRange that references only the start position.

getEnd() Return a com.sun.star.text.XTextRange that references only the end position.

getString() Return a string that includes the text inside this text range.

setString(str) Set the string for this text range, replacing existing text and clearing all styles.

TIP A UNO interface may be derived from another. Every UNO interface is required to be derived from
com.sun.star.uno.XInterface.

A new UNO interface may be derived from another. This is not something that you do, but rather it’s
something that is done by the designer of the interface. The derived interface supports all of the methods
defined in the interface from which it is derived. For example, the com.sun.star.text.XTextCursor extends
the XTextRange interface to allow it to change the range, which makes sense if you think about what you do
with a cursor. Any object that implements the XTextCursor interface, supports the methods in Table 89 and
the new methods introduced by the XTextCursor interface.

The main points regarding interfaces (so far) are:

1) An interface defines methods. In other words, an interface defines what an object can do; including
getting and setting internal properties.

2) An interface may be derived from another interface.

3) The last portion of an interface name begins with an X.

In UNO, objects are accessed by their interface. Many of the programming languages, such as Java and C++,
force you to perform a little UNO magic and extract the correct interface before you can call the methods
defined in the interface. OOo Basic hides these details for you so that you can directly call methods and
access properties directly.

TIP OOo Basic hides many of the complicated details, so, for most things, it is easier to write an OOo Basic
program than to write a Java script.

 10.3. UNO service

A service abstractly defines an object by combining interfaces and properties to encapsulate some useful
functionality. A UNO interface defines how an object interacts with the outside world; a UNO structure
defines a collection of data; and a UNO service combines them together. Like a UNO interface, a UNO
service does not specify the implementation. It only specifies how to interact with the object.

Almost every UNO object is defined by a service, so UNO objects are called services. Strictly speaking,
however, “a service” is the object definition. The UNO object is the actual object created as defined by the
service. A service may include multiple services and interfaces. An interface usually defines a single aspect
of a service and therefore is usually smaller in scope.

Many services have a name similar to an interface name; for example, one of the interfaces exported by the
TextCursor service is the XTextCursor interface. An interface or property may be declared as optional for a
service. The XWordCursor interface is marked as optional for the TextCursor service. The implication is that

232

not all text cursors support the word cursor interface. In practice, you learn which text cursors support which
interfaces and then simply use them.

There are two typical methods for obtaining a service.

• Get a reference to an existing object; for example, retrieving the first text table in the current
document.

• Ask a service factory to create an instance of an object; for example, if I want to insert a new text
table into a document, I ask the document to give me a new empty table, which I then configure and
insert into the document.

A service factory returns objects based on the name. The process service manager is the main object factory
for OpenOffice.org. The factory is given the service name, and the factory decides what to return. A factory
may return a brand new instance of an object, or, it may return an existing instance. Use
GetProcessServiceManager() to obtain a reference to the process service manager. Use CreateInstance to
create a service from the process service manager as shown in Listing 210.

Listing 210. Use process service manager to create a service.
Sub ManagerCreatesAService
 Dim vFileAccess
 Dim s As String
 Dim vManager
 vManager = GetProcessServiceManager()
 vFileAccess = vManager.CreateInstance("com.sun.star.ucb.SimpleFileAccess")
 s = vFileAccess.getContentType("http://www.pitonyak.org/AndrewMacro.odt")
 Print s
End Sub

The code in Listing 210 obtains the process service manager, creates an instance of the SimpleFileAccess
service, and then uses the created service. The CreateUnoService function is a shortcut for creating a UNO
service (see Listing 211). The purpose of Listing 211 is to demonstrate the CreateUnoService function,
showing that it’s simpler than creating a service manager. Listing 211 also demonstrates some useful
functionality, using a dialog to choose a file.

Listing 211. Select a file on disk.
Function ChooseAFileName() As String
 Dim vFileDialog 'FilePicker service instance
 Dim vFileAccess 'SimpleFileAccess service instance
 Dim iAccept as Integer 'Response to the FilePicker
 Dim sInitPath as String 'Hold the initial path
 'Note: The following services MUST be called in the following order
 'or Basic will not remove the FileDialog Service
 vFileDialog = CreateUnoService("com.sun.star.ui.dialogs.FilePicker")
 vFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 'Set the initial path here!
 sInitPath = ConvertToUrl(CurDir)
 If vFileAccess.Exists(sInitPath) Then
 vFileDialog.SetDisplayDirectory(sInitPath)
 End If

 iAccept = vFileDialog.Execute() 'Run the file chooser dialog
 If iAccept = 1 Then 'What was the return value?
 ChooseAFileName = vFileDialog.Files(0) 'Set file name if it was not canceled

233

 End If
 vFileDialog.Dispose() 'Dispose of the dialog
End Function

A directory can be chosen similarly.

Listing 212. Select a directory.
REM sInPath specifies the initial directory. If the initial directory
REM is not specified, then the user's default work directory is used.
REM The selected directory is returned as a URL.
Function ChooseADirectory(Optional sInPath$) As String
 Dim oDialog As Object
 Dim oSFA As Object
 Dim s As String
 Dim oPathSettings

 oDialog = CreateUnoService("com.sun.star.ui.dialogs.FolderPicker")
 'oDialog = CreateUnoService("com.sun.star.ui.dialogs.OfficeFolderPicker")
 oSFA = createUnoService("com.sun.star.ucb.SimpleFileAccess")

 If IsMissing(sInPath) Then
 oPathSettings = CreateUnoService("com.sun.star.util.PathSettings")
 oDialog.setDisplayDirectory(oPathSettings.Work)
 ElseIf oSFA.Exists(sInPath) Then
 oDialog.setDisplayDirectory(sInPath)
 Else
 s = "Directory '" & sInPath & "' Does not exist"
 If MsgBox(s, 33, "Error") = 2 Then Exit Function
 End If

 If oDialog.Execute() = 1 Then
 ChooseADirectory() = oDialog.getDirectory()
 End If
End Function

TIP The file picker and folder picker dialogs can use either the operating system supplied default dialogs, or
OOo specific dialogs. The operating system specific dialogs provide less functionality; for example, you
cannot set the initial displayed directory. Use Tools > Options > OpenOffice.org > General and place a
check next to "Use OpenOffice.org dialogs".

The code in Listing 211 creates two UNO services by using the function CreateUnoService. There are times,
however, when the service manager is required. For example, the service manager has methods to create a
service with arguments, CreateInstanceWithArguments, and to obtain a list of all supported services,
getAvailableServiceNames(). The code in Listing 213 obtains a list of the supported service names; there are
1003 services on my computer using OOo version 3.2.1; up from 562 with OOo version 1.

Listing 213. Service manager supports services.
Sub HowManyServicesSupported
 Dim oDoc ' Document created to hold the service names.
 Dim oText ' Document text object.
 Dim oSD ' SortDescriptor created for the document.
 Dim oCursor ' Text cursor used for sorting.
 Dim i% ' Index Variable.
 Dim sServices

234

 sServices = GetProcessServiceManager().getAvailableServiceNames()
 Print "Service manager supports ";UBound(sServices);" services"
 ' Create a Writer document.

 oDoc = StarDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, Array())
 oText = oDoc.getText()

 ' Print the service names into a Writer document.
 For i = LBound(sServices) To UBound(sServices)
 oText.insertString(oText.getEnd(), sServices(i), False)
 ' Do not insert a blank line at the end.
 oText.insertControlCharacter(oText.getEnd(), _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)
 Next

 oCursor = oDoc.Text.CreateTextCursorByRange(oDoc.Text)
 oSD = oCursor.createSortDescriptor()
 oCursor.sort(oSD)

 oText.insertString(oText.getStart(), _
 "Service manager supports "&UBound(sServices)&" services", False)
End Sub

It is useful to look at the list of supported services. This provides insight into available functionality that you
can explore. A great example of this is shown Listing 214. An object inserted into a document must be
created by that document. Using the methods of Listing 213, you can check to see what types of objects the
document can create.

Listing 214. What objects can a document create.
REM Print the object / service types that a document can create.
REM If the document (oDoc) is missing, the current document is used.
REM If nameFilter is included, then service names that contain
REM the string are printed; based on a case insensitive compare.
REM The service names are stored in a newly created Write document.
Sub TypesDocCanCreate(Optional oDoc, Optional nameFilter$)
 Dim allNames ' List of all the names.
 Dim oWriteDoc ' Newly created Write document to contain the names.
 Dim oText ' Document text object.
 Dim s : s = "private:factory/swriter"

 ' Find out what this document can create.
 If IsMissing(oDoc) Then
 allNames = ThisComponent.getAvailableServiceNames()
 Else
 allNames = oDoc.getAvailableServiceNames()
 End If

 ' Create a new Write document to contain the list.
 oWriteDoc = StarDesktop.loadComponentFromURL(s, "_blank", 0, Array())
 oText = oWriteDoc.getText()
 If IsMissing(nameFilter) Then
 oText.insertString (oText.End, Join(allNames, CHR$(13)), False)

235

 Else
 Dim i%
 For i = LBound(allNames) To UBound(allNames)
 If (InStr(allNames(i), nameFilter) > 0) Then
 ' Insert the text.
 oText.insertString (oText.End, allNames(i), False)

 ' Insert a new paragraph.
 oText.InsertControlCharacter(oText.getEnd(),_
 com.sun.star.text.ControlCharacter.APPEND_PARAGRAPH, False)
 End If
 Next
 End If
End Sub

 10.3.1. Setting a Read-Only Value

Some values can be set only once, so changing the value requires creating a new object. As an example,
consdier:

• A Calc sheet with combox controls (com.sun.star.awt.UnoControlComboBoxModel).

• The controls are anchored to cells.

• Each control bound to a cell.

• Write a macro that finds each combobox and bind it to the cell in which it is anchored.

The obvious way to change the bound cell is to access and change the bound cell doing something like the
following code that fails because ValueBinding is read-only:

' BoundCell is a struct, so copy the value out, change it and write it back.
oBoundCell = oControlDataModel.ValueBinding.BoundCell
oBoundCell.Column = 6
oBoundCell.Row = 6
oBoundCell.Sheet = 0
oControlDataModel.ValueBinding.BoundCell = oBoundCell

If you create a new value binding object and try to set the BoundCell property, this still fails. The value
binding object must be initialized with the bound cell value, and it cannot be changed again:

Dim arg(0) as new com.sun.star.beans.NamedValue 'not a PropertyValue, a Named Value.
Dim oCellAddress As new com.sun.star.table.CellAddress
oCellAddress.Column = 6
oCellAddress.Row=13
oCellAddress.Sheet=0
arg(0).Name = "BoundCell"
arg(0).Value = oCellAddress
oService = oDoc.createInstanceWithArguments("com.sun.star.table.CellValueBinding", arg)
oControlDataModel.ValueBinding = oService

Using CreateInstanceWithArguments allows the service to be created and values be set when the object is
initialized. You can accomplish the same thing in two steps (instead of one) by creating the instance without
arguments and calling the initialize method after creating the object.

236

 10.4. Context

OpenOffice has “things” that are available by name. For example, the type description manager and the
service manager. A context is a collection of name-value pairs that you can use to get these “things” by
name. OOo maintains a default context that is available with the function GetDefaultContext. Although a
context is required when a service is created, OOo Basic automatically uses the default context when calling
CreateUnoService; yet another reason why OOo Basic is easier to use than other languages.

Listing 215. View context element names.
MsgBox Join(GetDefaultContext().getElementNames(), CHR$(10))

 10.5. Inspecting Universal Network Objects

While writing an OOo Basic macro, I don’t always understand the values returned from internal OOo
functions — for example, inspecting the value returned by GetDefaultContext. I write test code to examine
the return values so that I can make appropriate decisions. I then frequently add more test code to further
inspect the returned object. The initial inspection uses routines that you probably know (see Table 90).

Table 90. Initial inspection routines.
Routine Comment

IsMissing(obj) Use this for optional arguments to see if they are missing.

IsNull(obj) You cannot inspect a null object, but you know that it is null.

IsEmpty(obj) You cannot inspect an empty object, but you know that it is empty.

IsArray(obj) Use array-inspection methods to learn more about the array.

TypeName(obj) Determine if this is a simple type such as a String or an Integer. If this is an
Object, it is probably a UNO structure or a UNO service.

IsUnoStruct(obj) Determine if this is a UNO structure.

The code in Listing 216 demonstrates an initial use of the functions in Table 90.

Listing 216. Inspect the TextTables object on the current document.
Dim v
v = Thiscomponent.getTextTables()
Print IsObject(v) 'True
Print IsNull(v) 'False
Print IsEmpty(v) 'False
Print IsArray(v) 'False
Print IsUnoStruct(v) 'False
Print TypeName(v) 'Object
MsgBox v.dbg_methods 'This property is discussed later

If the returned object has a type name of Object and it isn’t a UNO structure, it is probably a UNO service.
Use the HasUnoInterfaces function to determine if a UNO object supports a set of interfaces. The first
argument is the object to test. The arguments following the first are a list of interface names. If all of the
listed interfaces are supported, the function returns True, otherwise it returns False. More than one interface
may be checked at the same time.

HasUnoInterfaces(obj, interface1)
HasUnoInterfaces(obj, interface1[, interface2[, interface3[, ...]]])

To distinguish between a UNO structure, an arbitrary object, and a UNO service, first check to see if the
variable is an object. This is easily done using the TypeName function. If the TypeName contains the word

237

Object, then you know it’s an object of some sort. The next step is to see if the object is a UNO structure, by
using the function IsUnoStruct. Finally, if the object supports an interface (any interface will do), you know
it’s a UNO service. Every interface is derived from com.sun.star.uno.XInterface, so it suffices to see if the
object supports the XInterface interface. The code in Listing 217 uses the OOo Basic variable
ThisComponent, which represents the current document.

Listing 217. Use HasUnoInterfaces and IsUnoStruct to determine the UNO type.
Dim aProp As New com.sun.star.beans.PropertyValue
Print IsUnoStruct(aProp) 'True
Print HasUnoInterfaces(aProp, "com.sun.star.uno.XInterface") 'False
Print IsUnoStruct(ThisComponent) 'False
Print HasUnoInterfaces(ThisComponent, "com.sun.star.uno.XInterface") 'True

TIP If the first argument to the function HasUnoInterfaces is not an object, a run-time error occurs. The object
may be null, but it must be an object. If the argument is a variant, it must contain an object; it cannot be
empty.

Most UNO services also support the com.sun.star.lang.XServiceInfo interface, which allows you to ask the
object what services it supports (see Table 91).

Table 91. XServiceInfo methods.
Method Description

getImplementationName() Returns a string that uniquely identifies the implementation of the service. For
example, SwXTextDocument is the name of a Writer text document.

getSupportedServiceNames() Return a string array of services that the object supports.

supportsService(serviceName) Return True if the object supports the service name.

OOo supports different types of documents, such as Writer (word processing) and Calc (spreadsheet). Each
document type supports at least one service that is supported only by that document type (see Table 92). You
can determine the document type by checking if it supports one of these services. You can also use the
method getImplementationName(), as shown in Table 91.

The code in Listing 218 demonstrates how to verify that a variable references a Writer document. If the
argument vDoc does not support the XServiceInfo interface, however, a run-time error occurs because the
SupportsService method is not implemented. Use appropriate error handling if this is required, as shown in
Listing 219; this is used in Listing 227. If the argument is missing, the current document is used. If an error
occurs or a recognized service is not supported, the text “unknown” is returned.

Table 92. Unique service names based on document type.
Document Type Service

Drawing com.sun.star.drawing.DrawDocument

Writer com.sun.star.text.TextDocument

Writer HTML com.sun.star.text.WebDocument

Calc com.sun.star.sheet.SpreadsheetDocument

Math com.sun.star.formula.FormulaProperties

Presentation com.sun.star.presentation.PresentationDocument

Base com.sun.star.sdb.OfficeDatabaseDocument

Base Table com.sun.star.sdb.DataSourceBrowser

238

Document Type Service

Basic IDE com.sun.star.script.BasicIDE

Listing 218. Verify that the document is a Writer document.
Sub DoSomethingToWriteDocument(vDoc)
 If NOT vDoc.supportsService("com.sun.star.text.TextDocument") Then
 MsgBox "A Writer document is required", 48, "Error"
 Exit Sub
 End If
 REM rest of the subroutine starts here
End Sub

Listing 219. Determine a document's type.
Function getDocType(Optional vDoc) As String
 On Error GoTo Oops
 If IsMissing(vDoc) Then vDoc = ThisComponent
 If vDoc.SupportsService("com.sun.star.sheet.SpreadsheetDocument") Then
 getDocType = "calc"
 ElseIf vDoc.SupportsService("com.sun.star.text.TextDocument") Then
 getDocType = "writer"
 ElseIf vDoc.SupportsService("com.sun.star.drawing.DrawingDocument") Then
 getDocType = "draw"
 ElseIf vDoc.SupportsService(_
 "com.sun.star.presentation.PresentationDocuments") Then
 getDocType = "presentation"
 ElseIf vDoc.SupportsService("com.sun.star.formula.FormulaProperties") Then
 getDocType = "math"
 ElseIf vDoc.SupportsService("com.sun.star.sdb.OfficeDatabaseDocument") Then
 getDocType = "base"
 Else
 getDocType = "unknown"
 End If
Oops:
 If Err <> 0 Then getDocType = "unknown"
 On Error GoTo 0 'Turn off error handling AFTER checking for an error
End Function

Some document types cannot be easily distinguished; for example, an XForms document and a Master
document both support the same services as a regular text document. All of the Write based documents
support the service com.sun.star.text.GenericTextDocument, and all of the office type documents support the
service com.sun.star.document.OfficeDocument.

When I want to know about an interface or service, the first place that I look is online for the official
documentation. Unfortunately, only a partial picture is easily produced (for the TextCursor service, see
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html). There are some issues:

1) The documentation does not present a unified picture, you must follow many links to determine what
the object can do. All supported and optional interfaces are listed, but you must inspect each
interface to know what each one does.

2) Each interface has its own page. If an interface is derived from another, you must look at another
page to see the definition of the parent interface.

239

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html

3) You don’t know if the optional items are supported for a specific object instance without inspecting
the object.

TIP Use Google to search for “site:api.openoffice.org TextCursor” to quickly find the documentation for the
TextCursor service.

TIP http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html lists all of the services and
interfaces at the com.sun.star.text level.

Most UNO services contain the properties dbg_properties, dbg_methods, and dbg_supportedInterfaces. Each
of these properties is a string that contains a list of the supported properties, methods, or supported
interfaces. Each string starts with text similar to “Properties of Object "ThisComponent":”. The individual
items are separated by the delimiter as shown in Table 93. Sometimes there are extra spaces following the
delimiter and sometimes there are extra new-line characters — CHR$(10).

Table 93. UNO “dbg_” properties.
Property Delimiter Description

dbg_properties “;” All properties supported by the object.

dbg_methods “;” All methods supported by the object.

dbg_supportedInterfaces Chr$(10) All interfaces supported by the object.

The code in Listing 220 provides an easy method to see what an object supports. Sometimes, however, too
many items are displayed and portions of the dialog do not fit on the screen. To avoid this problem, the code
in Listing 221 splits the list into smaller, easily managed chunks. Figure 74 is only one of the many dialogs
that are displayed by the macro in Listing 221. Be warned, the dialogs will not fit on the screen, so, just
press enter to close each dialog.

Listing 220. The “dbg_” properties return useful information.
MsgBox vObj.dbg_properties
MsgBox vObj.dbg_methods
MsgBox vObj.dbg_supportedInterfaces

Listing 221. Display information from one of the debug properties.
Sub ExampleDisplayDbgInfoStr()
 Dim vObj
 vObj = ThisComponent
 DisplayDbgInfoStr(vObj.dbg_properties, ";", 40, "Properties")
 DisplayDbgInfoStr(vObj.dbg_methods, ";", 40, "Methods")
 DisplayDbgInfoStr(vObj.dbg_supportedInterfaces, CHR$(10), 40, "Interfaces")
End Sub

Sub DisplayDbgInfoStr(sInfo$, sSep$, nChunks, sHeading$)
 Dim aInfo() 'Array to hold each string
 Dim i As Integer 'Index variable
 Dim j As Integer 'Junk integer variable for temporary values
 Dim s As String 'holds the portion that is not completed
 s = sInfo$
 j = InStr(s, ":") 'Initial colon
 If j > 0 Then Mid(s, 1, j, "") 'Remove portion up to the initial colon
 Do

240

http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html

 aInfo() = Split(s, sSep$, nChunks) 'Split string based on delimiter.
 s = aInfo(UBound(aInfo())) 'Grab the last piece. Contains
 If InStr(s, sSep$) < 1 Then 'the rest if there were too many.
 s = "" 'If there were not, then clear s.
 Else 'If there was a delimiter then
 ReDim Preserve aInfo(nChunks - 2) 'change array dimension to
 End If 'remove the extra last piece.
 For i = LBound(aInfo()) To UBound(aInfo())'Look at each piece to remove
 aInfo(i) = Trim(aInfo(i)) 'leading and trailing spaces.
 j = InStr(aInfo(i), CHR$(10)) 'Some have an extra
 If j > 0 Then Mid(aInfo(i), j, 1, "") 'new line that should be removed.
 Next
 MsgBox Join(aInfo(), CHR$(10)), 0, sHeading$
 Loop Until Len(s) = 0
End Sub

When a type is included in one of the “dbg_” properties, it is preceded by the text “Sbx”, as shown in Figure
74. These names starting with Sbx correspond to the internal names used by OOo Basic.

TIP A complete object browser is presented later that demonstrates all of these concepts (see section 18.5 The
object inspector example).

TIP A popular object browser, called Xray described at the following link:
http://wiki.openoffice.org/wiki/Extensions_development_basic

241

http://wiki.openoffice.org/wiki/Extensions_development_basic

Figure 74. A few properties in a Writer document; one dialog of many displayed.

 10.6. Using the type description manager

The TypeDescriptionManager manages type descriptions and acts as a central access point for every type
description. This object is available from the default context as a singleton. Creating the object directly does
not provide a usable object

CreateUnoService("com.sun.star.reflection.TypeDescriptionManager")

I created a usable object using the accepted method (shown shortly), and even when using that type directly,
it too failed.

CreateUnoService("com.sun.star.comp.stoc.TypeDescriptionManager")

Get the type description manager from the default context; see section 10.4 Context, which also shows how
to enumerate all of the singleton objects available.

Function GetTypeDescriptionManager()
 Dim sTDMName$ ' Name of the type description manager.
 sTDMName = "/singletons/com.sun.star.reflection.theTypeDescriptionManager"
 GetTypeDescriptionManager() = GetDefaultContext().getValueByName(sTDMName)
End Function

The following method enumerates all “things” in the com.sun.star.awt module.

242

Listing 222. Enumerate types in a module.
Sub EnumerateTypesTest
 Dim oTDM ' Type Description Manager.
 Dim oTDE ' Type Description Enumerations.
 Dim oTD ' One Type Description.
 Dim typeArray ' Types for which descriptions are returned.
 Dim s$ ' Utility string variable.

 REM All supported types.
 typeArray = Array(com.sun.star.uno.TypeClass.VOID, _
 com.sun.star.uno.TypeClass.CHAR, _
 com.sun.star.uno.TypeClass.BOOLEAN, _
 com.sun.star.uno.TypeClass.BYTE, _
 com.sun.star.uno.TypeClass.SHORT, _
 com.sun.star.uno.TypeClass.UNSIGNED_SHORT, _
 com.sun.star.uno.TypeClass.LONG, _
 com.sun.star.uno.TypeClass.UNSIGNED_LONG, _
 com.sun.star.uno.TypeClass.HYPER, _
 com.sun.star.uno.TypeClass.UNSIGNED_HYPER, _
 com.sun.star.uno.TypeClass.FLOAT, _
 com.sun.star.uno.TypeClass.DOUBLE, _
 com.sun.star.uno.TypeClass.STRING, _
 com.sun.star.uno.TypeClass.TYPE, _
 com.sun.star.uno.TypeClass.ANY, _
 com.sun.star.uno.TypeClass.ENUM, _
 com.sun.star.uno.TypeClass.TYPEDEF, _
 com.sun.star.uno.TypeClass.STRUCT, _
 com.sun.star.uno.TypeClass.UNION, _
 com.sun.star.uno.TypeClass.EXCEPTION, _
 com.sun.star.uno.TypeClass.SEQUENCE, _
 com.sun.star.uno.TypeClass.ARRAY, _
 com.sun.star.uno.TypeClass.INTERFACE, _
 com.sun.star.uno.TypeClass.SERVICE, _
 com.sun.star.uno.TypeClass.MODULE, _
 com.sun.star.uno.TypeClass.INTERFACE_METHOD, _
 com.sun.star.uno.TypeClass.INTERFACE_ATTRIBUTE, _
 com.sun.star.uno.TypeClass.UNKNOWN, _
 com.sun.star.uno.TypeClass.PROPERTY, _
 com.sun.star.uno.TypeClass.CONSTANT, _
 com.sun.star.uno.TypeClass.CONSTANTS, _
 com.sun.star.uno.TypeClass.SINGLETON)

 oTDM = GetTypeDescriptionManager()

 Dim sBaseName$: sBaseName = "com.sun.star.awt"

 ' Change com.sun.star.reflection.TypeDescriptionSearchDepth.ONE
 ' to com.sun.star.reflection.TypeDescriptionSearchDepth.INFINITE
 ' to traverse more than a single level.
 oTDE = oTDM.createTypeDescriptionEnumeration(sBaseName, _
 typeArray, _
 com.sun.star.reflection.TypeDescriptionSearchDepth.ONE)

243

 While oTDE.hasMoreElements()
 oTD = oTDE.nextTypeDescription()
 s$ = s & oTD.Name & CHR$(10)
 Wend
 MsgBox s
End Sub

To get the information on a specific fully qualified type, use the following macro (adapted from an example
by Bernard Marcelly):

Listing 223. Get object description from a fully qualified name.
Function GetOOoConst(constString)
 Dim sTDMName$
 Dim oTDM

 sTDMName = "/singletons/com.sun.star.reflection.theTypeDescriptionManager"
 oTDM = GetDefaultContext().getValueByName(sTDMName)

 If oTDM.hasByHierarchicalName(constString) Then
 GetOOoConst = oTDM.getByHierarchicalName(constString)
 Else
 MsgBox "Unrecognized name : " & constString, 16, "OOo API constant or enum"
 End If
End Function

The method is usable to obtain constant and enumeration values from a text string

Print GetOOoConst("com.sun.star.awt.FontSlant.ITALIC")

This can also return an object that describes the type. This can be used to enumerate the values and the
strings.

Listing 224. Inspect enumerations.
Sub EnumerateEnumerations(sName$)
 Dim oTD ' One Type Description.
 Dim oTDE ' Element enumeration
 Dim s$ ' Utility string variable.
 Dim sNames
 Dim lValues
 Dim i As Long
 Dim iCount As Integer

 oTD = GetOOoConst(sName)
 If IsNull(oTD) OR IsEmpty(oTD) Then
 Exit Sub
 End If

 If HasUnoInterfaces(oTD, "com.sun.star.reflection.XEnumTypeDescription") Then

 'MsgBox Join(oTD.getEnumNames(), CHR$(10))
 sNames = oTD.getEnumNames()
 lValues = otd.getEnumValues()
 For i = LBound(sNames) To UBound(sNames)

244

 iCount = iCount + 1
 If (iCount > 40) Then
 MsgBox(s)
 s = ""
 End If
 s = s & lValues(i) & CHR$(9) & sNames(i) & CHR$(10)
 Next
 ElseIf HasUnoInterfaces(oTD, "com.sun.star.reflection.XConstantsTypeDescription") Then
 lValues = oTD.getConstants()
 For i = LBound(lValues) To UBound(lValues)
 iCount = iCount + 1
 If (iCount > 40) Then
 MsgBox(s)
 s = ""
 End If
 s = s & lValues(i).getConstantValue() & CHR$(9) & lValues(i).getName() & CHR$(10)
 Next
 Else
 'Inspect oTD
 MsgBox "Unsupported type " & sName
 Exit Sub
 End If
 MsgBox s
End Sub

This can be used to see enumerations.

EnumerateEnumerations("com.sun.star.awt.FontSlant")

This can be used to see constant groups.

EnumerateEnumerations("com.sun.star.awt.FontWeight")

 10.7. Use Object or Variant

It is almost always safe to use Object variables to hold UNO services. It is so safe, apparently, that even the
macro recorder uses Object variables to hold UNO services. Unfortunately, it is not always safe. The OOo
Developer’s Guide specifically states that Variant variables should be used instead of Object variables.
Always use the type Variant to declare variables for UNO services, not the type Object. The OOo Basic type
Object is tailored for pure OOo Basic objects — in other words, objects that can be created with the Dim As
New syntax. The Variant variables are best for UNO services to avoid problems that can result from the OOo
Basic specific behavior of the type Object. I asked Andreas Bregas (one of the primary developers for the
OOo Basic infrastructure) about this, and he said that in most cases, both work. The OOo Developer’s Guide
prefers Variant because there are some odd situations in which the usage of type Object leads to an error due
to the old Basic Object type semantics. But if a Basic program uses type Object, it will almost always run
correctly and there should be no problems. It is sufficiently rare, however, that he could not remember an
example where it was a problem. On the other hand, with OOo version 1, I experienced a problem that
corrected itself, when I changed the variable type from Variant to Object.

245

 10.8. Comparing UNO variables

Use the EqualUnoObjects function to determine if two UNO objects are the same object. UNO structures are
copied by value but UNO services are copied by reference. This means that EqualUnoObjects should always
return False for two variables that contain a structure, and it might return True for UNO services.

 Dim vObj
 vObj = ThisComponent
 Print EqualUnoObjects(vObj, ThisComponent) 'True

 Dim aProp As New com.sun.star.beans.PropertyValue
 vObj = aProp
 Print EqualUnoObjects(vObj, aProp) 'False

After using OOo for many years, I finally found a use for EqualUnoObjects. Be warned that this is an
advance topic and makes use of constructs not widely known. The problem as posed is: “When a button is
pressed in a Calc document, I want to know which cell contains the button.” Here are some bits of
information to help understand the problem:

• Each document has at least one “draw page” that contains graphical things such as images imbedded
in the document.

• You can embed controls such as a button in a document. When the button is pressed, and a macro is
called, it is trivial to get a reference to the control “data model”.

• Each control has a shape embedded in the draw page.

• Each control also has a “data model” that contains properties and other similar things.

• From a control data model I cannot easily obtain the shape or the cell containing the control.

• From a shape in a Calc document, I can easily find the cell – if the control is anchored to a cell.

My solution was to find the shape associated with a control. It is easy to find the control name, but, a control
name need not be unique. I opted to look at every shape on the draw page and then check to see if the
control associated with that shape is the same object as the control in question.

Listing 225. Find the control shape for a specific control.
Function FindCellWithControl(oDrawPage, oControl)
 Dim oShape
 Dim oAnchor
 oShape = FindShapeForControl(oDrawPage, oControl)
 If Not IsEmpty(oShape) Then
 If oShape.getAnchor().supportsService("com.sun.star.sheet.SheetCell") Then
 FindCellWithControl = oShape.getAnchor()
 End If
 End If
End Function

Function FindShapeForControl(oDrawPage, oControl)
 Dim i
 Dim oShape
 For i = 0 To oDrawPage.getCount()
 oShape = oDrawPage.getByIndex(i)
 If oShape.supportsService("com.sun.star.drawing.ControlShape") Then
 If EqualUNOObjects(oControl, oShape.Control) Then

246

 FindShapeForControl = oShape
 Exit Function
 End If
 End If
 Next
End Function

What does the event handler called by the button look like?

Sub ButtonHandler(oEvent)
 Dim oControlModel
 Dim oParent
 Dim oCell

 'Print oEvent.Source.Model.getName()
 oControlModel = oEvent.Source.Model

 oParent = oControlModel.getParent()
 Do While NOT oParent.supportsService("com.sun.star.sheet.SpreadsheetDocument")
 oParent = oParent.getParent()
 Loop

 oCell = FindCellWithControl(oParent.getCurrentController().getActiveSheet().getDrawPage(),
oControlModel)
 If NOT IsEmpty(oCell) Then
 Print "Control is in cell " & oCell.AbsoluteName
 Else
 Print "Unable to find cell with control"
 ENd If
End Sub

 10.9. Built-in global UNO variables

OOo Basic contains built-in global variables that provide quick access to frequently used components in
OOo. The most commonly used variable is ThisComponent, which refers to the currently active document.
To demonstrate using the variable ThisComponent, the macro in Listing 226 displays all of the styles in the
current document. Figure 75 is only one of the many dialogs that are displayed while the macro runs. The
fact that a style exists in a document does not imply that the style is actually used in the document.

Listing 226. Display all styles known by this document.
Sub DisplayAllStyles
 Dim vFamilies As Variant 'All the style types
 Dim vFamNames As Variant 'Array with names of the style types
 Dim vStyles As Variant 'One style type such as Number or Page Styles
 Dim vStlNames As Variant 'Array with names of specific styles
 Dim s As String 'Message to display
 Dim n As Integer 'Iterate through the style types
 Dim i As Integer 'Iterate through the styles

 vFamilies = ThisComponent.StyleFamilies 'Get the styles
 vFamNames = vFamilies.getElementNames() 'What type of styles?
 For n = LBound(vFamNames) To UBound(vFamNames) 'Look at all style types
 s = ""
 vStyles = vFamilies.getByName(vFamNames(n)) 'Get styles of a type

247

 vStlNames = vStyles.getElementNames() 'names of styles for type
 For i = LBound(vStlNames) To UBound (vStlNames) 'for all styles of a type
 s=s & i & " : " & vStlNames(i) & Chr$(13) 'Build a display string
 If ((i + 1) Mod 35 = 0) Then 'Display 35 at a time
 MsgBox s,0,vFamNames(n) 'Display them
 s = "" 'Clear string, start over
 End If
 Next i 'Next style
 If Len(s) > 0 Then MsgBox s,0,vFamNames(n) 'Leftover styles for type
 Next n 'Next style type
End Sub

Figure 75. Frame styles known by the current document.
OpenOffice is based on the same code as StarOffice, which had a desktop. All of the individual windows
were contained in this desktop. The desktop paradigm is now gone, but for legacy reasons a desktop object
still acts as the global application that ties all of the documents together. Although I frequently see code that
creates a desktop service by using the function CreateUnoService, this is not required in OOo Basic. OOo
Basic provides the variable StarDesktop, which accesses the primary desktop service in OOo. The macro in
Listing 227 demonstrates the use of the StarDesktop by traversing all of the currently open documents. The
getDocType method is defined in Listing 219.

Listing 227. Inspect each open component.
Sub IterateThroughAllDocs
 On Error Resume Next 'Ignore the non-document components
 Dim vComponents As Object 'All of the components
 Dim vDocs As Object 'Enumeration of the documents
 Dim vDoc As Object 'A single document
 Dim s As String
 GlobalScope.BasicLibraries.LoadLibrary("Tools")'Contains FileNameOutOfPath
 vComponents = StarDesktop.getComponents() 'Get all the components
 vDocs = vComponents.createEnumeration() 'Enumerate them
 Do While vDocs.hasMoreElements() 'While there are more
 vDoc = vDocs.nextElement() 'Get the next component
 s = s & getDocType(vDoc) & " " 'Add the document type
 s = s & FileNameOutOfPath(vDoc.getURL()) 'Add the file name
 s = s & CHR$(10) 'Add a new line
 Loop
 MsgBox s, 0, "Currently Open Components"

248

End Sub

TIP The primary visible windows in OOo are called “components.” Every open document is a component, as is
the Basic IDE and the Help window. In OOo, the word “component” almost always means an open
document.

While iterating through the open documents (components), you may find some unexpected documents.
These are component windows such as the Basic IDE and the Help window. The macro in Listing 227 uses
the function FileNameOutOfPath. This is another macro and is not a function that is built into OOo Basic.
This function is stored in the Strings module of the application-level Tools library. If a library is not
currently loaded, you cannot call the methods that it contains.

The GlobalScope variable references the application-level libraries and is used to load the Tools library.
Loading a library loads all of the modules in the specified library. OOo contains libraries and modules that
are not built into OOo Basic. Use the LoadLibrary method before you use the routines in the libraries.

GlobalScope.BasicLibraries.LoadLibrary("Tools")

To access the Basic libraries in the current document, either use the BasicLibraries global variable or access
the BasicLibraries property in the current document.

Print EqualUnoObjects(vObj.BasicLibraries, BasicLibraries) 'True

Use the DialogLibraries variable to access the dialog libraries in the current document. Unlike
BasicLibraries, an individual document does not contain a property called DialogLibaries to directly obtain
the dialog libraries for a specific document. You can easily obtain the dialog and Basic libraries for a specific
document through a less direct route. Each document has a LibraryContainer property.

ThisComponent.LibraryContainer.getByName("OOME_30").getModuleContainer()
ThisComponent.LibraryContainer.getByName("OOME_30").getDialogContainer()

The getByName() method on the LibraryContainer returns the named library. The getModuleContainer()
method returns the Basic container for the specified library, and the getDialogContainer() method returns the
Dialog container for the specified library. The code in Listing 228, however, uses the variables
DialogLibraries and BasicLibraries to list the number of dialogs and modules in each library in the current
document. Figure 76 shows the results.

Listing 228. View the libraries and dialogs stored in the current document.
Sub ExamineDocumentLibraries
 Dim vLibs 'Hold the library names
 Dim vMod 'Hold the modules/dialogs object
 Dim nNumMods% 'Number of modules or dialogs in a library
 Dim i% 'Scrap index variable
 Dim s$ 'Scrap string variable
 s = "*** Dialog Libs In Document" & CHR$(10) 'Initialize s
 vLibs = DialogLibraries.getElementNames() 'Library names
 For i = LBound(vLibs) To UBound(vLibs) 'Look at each name
 vMod = DialogLibraries.getByName(vLibs(i)) 'Get the dialog library
 nNumMods = UBound(vMod.getElementNames()) + 1 'How many dialogs
 s = s & vLibs(i) & " has " & nNumMods & " dialogs" 'Build string
 s = s & CHR$(10)
 Next i
 s = s & CHR$(10)
 s = s & "*** Basic Libs In Document" & CHR$(10) 'Ready for code libs
 vLibs = BasicLibraries.getElementNames() 'Library names

249

 For i = LBound(vLibs) To UBound(vLibs) 'Look at each name
 vMod = BasicLibraries.getByName(vLibs(i)) 'Get the code library
 nNumMods = UBound(vMod.getElementNames()) + 1 'Number of modules
 s = s & vLibs(i) & " has " & nNumMods & " modules" 'Build the string
 s = s & CHR$(10)
 Next i
 MsgBox s, 0, "Libraries"
End Sub

Figure 76. Dialog and Basic libraries in the current document.
To view the libraries in the application-level library container, modify the code in Listing 228. Add
GlobalScope before each occurrence of BasicLibraries and DialogLibraries.

 10.10. Creating UNO values for OOo internals

OOo Basic does an excellent job of converting between the native Basic types and the types required
internally by OOo. However, if you call a method on a Universal Network Object and OOo Basic doesn’t
know what the type should be, it may not properly convert the type. For example, the setPropertyValue
method in the XPropertySet interface accepts two arguments — a string name of the property to set and the
value to set. The type of the value to set depends on which property is set. Use the function CreateUnoValue
(shown in Listing 229) to create a reference to a Universal Network Object that contains the appropriate type
if there is a problem creating the correct type. I have never seen this happen, so don’t fret that much about
your arguments; you can almost always trust OOo Basic to do the correct thing.

Listing 229. Use CreateUnoValue to create a reference to an internal UNO value.
Dim v
v = CreateUnoValue("unsigned long", 10)
v = CreateUnoValue("string", "hello")
v = CreateUnoValue("byte", 10) 'A byte is from 0 through 255
v = CreateUnoValue("[]byte", Array(3, 2, 1)) 'You can even create arrays
'v = CreateUnoValue("Byte", 10) 'No such element exception
'v = CreateUnoValue("byte", 1000) 'Out of range exception
'v = CreateUnoValue("uint64", 10) 'No such element exception

The first argument to CreateUnoValue is the data type that should be created. The supported data types are
void, char, boolean, byte, short, unsigned short, long, unsigned long, hyper, unsigned hyper, float, double,
string, type, and any. The names are case sensitive and may be preceded by square brackets to indicate an
array. The value returned by CreateUNOValue is not usable by OOo Basic; it is only useful to the internals
of OOo. In other words, do not create a “byte” type and then expect to use it as a number.

250

Listing 230. Test types supported by CreateUnoValue.
Sub TestCreateUnoValues
 Dim typeNames
 Dim v
 Dim i%

 typeNames = Array("void", "boolean", "char", "byte", "string", _
 "short", "unsigned short", "long", "unsigned long", _
 "hyper", "unsigned hyper", "float", "double", "any")

 ' I took the list of names from
 ' cppu/source/typelib/typelib.cxx
 For i = LBound(typeNames) To UBound(typeNames)
 v = CreateUnoValue(typeNames(i), 65)
 ' You cannot directly use the value because it is an UNO type,
 ' which is only good for passing back into UNO.
 ' Things like "Print v" or "CStr(v)" will fail.
 Next
End Sub

 10.11. Finding objects and properties

OOo Basic has functions to find variables and their properties based on their names. This functionality was
initially described to me as poorly documented, possibly deprecated, and buggy — and I cannot disagree.
Use FindObject to obtain a reference to a variable with a given name, and FindPropertyObject to obtain a
reference to a named property of an object. The macro in Listing 231 demonstrates some of the
idiosyncrasies of the FindObject and FindPropertyObject functions.

TIP Do not use the functions FindObject and FindPropertyObject — they are poorly documented, buggy, and
likely to be deprecated. I only mention the methods to be complete.

Listing 231. Test the FindObject method.
Sub TestFindObject
 Dim oTst
 Dim oDoc 'Initial value is EMPTY, whis ic not null.
 Dim oLib 'Gimmicks library.
 Dim oMod 'UserFields module in the Gimmicks library.
 Dim s$

 oTst = FindObject("oDoc")

 s = "oTst = FindObject(""oDoc""), " & CHR$(10) & _
 "IsNull(oTst) = " & IsNull(oTst) & _
 " and (oTst IS oDoc) = " & (oTst IS oDoc)

 Rem Test against the current document
 oDoc = ThisComponent
 oTst = FindObject("oDoc")

 s = s & CHR$(10) & CHR$(10) & _
 "oDoc = ThisComponent" & CHR$(10) & _
 "oTst = FindObject(""oDoc"")" & CHR$(10) & _

251

 "oDoc IS ThisComponent = " & (oDoc IS ThisComponent) & CHR$(10) & _
 "oTst IS oDoc = " & (oTst IS oDoc) & CHR$(10) & _
 "oTst IS ThisComponent = " & (oTst IS ThisComponent) & _
 CHR$(10) & CHR$(10) & _
 "oTst = FindObject(""ThisComponent"")" & CHR$(10)

 REM Do it again, but do search for ThisComponent
 oTst = FindObject("ThisComponent")

 s = s & "oTst IS oDoc" & (oTst IS oDoc) & CHR$(10) & _
 "oTst IS ThisComponent = " & (oTst IS ThisComponent) & CHR$(10) & _
 "oDoc IS ThisComponent = " & (oDoc IS ThisComponent) & CHR$(10)

 REM ThisComponent has a DocumentInfo property
 oTst = FindPropertyObject(ThisComponent, "DocumentInfo")

 s = s & "IsNull(FindPropertyObject(ThisComponent, " & _
 """DocumentInfo""))" & CHR$(10) & _
 "returns " & IsNull(oTst)

 MsgBox s

 REM Load the Gimmicks library
 GlobalScope.BasicLibraries.LoadLibrary("Gimmicks")

 REM Find the library even though it is not a variable
 oLib = FindObject("Gimmicks")

 REM userfields is a module in the Gimmicks library
 oMod = FindPropertyObject(oLib, "Userfields")

 s = "And now for something different." & CHR$(10) & _
 "Find the loaded Gimmicks library" & CHR$(10) & _
 "oMod Is Gimmicks.Userfields = " & (oMod Is Gimmicks.Userfields)

 MsgBox s

 'The StartChangesUserfields function is in the module Userfields
 'Call the routine
 Print "Call 'StartChangesUserfields' directly"
 oLib.Userfields.StartChangesUserfields
 Print "Call 'StartChangesUserfields' using oMod"
 oMod.StartChangesUserfields
End Sub

If these functions serve your purposes, use them. I tried to use these to write an object inspector, but the
FindPropertyObject function did not work as I expected.

 10.12. UNO listeners

OOo uses listeners to inform other objects what it is doing. Consider a hospital worker as an analogy: Before
I (the hospital worker) do anything interesting to treat patient Paolo, I am required first to call his parents.

252

For some things the parents may say “no, you cannot do that”, and for others the parents are only informed
(status updates). This is very similar to UNO listeners. The code that you write is called the listener, and the
thing to which you listen is called the broadcaster. In the previous example, the hospital worker is the
broadcaster and Paolo’s parents are the listeners.

You can listen to the OOo objects that act as a broadcaster. The routines required to listen to a specific OOo
interface are specific to that interface. In other words, the set of subroutines and functions that can act as a
listener to printing events is different than the set of subroutines and functions that can listen to keystroke
events.

TIP If you do not implement a required method specified for the listener interface, the listener may crash OOo.

 10.12.1. Your first listener

This listener is presented with details that are explained in the next section, so, follow the easy process and
then find out why. A print listener is demonstrated in section 13.15.3 A Calc example with a Print listener.

All listeners must implement the methods in the com.sun.star.lang.XEventListener interface, which defines a
one subroutine; disposing(EventObject). The disposing method is called when the broadcaster is about to
become unavailable. In other words, the broadcaster will no longer exist and you should not use it. For
example, a print job is finished so it is no longer required or a document is closing. Listing 232 demonstrates
the most basic listener possible, XEventListener; Notice the string prefix “first_listen_” before the required
name “disposing”; I chose “first_listen_” because it is descriptive.

Listing 232. Simple listener that does nothing.
Sub first_listen_disposing(vArgument)
 MsgBox "Disposing In First Listener"
End Sub

Listing 232 is all that is required for this simple listener. Use the CreateUNOListener to create a UNO
listener that is associated with the macro in Listing 232. The first argument is the string prefix and the
second argument is the name of the service to create.

The routine in Listing 233 creates the UNO listener and associates it with the routine in Listing 232. When
the disposing method is called on vListener, it calls the routine in Listing 232.

TIP The code in Listing 233 creates a listener and then calls the objects disposing method. The listener is
implemented in Listing 232, so, this ultimately calls first_listen_disposing in Listing 232.

Listing 233. Create a listener and then call the disposing method.
Sub MyFirstListener
 Dim vListener
 Dim vEventObj As New com.sun.star.lang.EventObject
 Dim sPrefix$
 Dim sService$
 sPrefix = "first_listen_"
 sService = "com.sun.star.lang.XEventListener"
 vListener = CreateUnoListener(sPrefix, sService)
 vListener.disposing(vEventObj)
End Sub

253

 10.12.2. A complete listener: selection change listener

The two most difficult parts of creating a listener are determining which broadcaster and which listener
interface to use. The rest of the steps are easier.

1) Determine the broadcaster to use.

2) Determine the listener interface to implement.

3) Create global variables for the listener and maybe the broadcaster. Test your understanding and ask
yourself why the variable must be global before reading the tip below.

4) Determine the prefix that you will use; make it descriptive.

5) Write all of the subroutines and functions that implement the listener.

6) Create the UNO listener and save it in the global variable.

7) Register the listener with the broadcaster.

8) When finished, remove the listener from the broadcaster.

TIP Why store the listener in a global variable? There is usually a subroutine to create and register the listener
with the broadcaster and then the macro ends. The listener must exist when the macro stops running. The
only way to do this in Basic is to use a Global variable. Another macro, run later, removes the listener from
the broadcaster. The latter macro must be able to access the listener.

Knowing which broadcaster to use is not always an easy task. It requires understanding how OOo is
designed; this comes with experience. There is usually an obvious place to start looking — the current
document, available from the variable ThisComponent, contains the document data. For example, the
document accepts an XPrintJobListener to monitor how printing is progressing. Most tasks related to user
interactions — such as selecting text, moving the mouse, and entering keystrokes — all go through the
document’s controller.

After selecting the broadcaster check the broadcaster for methods with names like “add listener”. I was
asked how to prevent a dialog from closing when the user clicks on the little X icon in the upper-right corner
of a dialog. I reasoned that the dialog is probably the correct broadcaster to use, so I created a dialog and
inspected the “dbg_methods” property to see which listeners it supports (each supported listener has “set”
and “remove” methods). Another option is to determine the event type that is produced and then search for
broadcasters supporting this event type. I usually do this by searching the OOo Developer’s Guide and the
Internet; I discuss effective methods for finding information in Chapter 19, Sources of Information.

To listen for a selection change event, implement an XSelectionChangeListener and register it with the
current controller. The XSelectionChangeListener interface defines only one subroutine that must be
implemented — selectionChanged(ObjectEvent). All listeners are derived from the XEventListener so the
disposing(ObjectEvent) method must also be implemented. The fastest way to determine which subroutines
and functions must be implemented is to create an instance of the listener by using the function
CreateUNOListener and then inspect the dbg_methods property (see Listing 234 and Figure 77).

Listing 234. See the methods supported by a specific listener.
Sub InspectListenerMethods
 Dim sPrefix$
 Dim sService$
 Dim vService
 sPrefix = "sel_change_"

254

 sService = "com.sun.star.view.XSelectionChangeListener"
 vService = CreateUnoListener(sPrefix, sService)
 DisplayDbgInfoStr(vService.dbg_methods, ";", 35, "Methods")
End Sub

Figure 77. Ignore the queryInterface method.
The queryInterface method is from the interface com.sun.star.uno.XInterface, which is inherited from the
XEventListener. You can ignore this method. However, you must implement the rest of the routines. Choose
a descriptive prefix so that the code can contain more than one listener. See Listing 235.

Listing 235. Disposing and selection changed.
'All listeners must support this event
Sub sel_change_disposing(vEvent)
 msgbox "disposing the selection change listener"
End Sub

Sub sel_change_selectionChanged(vEvent)
 Dim vCurrentSelection As Object
 vCurrentSelection = vEvent.source
 Print "Number of selected areas = " &_
 vCurrentSelection.getSelection().getCount()
End Sub

The routine in Listing 236 creates a listener by calling the function CreateUnoListener. When I tested this
listener, I ran the macro and then the macro stopped running. The listener is still active and called by the
broadcaster even though the macro is no longer running. In other words, the routine in Listing 236 registers
a listener, and then it is finished. The broadcaster calls the listener when things occur. The listener must be
stored in a global variable so that it’s available later — for example, when it’s time to remove the listener
from the object or when one of the methods is called.

Listing 236. Start listening for selection change events.
Global vSelChangeListener 'Must be global
Global vSelChangeBroadCast

'Run this macro to start event intercepting
Sub StartListeningToSelChangeEvents
 Dim sPrefix$
 Dim sService$
 sPrefix = "sel_change_"
 sService = "com.sun.star.view.XSelectionChangeListener"

 REM to register for a selection change, you must register with the
 REM current controller
 vSelChangeBroadCast = ThisComponent.getCurrentController

 'Create a listener to intercept the selection change events

255

 vSelChangeListener = CreateUnoListener(sPrefix, sService)

 'Register the listener to the document controller
 vSelChangeBroadCast.addSelectionChangeListener(vSelChangeListener)
End Sub

The behavior of the code in Listing 235 is annoying. Every time a new selection is made, the code is called
and it opens a dialog on the screen. This interferes with selecting text. To remove the listener, use the code in
Listing 237.

Listing 237. Stop listening for selection change events.
Sub StopListeningToSelChangeEvents
 ' removes the listener
 vSelChangeBroadCast.removeSelectionChangeListener(vSelChangeListener)
End Sub

To test the listener:

1) Start listening.

2) Make very simple selection changes such as: Click someplace. Shift+Click to select more.
Ctrl+Click to make a second selection.

3) Stop listening.

Save all open documents while testing listeners, a simple error is likely to cause OOo to crash.

 10.13. Creating a UNO dialog

Use CreateUnoDialog to create an existing dialog. This section introduces the function CreateUnoDialog, it
does not discuss how to create dialogs. CreateUnoDialog accepts a single argument, the full path to the
dialog definition.

CreateUnoDialog(GlobalScope.BasicLibraries.LibName.DialogName)

The variable GlobalScope provides access to the application-level libraries. The Tools library contains the
dialog named DlgOverwriteAll; you must load the library containing the dialog before you can use the
dialog. You can manually load the library, or do it directly from the macro. Use Tools > Macros > Organize
Dialogs to open the Basic Macros Organizer dialog, which can be used To manually load libraries. Use the
LoadLibrary command to load a library using a macro.

GlobalScope.BasicLibraries.LoadLibrary("Tools")
CreateUnoDialog(GlobalScope.BasicLibraries.Tools.DlgOverwriteAll)

If the dialog is defined inside a document, use the BasicLibraries variable.

CreateUnoDialog(BasicLibraries.LibName.DialogName)

TIP An event means that something happened. When certain things happen, an event object is created that
describes something about what happened. The event object is sent to a listener, or what ever routine is
configured to be called when the event occurs. You can write an “event” routine that is called when
something happens; for example, when a button is pressed.

When you create a dialog, you usually write event handlers as subroutines in Basic; for example, a button in
a dialog does nothing unless events are mapped to subroutines or functions that you write. You can add a
close button to a dialog and map the button's “Execute action” event to a macro that closes the dialog. If a
macro called from an event handler accesses a running dialog, then the dialog must be stored in a variable

256

that the macro can access. I generally choose to create a private variable that holds this type of data. See
Listing 238.

Listing 238. Display information about an object using a dialog.
Private MySampleDialog
Sub DisplayObjectInformation(Optional vOptionalObj)
 Dim vControl 'Access the text control in the dialog.
 Dim s$ 'Temporary string variable.
 Dim vObj 'Object about which to display information.

 REM If vOptionalObj object is not provided, use the current document.
 If IsMissing(vOptionalObj) Then
 vObj = ThisComponent
 Else
 vObj = vOptionalObj
 End If

 REM Create the dialog and set the title
 MySampleDialog = CreateUnoDialog(DialogLibraries.OOME_30.MyFirstDialog)
 MySampleDialog.setTitle("Variable Type " & TypeName(vObj))

 REM Get the text field from the dialog
 REM I added this text manually
 vControl = MySampleDialog.getControl("TextField1")

 If InStr(TypeName(vObj), "Object") < 1 Then
 REM If this is NOT an object, simply display simple information
 vControl.setText(Dlg_GetObjTypeInfo(vObj))

 ElseIf NOT HasUnoInterfaces(vObj, "com.sun.star.uno.XInterface") Then
 REM It is an object but it is not a UNO object.
 REM Cannot call HasUnoInterfaces if it is not an UNO object.
 vControl.setText(Dlg_GetObjTypeInfo(vObj))

 Else
 REM This is a UNO object so attempt to access the "dbg_" properties
 MySampleDialog.setTitle("Variable Type " & vObj.getImplementationName())
 s = "*************** Methods **************" & CHR$(10) &_
 Dlg_DisplayDbgInfoStr(vObj.dbg_methods, ";") & CHR$(10) &_
 "*************** Properties **************" & CHR$(10) &_
 Dlg_DisplayDbgInfoStr(vObj.dbg_properties, ";") & CHR$(10) &_
 "*************** Services **************" & CHR$(10) &_
 Dlg_DisplayDbgInfoStr(vObj.dbg_supportedInterfaces, CHR$(10))
 vControl.setText(s)
 End If

 REM tell the dialog to start itself
 MySampleDialog.execute()
End Sub

257

TIP Store the dialog in a private variable declared as type Object. Use a private variable so that it doesn’t
needlessly affect other modules. On at least one occasion, a dialog that I created worked when it was held
in a variable declared as an Object, but failed when held in a variable declared as a Variant; so much for my
recommendation to usually a variant rather than an Object.

The macro in Listing 238 displays a dialog that displays information about the object that was passed in as
an argument. I use the HasUnoInterfaces function to see if this is a UNO service. I first check to see if the
object’s TypeName contains the text “Object”; this tells me if the object is really an object.

If InStr(TypeName(vObj), "Object") < 1 Then

If the object is not an object that supports a UNO interface, the object is inspected and information about it
displayed. Listing 239 shows the text string to do this. Figure 78 shows the results.

Listing 239. Return type information as a string.
Function Dlg_GetObjTypeInfo(vObj) As String
 Dim s As String
 s = "TypeName = " & TypeName(vObj) & CHR$(10) &_
 "VarType = " & VarType(vObj) & CHR$(10)
 If IsNull(vObj) Then
 s = s & "IsNull = True"
 ElseIf IsEmpty(vObj) Then
 s = s & "IsEmpty = True"
 Else
 If IsObject(vObj) Then s = s & "IsObject = True" & CHR$(10)
 If IsUnoStruct(vObj) Then s = s & "IsUnoStruct = True" & CHR$(10)
 If IsDate(vObj) Then s = s & "IsDate = True" & CHR$(10)
 If IsNumeric(vObj) Then s = s & "IsNumeric = True" & CHR$(10)
 If IsArray(vObj) Then
 On Local Error Goto DebugBoundsError:
 Dim i%, sTemp$
 s = s & "IsArray = True" & CHR$(10) & "range = ("
 Do While (i% >= 0)
 i% = i% + 1
 sTemp$ = LBound(vObj, i%) & " To " & UBound(vObj, i%)
 If i% > 1 Then s = s & ", "
 s = s & sTemp$
 Loop
 DebugBoundsError:
 On Local Error Goto 0
 s = s & ")" & CHR$(10)
 End If
 End If
 Dlg_GetObjTypeInfo = s
End Function

Figure 78. The variable is an array of strings

258

If the first argument supports a UNO interface, the “dbg_” properties are used to display all of the methods,
properties, and services supported by this object (see Listing 240 and Figure 79). This is very similar to the
code in Listing 221, except that it returns a string rather than displaying a series of simple dialogs. This is an
excellent way to quickly see what methods, properties, and interfaces an object supports. Notice also that the
variable type is displayed in the upper-left corner of the dialog.

Listing 240. Convert the debug string into one string with new line characters.
Function Dlg_DisplayDbgInfoStr(sInfo$, sSep$) As String
 Dim aInfo() 'Array to hold each string
 Dim i As Integer 'Index variable
 Dim j As Integer 'Junk integer variable for temporary values
 Dim s As String 'holds the portion that is not completed
 s = sInfo$
 j = InStr(s, ":") 'Initial colon
 If j > 0 Then Mid(s, 1, j, "") 'Remove portion up to the initial colon
 aInfo() = Split(s, sSep$) 'Split string based on delimiter
 For i = LBound(aInfo()) To Ubound(aInfo()) 'Look at each piece to remove
 aInfo(i) = Trim(aInfo(i)) 'leading and trailing spaces
 j = InStr(aInfo(i), CHR$(10)) 'Some have an extra
 If j > 0 Then Mid(aInfo(i), j, 1, "") 'new line that should be removed
 Next
 Dlg_DisplayDbgInfoStr = Join(aInfo(), CHR$(10))
End Function

Figure 79. The variable is a Writer document.

259

 10.14. Conclusion

The subroutines and functions supplied with OOo Basic support a wide range of operations that are required
to access the internals of OOo. Use the methods presented in this chapter to inspect and use the UNO
services. This chapter examined the fundamentals for creating UNO listeners. UNO listeners provide basic
system functionality, and new UNO listeners extend this functionality to give the programmer a great deal of
control over system applications and behavior. Any UNO listener listens to one or more broadcasters,
providing the capability to respond to system events that are communicated across applications.

260

 11. The Dispatcher
This chapter builds on previous coverage of the OpenOffice.org paradigm and then introduces the
dispatcher. The dispatcher provides a simple mechanism for invoking internal functionality with limited
knowledge of how the internals work, but it is considered the least-favored way of controlling
OpenOffice.org.

 11.1. The environment

OpenOffice.org separates a component’s (document's) functionality into the model, the controller, and the
frame.

FRAME
Combines the pieces; it contains a model’s controller and knows all about the display window. The
frame does not, however, have any display window functionality; the frame just knows that display
windows exist.

Send a dispatch to the frame, because it controls things and knows how to route a dispatch.

Model
Consists of the document data and the methods to
change the data.

You can update data directly using the model.

Controller
Aware of the current view and the data; it
manipulates the document while receiving
input from the user interface.

The controller knows things like what is
selected and is able to select things.

TIP Component almost always means an open document, but other windows are also components; for example,
the Basic IDE and the help window.

 11.1.1. Two different methods to control OOo

The most versatile method to manipulate an OOo document is to get the internal UNO objects and
manipulate them. Using the model provides significant control, but you must understand much about the
different services and interfaces.

Another method, which requires very little understanding of the OOo internals, is to use a UNO dispatcher.
The dispatcher accepts a command such as “.uno:Undo” and takes care of the rest of the details. The frame
provides the required dispatchers to perform the work. For simplicity, think of issuing a dispatch as very
similar to selecting an action from the menu.

Although direct control using UNO services provides the most control and versatility, some operations are
much easier to perform using the dispatcher; sometimes a dispatcher is the only way to accomplish a task.
For example, the dispatcher is the best solution for handling the clipboard. Even the macro recorder
performs almost all tasks using a dispatcher.

261

Three things are required to accomplish tasks using a dispatcher: (1) the command to dispatch, (2)
arguments that control the dispatch, and (3) an object capable of performing the dispatch (a dispatch
provider, which is usually a frame). Each document has a controller that, loosely speaking, acts as the
interface between the outside world and the document. For example, use the current controller to select text,
find the current cursor location, or determine which sheet is active in a spreadsheet. The current controller
can also return the frame of the document, which supports the dispatch command.

Listing 241. The DispatchHelper service greatly simplifies executing dispatches.
oDispHelper = createUnoService("com.sun.star.frame.DispatchHelper")

The dispatch helper implements the function executeDispatch, which implements most of the functionality
required to perform a dispatch. Table 94 contains a list of the arguments supported by the executeDispatch
method.

While executing a dispatch, as discussed here, you cannot dispatch a command to a frame based on its name
— either leave the target frame empty or enter “_self”. It is also, therefore, not important to use anything
other than zero, or omit the argument completely, for the search flag. Attempting to specify another frame
results in a run-time error (it seems silly to me that the arguments exist if they are not usable1).

Table 94. Arguments to executeDispatch.
Argument Description

XDispatchProvider Dispatch provider that performs the dispatch.

URL String The command to dispatch, as a string.

Target Frame String Identifies the frame that will receive the dispatch. Use an empty string or “_self”
to specify
the current frame (any other value is invalid).

long Optional search flags that indicate how to find the target frame. Use zero or blank
(see Listing 242), because it is not supported.

PropertyValue() Optional arguments that are dependent on the implementation.

Listing 242. Execute the “undo” dispatch.
Sub NewUndo
 Dim oDispHelper as object
 Dim oProvider As Object
 oProvider = ThisComponent.CurrentController.Frame
 oDispHelper = createUnoService("com.sun.star.frame.DispatchHelper")
 oDispHelper.executeDispatch(oProvider,".uno:Undo", "", , Array())
End Sub

The dispatch commands have both a name and a number, called a “slot.” Although a dispatch can be made
based on either, the developers told me that the slot number may change in the future so it is safer to use the
name. If you must use a slot, the Tools library contains a subroutine called DispatchSlot, which performs a
dispatch based on a slot number alone.

Listing 243. Dispatch to a numeric slot.
'Include this library to use the DispatchSlot command.
GlobalScope.BasicLibraries.LoadLibrary("Tools")
DispatchSlot(5301) 'Load the About dialog, same as ".uno:About"

1 I have not verified that a named frame does not work in OOo 3.3, but it did fail when I tested around version 2.0.

262

TIP You cannot call a routine in a library unless the library is loaded. You can load a library manually from the
Macro dialog and you can load it using the LoadLibrary command as shown in Listing 243. The Tools
library included with OOo contains the DispatchSlot subroutine.

Some dispatch commands require arguments. The example in Listing 244 perform a dispatch with
arguments. The GoToCell command needs to know which cell to go to. This macro moves the current cursor
to the cell B3 in a spreadsheet document.

Listing 244. Dispatch commands can use arguments.
Dim args2(0) as new com.sun.star.beans.PropertyValue
args2(0).Name = "ToPoint"
args2(0).Value = "B3" ' position to B3
Dim oDispHelper as object
Dim oProvider As Object
oProvider = ThisComponent.CurrentController.Frame
oDispHelper = createUnoService("com.sun.star.frame.DispatchHelper")
oDispHelper.executeDispatch(oProvider, ".uno:GoToCell", "", 0, args2())

 11.1.2. Finding dispatch commands

A complete list of dispatch commands is tricky to find. Previously, I assembled a complete list of all
supported dispatch commands, but, the list changes and it is not clear to me that it is of much user. As such, I
decided to tell you how to find the list on your own. If there is a demand for it, I may be convinced to
compile a new list. Thanks to Ariel Constenla Haile for this information.

Use the WIKI

http://wiki.services.openoffice.org/wiki/Framework/Article/OpenOffice.org_3.x_Commands contains a list
of commands and slots. Clearly some commands are missing, such as “.uno:ObjectTitleDescription”, but the
list is fairly complete.

Probe the interface

The following macro uses the UICommandDescription service to enumerate the supported modules. A new
Calc document is created and a sheet is created for each module. The commands supported by the module
are placed on the sheet. Note that the macro takes a while to run because there is a lot of data to process.

Listing 245. Get commands from the ModuleManager.
Sub Print_All_Commands
 ' Create a new Calc document to hold the dispatch commands
 Dim oDoc As Object
 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())

 Dim oSheets As Object : oSheets = oDoc.getSheets()

 'The UICommandDescription service provides access to the user interface commands that are
 'part of OpenOffice.org modules, like Writer or Calc.
 Dim oUICommandDescription As Object
 oUICommandDescription = CreateUnoService("com.sun.star.frame.UICommandDescription")

 'Identify office modules and provide read access to the configuration of office modules.
 Dim oModuleIdentifier As Object

263

http://wiki.services.openoffice.org/wiki/Framework/Article/OpenOffice.org_3.x_Commands

 oModuleIdentifier = CreateUnoService("com.sun.star.frame.ModuleManager")

 Dim oModuleUICommandDescription As Object, aModules$(),aCommand
 Dim aCommands$()
 Dim n&, i&

 ' Get a list of module names such as "com.sun.star.presentation.PresentationDocument"
 ' Create a sheet for each module.
 aModules = oModuleIdentifier.getElementNames()
 For n = 0 To UBound(aModules)
 oModuleUICommandDescription = oUICommandDescription.getByName(aModules(n))

 ' Get the commands supported by this module.
 ReDim aCommands$()
 aCommands = oModuleUICommandDescription.getElementNames()

 If n <= UBound(oSheets.getElementNames()) Then
 oSheets.getByIndex(n).setName(aModules(n))
 Else
 oSheets.insertNewByName(aModules(n),n)
 End If

 oSheets.getCellByPosition(0, 0, n).getText().setString("Command")
 oSheets.getCellByPosition(1, 0, n).getText().setString("Label")
 oSheets.getCellByPosition(2, 0, n).getText().setString("Name")
 oSheets.getCellByPosition(3, 0, n).getText().setString("Popup")
 oSheets.getCellByPosition(4, 0, n).getText().setString("Property")

 For i = 0 To UBound(aCommands)
 aCommand = oModuleUICommandDescription.getByName(aCommands(i))

 Dim sLabel$, sName$, bPopup as Boolean, nProperty&, k%
 For k = 0 To UBound(aCommand)
 If aCommand(k).Name = "Label" Then
 sLabel = aCommand(k).Value
 ElseIf aCommand(k).Name = "Name" Then
 sName = aCommand(k).Value
 ElseIf aCommand(k).Name = "Popup" Then
 bPopup = aCommand(k).Value
 ElseIf aCommand(k).Name = "Property" Then
 nProperty = aCommand(k).Value
 End If
 Next

 oSheets.getCellByPosition(0, i+1, n).getText().setString(aCommands(i))
 oSheets.getCellByPosition(1, i+1, n).getText().setString(sLabel)
 oSheets.getCellByPosition(2, i+1, n).getText().setString(sName)
 If bPopup Then
 oSheets.getCellByPosition(3, i+1, n).getText().setString("True")
 Else
 oSheets.getCellByPosition(3, i+1, n).getText().setString("False")
 End If
 oSheets.getCellByPosition(4, i+1, n).getText().setString(CStr(nProperty))

264

 Next

 Dim oColumns as Object
 oColumns = oSheets.getByIndex(n).getColumns()
 Dim j%
 For j = 0 To 4
 oColumns.getByIndex(j).setPropertyValue("OptimalWidth", True)
 Next
 Next
End Sub

XDispatchInformationProvider constructs a list of dispatch commands as returned by the current controller
and displays the list in a Calc document.

Listing 246. Get commands from the current controller.
Sub XDispatchInformationProvider
 Dim oDoc As Object
 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())

 Dim oSheet As Object : oSheet = oDoc.getSheets().getByIndex(0)
 oSheet.getCellByPosition(0, 0).getText().setString("Group")
 oSheet.getCellByPosition(1, 0).getText().setString("Command")

 Dim oController : oController = ThisComponent.getCurrentController()
 If IsNull(oController) Or _
 NOT HasUnoInterfaces(oController, "com.sun.star.frame.XDispatchInformationProvider") Then
 'TODO: some warning
 Exit Sub
 End If

 Dim iSupportedCmdGroups%()
 iSupportedCmdGroups = oController.getSupportedCommandGroups()

 Dim i%, j%
 Dim k%
 For i = 0 To UBound(iSupportedCmdGroups)
 Dim aDispatchInfo()
 aDispatchInfo = oController.getConfigurableDispatchInformation(iSupportedCmdGroups(i))

 For j = 0 To UBound(aDispatchInfo)
 Dim aDispatchInformation
 aDispatchInformation = aDispatchInfo(j)
 k = k + 1
 oSheet.getCellByPosition(0, k).getText().setString(iSupportedCmdGroups(i))
 oSheet.getCellByPosition(1, k).getText().setString(aDispatchInformation.Command)
 Next
 Next
End Sub

I exchanged email with a developer who expressed doubts as to the completeness and accuracy of the
returned list; because the Bibliographic commands provided by the UICommandDescription included
commands such as “.uno:ArrowShapes”, which is nonsensical in this context.

265

Read source code

SFX2 based components share a common base class for their Controller object implementation,
SfxBaseController. For modules based on SFX2, it is possible to obtain the dispatches as well as the
arguments by parsing the SDI files inside every sfx2 based module (look at the folder <module>/sdi/); or
even parse the header files generated in the build environment. Consider files with names such as
sfxslots.hxx, svxslots.hxx, scslots.hxx, sdslots.hxx, swslots.hxx, basslots.hxx, and smslots.hxx.

For new modules it may be easier to just browse the source code; for example, in chart2:

• chart2/source/controller/main/ChartController.cxx

• chart2/source/controller/main/DrawCommandDispatch.cxx

• chart2/source/controller/main/ShapeController.cxx

TIP Dispatch command names are case sensitive.

 11.2. Writing a macro using the dispatcher

When you can’t find a method to accomplish a task using the UNO API, the next choice is usually to use the
dispatcher. Macros created by the macro recorder using dispatches; use Tools | Macros | Record Macro to
start the macro recorder.

TIP Some component types do not support the macro recorder; for example, Draw.

The macro recorder has many limitations; for example, the macro recorder usually does not track what
happens when a dialog is opened. I discovered this limitation when I used the macro recorder to create a
macro to import text files. The “Text (encoded)” import filter opens a dialog and asks questions about the
imported file. The values entered in the dialog are not captured by the macro recorder.

If you desire to write a macro using the API, start by reading through the supported commands as generated
by one of the macros shown above.

The “SendOutLineToStarImpress” command creates an Impress presentation with an outline created from
the headings in the current document. No arguments are required.

Listing 247. Create an Impress document with an outline from this document.
Sub CreateOutlineInImpress
 Dim oDispHelper as object
 Dim oProvider As Object
 oProvider = ThisComponent.CurrentController.Frame
 oDispHelper = createUnoService("com.sun.star.frame.DispatchHelper")
 oDispHelper.executeDispatch(oProvider,".uno:SendOutlineToStarImpress",_
 "", , Array())
End Sub

 11.3. Dispatch failure – an advanced clipboard example

The request was easy, copy an entire Writer document to the clipboard. The macro recorder very quickly
provided a solution. Unfortunately, the macro fails in LO when called from a button added to the document;
but it works from the IDE and from AOO when called from a button. The solution is to set the focus on the
document, before executing the dispatches.

266

Listing 248. Select all and copy using dispatches.
Sub CopyToClipboard_Dispatch
 dim document as object
 dim dispatcher as object
 document = ThisComponent.CurrentController.Frame

 ' This next line was NOT added by the macro recorder.
 ' Without the next line, this fails in LO when called from a button.
 document.ContainerWindow.setFocus

 dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")
 dispatcher.executeDispatch(document, ".uno:SelectAll", "", 0, Array())
 dispatcher.executeDispatch(document, ".uno:Copy", "", 0, Array())
End Sub

The API is more stable than the dispatches and works where a dispatch may fail. Another example where the
API may be required is when the macro is invoked from OpenOffice started in headless mode; a topic not
otherwise discussed in this document.

Listing 249. Select all and copy using the API.
Sub CopyToClipboard_API()
 Dim o ' Transferable content.
 Dim oClip ' Clipboard service.
 Dim oContents
 Dim sClipName As String

 ThisComponent.CurrentController.Select(ThisComponent.Text)
 o = ThisComponent.CurrentController.getTransferable()

 sClipName = "com.sun.star.datatransfer.clipboard.SystemClipboard"
 oClip = createUnoService(sClipName)
 oContents = oClip.setContents(o, null)
End Sub

 11.4. Conclusion

The dispatch commands are powerful and require little knowledge of the internal workings of OOo.
Although some functionality, such as the Undo command, can only be used in the dispatcher, macros that
will be used for a long time are better off using the internal objects directly.

267

 12. StarDesktop
The desktop acts as the main application that controls OpenOffice.org. This chapter introduces general
techniques — such as accessing indexed objects, enumerating open documents, and loading new documents
— while discussing and demonstrating the base functionality of the Desktop object. This chapter also covers
the Desktop object and ThisComponent.

The Desktop object is a com.sun.star.frame.Desktop service, which supplies four primary functions:

1. StarDesktop acts as a frame. The desktop is the parent frame and controls the frames for all of the
documents.

2. StarDesktop acts as a desktop. The desktop is the main application with the ability to close the
documents — when the application is shut down, for example.

3. StarDesktop acts as a document loader. The role of the main application also allows the desktop to
load existing documents and create new documents.

4. StarDesktop acts as an event broadcaster. The desktop notifies existing documents (or any other
listener) of things that are happening — when the application is about to shut down, for example.

The Desktop, acting as the primary application object, is created when OOo is started. Use the globally
available variable StarDesktop to access the OOo Desktop object.

 12.1. The Frame service

The desktop is a com.sun.star.frame.Frame service (remember that an object can, and usually does,
implement more than one service at a time). For a document, the primary purpose of a frame is to act as a
liaison between the document and the visible window. For the desktop, however, the primary purpose is to
act as the root frame, which contains all other frames. A frame can hold a component and zero or more
subframes — for simplicity, consider a component to be a document. In the case of the desktop, all the other
frames are subframes of the root frame, and the component (document) is a set of data. Simply stated, each
document contains a frame that it uses to interact with the visible window, but the desktop is a frame so that
it can contain, control, and access all of the document’s frames.

The service com.sun.star.frame.Frame — Frame for short — provides numerous interesting capabilities that
are not generally useful as part of the Desktop object. For example, the Title and the StatusIndicator defined
as part of the Frame service are of no use for the Desktop object because the Desktop object does not have a
displayed window. These properties are meaningful only in a frame that contains a display window. The
desktop is a frame so that it can act as the root frame for all the other frames.

TIP Although it is possible to use the desktop as a Frame service to enumerate the contained frames, the
XDesktop interface is generally more useful to enumerate the documents rather than the frames. I usually
access frames to obtain window titles.

Use the getActiveFrame() method of the desktop to obtain the active frame (see Listing 250). The active
frame is the frame that contains the current focus. If the currently focused window is not an OOo window,
getActiveFrame returns the last OOo frame that had the focus.

Listing 250. Print the title of the current frame.
Print StarDesktop.getActiveFrame().Title

268

Use the getFrames() method to enumerate or search all of the frames contained in the desktop. The
getFrames() method returns an object that implements the com.sun.star.frame.XFrames interface. A frame
can contain other frames; the XFrames interface provides access to the contained frames.

TIP Use the full interface name to find the Web address for the API information on the XFrames interface. It is
important that you learn to find the Web pages on the API site from the full service or interface name.

 12.1.1. The XIndexAccess interface

The XFrames interface is derived from the com.sun.star.container.XIndexAccess interface. As its name
implies, this interface allows access to the contained frames using a numeric index. Numerous other
interfaces also derive from the XIndexAccess interface, allowing a simple numeric index to access the
contained elements. See Listing 251 and Figure 80. The sheets object in a Calc document allows you to
access each sheet based on the index, or the name.

TIP Learn how to use the XIndexAccess interface because OOo uses this service in numerous other places.

Listing 251. Display frame titles of open components.
Sub DisplayFrameTitles
 Dim vFrames As Variant 'All of the frames
 Dim vFrame As Variant 'A single frame
 Dim i As Integer 'Index to enumerate the frames
 Dim s As String 'Contains the string to print

 vFrames = StarDesktop.getFrames() 'Get all of the frames

 REM getCount() returns the number of contained frames
 REM If there are four frames, then i has the values 1, 2, 3, and 4
 REM the getByIndex(i) method, however, is zero based. This means
 REM that it requires the values 0, 1, 2, and 3
 For i = 1 To vFrames.getCount()
 vFrame = vFrames.getByIndex(i-1)
 s = s & CStr(i-1) & " : " & vFrame.Title & CHR$(10)
 Next
 MsgBox s, 0, "Frame Titles"
End Sub

Figure 80. Titles of top-level frames.

 12.1.2. Find frames with FrameSearchFlag constants

Use the com.sun.star.frame.FrameSearchFlag constants to search the OOo frames (see Table 95).
FrameSearchFlag constants are used to create an enumerated list of frames from the queryFrames() method

269

defined in the XFrames interface. The FrameSearchFlag constants are also used to find a frame when
loading a document and specifying which frames will receive a dispatch. In other words, you will see the
FrameSearchFlag constants again.

Table 95. com.sun.star.frame.FrameSearchFlag constants.
Name Description

0 AUTO Deprecated. Use 6 = SELF+CHILDREN.

1 PARENT Include the parent frame.

2 SELF Include this frame.

4 CHILDREN Include the child frames of this frame.

8 CREATE Create a frame if the requested frame is not found.

16 SIBLINGS Include the child frames of the parent of this frame.

32 TASKS Include all frames in all tasks in the current frames hierarchy.

23 ALL Include all frames except TASKS frames. 23 = 1+2+4+16 = PARENT + SELF + CHILDREN
+ SIBLINGS.

55 GLOBAL Include every frame. 55 = 1+2+4+16+32 = PARENT + SELF + CHILDREN + SIBLINGS +
TASKS.

The values in Table 95 are enumerated constants. OOo has enumerated values for many different purposes.
You can access all enumerated values in OOo Basic in a similar fashion. Each constant has an assigned
name, as seen in the Name column in Table 95. You can use this name by preceding it with
com.sun.star.frame.FrameSearchFlag. For example, use com.sun.star.frame.FrameSearchFlag.TASKS to use
the TASKS constant (see Listing 252). The name of a constant provides meaningful information while
reading the Basic code. Using the constant values directly, although allowed, obfuscates your code — in
other words, causes it to be less readable.

TIP Constant names are case sensitive the first time that they are used. If the two lines in Listing 252 are
switched, then a run-time error occurs because the version with the wrong case is found first.

Listing 252. Constant names are not case sensitive the second time they are used.
Print com.sun.star.frame.FrameSearchFlag.TASKS '32
Print COM.SUN.STAR.frame.FrameSearchFLAG.tasKS '32 – Works because it is already known.

The values in Table 95 are flags that may be combined. For example, the values for ALL and GLOBAL exist
only as a convenience; they are a combination of the other flags as shown in Table 95. You can create your
own values if a suitable combination is not provided. For example, to search ALL and to create a frame if it
is not found, use the value 31 = 23 + 8 = ALL + CREATE.

TIP Frame search flags are bit-flags that can be combined by using the OR operator. If you do not know what a
bit-flag is, just smile and nod.

The code in Listing 253 uses the FrameSearchFlag constants to search the frames that are children of the
Desktop object. The output from Listing 253 duplicates the output from Listing 251 by obtaining a list of all
child frames from the Desktop object. Note that the return type from the queryFrames() method is an array. I
know this because I looked at the API Web site. Although you can inspect the returned object to see what it

270

is, it isn’t possible to determine the values of the arguments to the queryFrames() method by inspection
alone.

Listing 253. Query frames to get frame titles.
Sub QueryFrames
 Dim vFrames As Variant 'All of the frames
 Dim vFrame As Variant 'A single frame
 Dim i As Integer 'Index to enumerate the frames
 Dim s As String 'Contains the string to print
 REM Call the queryFrames() method on the XFrames interface.
 REM This takes one argument, a FrameSearchFlag.
 REM This searches the children of the desktop.
 vFrames = StarDesktop.getFrames().queryFrames(_
 com.sun.star.frame.FrameSearchFlag.CHILDREN)

 For i = LBound(vFrames) To UBound(vFrames) ' The return value is an array.
 s = s & vFrames(i).Title & CHR$(10) ' Append the title and a new line.
 Next
 MsgBox s, 0, "Frame Titles" ' Display the titles.
End Sub

TIP In OOo 3.3.0, I noticed that the frame title differs for the help window when enumerated using a query. I
have not pursued exactly why.

 12.2. The XEventBroadcaster interface

When certain important events occur in OOo, the event is broadcast to all the objects that register as
listeners for a specific event — for example, to be notified before a document is closed. The
com.sun.star.document.XEventBroadcaster interface allows the desktop to act as a broadcaster.

The XEventBroadcaster interface defines the methods addEventListener() and removeEventListener() to add
and remove event listeners. These two methods are not usually used directly because methods that are
specific to the listener are typically used. For example, the Controller object contains the methods
addKeyHandler() and removeKeyHandler() to add and remove listeners for key-press events.

 12.3. The XDesktop interface

The com.sun.star.frame.XDesktop interface defines the primary functionality of the Desktop service. The
desktop contains the top-level components that can be viewed in a frame. In other words, it contains and
controls the life cycle of the OpenOffice.org documents, help window, Basic IDE, and the other component
types.

The desktop is a Frame service so that it can act as the root frame containing all the other frames. The
desktop, therefore, has access to and controls all the other frames. This control includes the ability to load
documents and the ability to close all frames and exit OOo.

 12.3.1. Closing the desktop and contained components

To close the desktop and all the contained frames, call the terminate() method. This method is not
guaranteed to close the desktop; it is merely a suggestion (or request) that you would like OOo to close.
Before closing, the desktop asks every object that asked to be notified before closing if it is OK to close. If
any listener says no, then OOo will not terminate. Every open document registers as a terminate listener and
asks you if you want to save a document if it has not yet been saved; in case you wondered how that works.

271

All the OOo document types support the com.sun.star.util.XCloseable interface. The XCloseable interface
defines the method “close(bForce As Boolean)”. If bForce is False, the object may refuse to close. If bForce
is True, the object is not able to refuse.

According to Mathias Bauer, one of the lead developers, the Desktop object does not support the XCloseable
interface for legacy reasons. The terminate() method was used before it was determined to be inadequate for
closing documents or windows. If the terminate() method was not already implemented, then the desktop
would also support the XCloseable interface.

The code in Listing 254 demonstrates the safe way to close a document using any version of OOo. If you
know that your code will run on OOo 1.1 or later, you can simply use the close() method.

Listing 254. The safe way to close a document using any version of OOo.
If HasUnoInterfaces(oDoc, "com.sun.star.util.XCloseable") Then
 oDoc.close(true)
Else
 oDoc.dispose()
End If

The code in Listing 254 assumes that the variable oDoc references an OOo document. Some component
types do not support the XCloseable interface. One example is the Basic IDE. The desktop contains methods
to enumerate the currently open components and to access the current component. These methods are
discussed shortly.

The dispose() method automatically discards a document even if it is modified, while the close() method
does not. Use setModified(False) to mark a modified document as not modified, thereby preventing the
close() method from complaining that you are closing a modified document.

 12.3.2. Enumerating components using XEnumerationAccess

Usually, a component refers to an OOo document, but it may refer to other things, such as the Basic IDE or
the included help pages. Use the getComponents() method defined in the XDesktop interface to return an
enumeration of the components controlled by the desktop. The returned object supports the interface
com.sun.star.container.XEnumerationAccess.

TIP OOo has many interfaces for returning a list of objects — some methods return an array of objects. In the
desktop, XIndexAccess is used to enumerate frames and the XEnumerationAccess interface is used to
enumerate components.

A component that is also an OOo document supports the XModel interface. The model represents the
underlying document data, so if a component doesn’t support the XModel interface, it isn’t an OOo
document. In other words, supporting the XModel interface implies that a component has data; if it doesn’t
have data, then it isn’t a document. Use the HasUnoInterfaces function to check each component to see if it
is an OOo document. To find a specific document, search all of the components and check the URL or some
other distinguishing characteristic.

It is possible that a document does not have a URL, in this case, the returned URL is an empty string. The
subroutine FileNameOutOfPath fails with an empty string; so EnumerateComponentNames checks for this
case.

Listing 255. Demonstrate how to enumerate components.
Sub EnumerateComponentNames
 Dim vComps 'Enumeration access object
 Dim vEnumerate 'Enumeration object

272

 Dim vComp 'Single component
 Dim s As String 'Display string
 Dim sURL As String 'Document URL

 REM Load the Tools library because Strings module contains
 REM the function FileNameOutOfPath()
 GlobalScope.BasicLibraries.LoadLibrary("Tools")

 vComps=StarDesktop.getComponents()'com.sun.star.container.XEnumerationAccess
 If NOT vComps.hasElements() Then 'I do not have to do this, but
 Print "There are no components" 'this demonstrates that I can
 Exit Sub
 End If

 vEnumerate = vComps.createEnumeration() 'com.sun.star.container.XEnumeration
 Do While vEnumerate.hasMoreElements() 'Are there any elements to retrieve?
 vComp = vEnumerate.nextElement() 'Get next element

 REM Only try to get the URL from document components
 REM This will skip the IDE, for example
 If HasUnoInterfaces(vComp, "com.sun.star.frame.XModel") Then
 sURL = vComp.getURL()
 If sURL = "" Then
 s = s & "<Component With No URL>" & CHR$(10)
 Else
 s = s & FileNameOutOfPath(sURL) & CHR$(10)
 End If
 End If
 Loop
 MsgBox s, 0, "Document Names"
End Sub

Figure 81, produced by Listing 6, lists the file names of all currently open documents.

Figure 81. File names of currently open documents.

 12.3.3. Current component

Use getCurrentComponent() to return the currently focused component, which is not necessarily an OOo
document. To obtain the most current document, use the globally defined variable ThisComponent.

Listing 256. ThisComponent references the current OOo document.
Print ThisComponent.getURL() 'Works from Basic IDE
Print StarDesktop.getCurrentComponent().getURL() 'Fails from Basic IDE

273

TIP StarDesktop.getCurrentComponent() returns the currently focused component. If the Basic IDE is open,
the Basic IDE component is returned. Use the globally defined variable ThisComponent to return the most
current document.

Most of the macros that I write are intended to modify the current document. Because of this, I frequently
use ThisComponent.

 12.3.4. Current component (again)

Although StarDesktop.getCurrentComponent() can be used in many situations, it is not a reliable method to
obtain the document that most recently had focus. The method getCurrentComponent() returns either the
component that currently has focus, or the component that had the focus before control was switched to a
different application. This behavior causes problems when attempting to debug Basic programs, because the
Basic IDE is the current component. It is therefore preferable to use ThisComponent rather than
StarDesktop.CurrentComponent. Forcing a new document’s window to become focused does not change the
value of ThisComponent. The value of ThisComponent is set when the macro begins running and then it is
not changed.

Listing 257. Use one of these two methods to cause oDoc2 to become the focused document.
oDoc2.CurrentController.Frame.ContainerWindow.toFront()
oDoc2.CurrentController.Frame.Activate()

TIP When a macro is called because an event occurred, ThisComponent refers to the document that produced
the event unless the macro is contained in another document. Therefore, it’s better to place global macros
that will be called from other documents inside a global library rather than inside a document.

Macros may be called when certain events occur (perhaps as a registered event handler). When a macro is
called because an event occurred, ThisComponent refers to the document that produced the event even if it
isn’t the currently focused document. The variable ThisComponent is available only from BASIC.

TIP It is possible to run a macro when no document is open; for obvious reasons, the macro must reside in the
application library rather than in a document.

 12.3.5. Current frame

Although the Frame service allows the desktop to enumerate the contained frames, it is the XDesktop
interface that defines the method getCurrentFrame(). The getCurrentFrame() method returns the frame of the
currently focused component.

TIP The component contained in the current frame may, or may not, be an OOo document.

The code in Listing 258 shows one of many things you can do with the current frame. The macro obtains the
current frame, the frame returns the current window, and then the macro reduces the size of the current
window.

Listing 258. Shrink the size of the current window by 25%
REM Shrink the current window to 75% of its current size.
Sub ShrinkWindowBy75
 Dim vFrame 'Current frame
 Dim vWindow 'container window

274

 REM And this is a struct that holds a rectangle object
 REM I could have also used a Variant or an Object to
 REM hold the return type, but I know what it is, so I
 REM defined the correct type to hold it.
 Dim vRect As New com.sun.star.awt.Rectangle

 vFrame = StarDesktop.getCurrentFrame()
 vWindow = vFrame.getContainerWindow()

 REM As a struct, the object is copied by value, not by reference.
 REM This means that I can modify vRect and it will not affect
 REM the position and size of the window.
 REM In my tests, vRect.X and vRect.Y are zero, which is wrong.
 REM vRect.Width and vRect.Height are indeed correct.
 vRect = vWindow.getPosSize()

 REM When setting the position and size, the last argument specifies
 REM which of the arguments to use.
 'com.sun.star.awt.PosSize.X Set only the X-position
 'com.sun.star.awt.PosSize.Y Set only the Y-position
 'com.sun.star.awt.PosSize.WIDTH Set only the Width
 'com.sun.star.awt.PosSize.HEIGHT Set only the Height
 'com.sun.star.awt.PosSize.POS Set only the Position
 'com.sun.star.awt.PosSize.SIZE Set only the Size
 'com.sun.star.awt.PosSize.POSSIZE Set both the Position and Size
 vWindow.setPosSize(vRect.X, vRect.Y, 3*vRect.Width/4, 3*vRect.Height/4,_
 com.sun.star.awt.PosSize.SIZE)
End Sub

 12.4. Load a document

The desktop implements the com.sun.star.frame.XComponentLoader interface. This is a simple interface to
load components from a URL. Use the method LoadComponentFromUrl() defined in the
XComponentLoader interface to load an existing document or create a new one.

com.sun.star.lang.XComponent loadComponentFromUrl(
 String aURL,
 String aTargetFrameName,
 Long nSearchFlags,
 sequence< com::sun::star::beans::PropertyValue > aArgs)

The first argument to the method LoadComponentFromUrl() specifies the URL of the document to load. To
load an existing document, provide the URL of the document. Use the function ConvertToURL to convert a
file name expressed in an operating-system-specific format to a URL.

Print ConvertToURL("c:\temp\file.txt") 'file:///c:/temp/file.txt

The URL may indicate a local file, or even a file on the Internet (see Listing 259). I recommend obtaining a
high-speed Internet connection before running this macro because it loads a 500-page document. Also, do
not run this macro unless you have OOo 3.4 or later, because when you close AndrewMacro, it will cause
OOo to crash.

Listing 259. Load document over HTTP.
Sub LoadMacroDocFromHttp
 Dim noArgs() 'An empty array for the arguments.

275

 Dim vComp 'The loaded component
 Dim sURL As String 'URL of the document to load
 sURL = "http://www.pitonyak.org/AndrewMacro.odt"
 vComp = StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, noArgs())
End Sub

OOo uses special URLs to indicate that a new document, rather than an existing document, should be
created.

Table 96. URLs for creating new documents.
URL Document Type

"private:factory/scalc" Calc document

"private:factory/swriter" Writer document

"private:factory/swriter/web" Writer HTML Web document

"private:factory/swriter/GlobalDocument" Master document

"private:factory/sdraw" Draw document

"private:factory/smath" Math formula document

"private:factory/simpress" Impress presentation document

"private:factory/schart" Chart

".component:Bibliography/View1" Bibliography — Edit the bibliography entries

".component:DB/QueryDesign"

".component:DB/TableDesign"

".component:DB/RelationDesign"

".component:DB/DataSourceBrowser"

".component:DB/FormGridView"

Database components

The macro in Listing 260 opens five new documents — each in a new window. When I last ran this in OOo
3.3, OOo seemed a bit confused as to which document should have focus.

Listing 260. Create new documents.
Sub LoadEmptyDocuments
 Dim noArgs() 'An empty array for the arguments
 Dim vComp 'The loaded component
 Dim sURLs() 'URLs of the new document types to load
 Dim sURL As String 'URL of the document to load
 Dim i As Integer
 sURLs = Array("scalc", "swriter", "sdraw", "smath", "simpress")
 For i = LBound(sURLs) To UBound(sURLs)
 sURL = "private:factory/" & sURLs(i)
 vComp = StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, noArgs())
 Next
End Sub

TIP You can also load a document from a frame.

When a component (document) is loaded, it is placed into a frame; the second argument to
LoadComponentFromUrl() specifies the name of the frame. If a frame with the specified name already
exists, the newly loaded document uses the existing frame. The code in Listing 260 demonstrates the special

276

frame name “_blank” — the special frame names are discussed shortly. Frame names that are not “special,”
specify the name of an existing frame or a new frame. If you specify a frame name, you must tell OOo how
to find the frame. The values in Table 95 enumerate valid values for the frame search flags. It used to be
possible to specify the name of the frame that will contain a document (but this has not worked since OOo
1.1.0). Here are a few items to note:

1. When a document is loaded, the frame name becomes something like “Untitled 1 – OpenOffice.org
Writer” rather than the specified name.

2. If you specify the frame name, the document will fail to load if a frame with that name does not
exist. If the frame does exist, it will load it into a new frame.

If you experiment with this, be certain to save your documents before running the macro, at least one
experiment caused the new document to load into the current frame.

Listing 261. Open a document into an existing frame.
Sub UseAnExistingFrame
 Dim noArgs() 'An empty array for the arguments
 Dim vDoc 'The loaded component
 Dim sURL As String 'URL of the document to load
 Dim nSearch As Long 'Search flags
 Dim sFName As String 'Frame Name
 Dim vFrame 'Document Frame
 Dim s As String 'Display string

 REM Search globally for this
 nSearch = com.sun.star.frame.FrameSearchFlag.GLOBAL + _
 com.sun.star.frame.FrameSearchFlag.CREATE

 REM I can even open a real file for this, but I don't know what files
 REM you have on your computer so I create a new Writer document instead
 sURL = "file:///andrew0/home/andy/doc1.odt"
 sURL = "private:factory/swriter"

 REM Create a frame with the name MyFrame rather than _default
 sFName = "MyFrame"
 vFrame = ThisComponent.CurrentController.Frame
 vDoc = vFrame.LoadComponentFromUrl(sURL, sFName, nSearch, noArgs())
 If IsNull(vDoc) Then
 Print "Failed to create a document"
 Exit Sub
 End If

 REM The name of the frame is MyFrame. Note that the name has nothing
 REM to do with the title!
 sFName = vDoc.CurrentController.Frame.Name
 s = "Created document to frame " & sFName & CHR$(10)
 MsgBox s

 REM This time, do not allow creation; only allow an existing frame
 nSearch = com.sun.star.frame.FrameSearchFlag.Global
 sURL = "file:///andrew0/home/andy/doc2.odt"
 sURL = "private:factory/scalc"
 'sFName = "doc1 – OpenOffice.org Writer"

277

 vDoc = vFrame.LoadComponentFromUrl(sURL, sFName, nSearch, noArgs())
 If IsNull(vDoc) Then
 Print "Failed to create a document"
 Exit Sub
 End If
 s = s & "Created document to frame " & sFName
 MsgBox s
End Sub

OOo uses special frame names to specify special behavior (see Table 97). Use these special frame names to
cause the specified behavior.

Table 97. Special frame names.
Frame Name Description

"_blank" Creates a new frame.

"_default" Detects an already loaded document or creates a new frame if it is not found.

"_self" Use or return this frame.

"" Use or return this frame.

"_parent" Use or return the direct parent of this frame.

"_top" Use or return the highest level parent frame.

"_beamer" Use or return a special subframe.

Although you cannot currently cause OOo to find a frame and use it, you can search for the frame with the
desired name and then use that frame to load a document into that frame; by using the frame name “_self”.

Listing 262. ReuseAFrame
Sub UseFrameSelf
 Dim noArgs() 'An empty array for the arguments
 Dim vDoc 'The loaded component
 Dim sURL As String 'URL of the document to load
 Dim nSearch As Long 'Search flags
 Dim sFName As String 'Frame Name
 Dim vFrame 'Document Frame
 Dim s As String 'Display string

 REM Search globally for this
 nSearch = com.sun.star.frame.FrameSearchFlag.GLOBAL + _
 com.sun.star.frame.FrameSearchFlag.CREATE

 REM I can even open a real file for this, but I don't know what files
 REM you have on your computer so I create a new Writer document instead
 sURL = "file:///andrew0/home/andy/doc1.odt"
 sURL = "private:factory/swriter"

 REM Create a frame with the name MyFrame rather than _default
 sFName = "MyFrame"
 vFrame = ThisComponent.CurrentController.Frame
 vDoc = vFrame.LoadComponentFromUrl(sURL, sFName, nSearch, noArgs())
 If IsNull(vDoc) Then
 Print "Failed to create a document"

278

 Exit Sub
 End If

 REM The name of the frame is MyFrame. Note that the name has nothing
 REM to do with the title!
 sFName = vDoc.CurrentController.Frame.Name
 s = "Created document to frame " & sFName & CHR$(10)
 MsgBox s

 REM This time, do not allow creation; only allow an existing frame
 sURL = "file:///andrew0/home/andy/doc2.odt"
 sURL = "private:factory/scalc"
 sFName = "_self"
 ' Get a document's frame from the document's current controller.
 vDoc = vDoc.CurrentController.Frame.LoadComponentFromUrl(sURL, sFName, nSearch, noArgs())
 If IsNull(vDoc) Then
 Print "Failed to create a document"
 Exit Sub
 End If
 s = s & "Created document to frame " & sFName
 MsgBox s
End Sub

 12.4.1. Named arguments

The final argument to the LoadComponentFromUrl() method is an array of structures of type
com.sun.star.beans.PropertyValue. Each property value consists of a name and a value. The properties are
used to pass named arguments that direct OOo when it loads the document. Table 98 contains a brief
description of the supported named arguments.

TIP Table 98 contains only named arguments that are not deprecated. The API Web site on the
com.sun.star.document.MediaDescriptor service contains a complete list of named arguments, deprecated
and otherwise. Some properties are not shown, such as Aborted, because they are set while loading; for
example, Aborted, which is set if an incorrect password is used.

Table 98. Valid named arguments for loading and storing documents.
Argument Description

AsTemplate A value of True creates a new untitled document, even if the document is not a
template.
The default loads the template document for editing.

Author Sets the current author if the component can track the author of the current
version when the document is saved.

CharacterSet Identifies the character set for single-byte characters.

Comment Similar to the Author argument, but sets the document description for version
control.

ComponentData Allows component-specific properties.

DocumentTitle Sets the Document title.

FilterData Additional properties for a filter if it is required.

FilterName Name of the filter for loading or storing the component when not using OOo
types.

279

Argument Description

FilterOptions Additional properties for a filter if it is required. These values must be strings and
must be supported by the filter. Use FilterData for non-string options.

Frame Specify the frame containing the document.

Hidden A value of False loads the document so that it is hidden. Do not do this if you
intend to
make the document visible after it is loaded.

HierarchicalDocument
Name

The hierarchical path to the embedded document from topmost container; for
example, Base forms are stored in the Base document.

InputStream You can specify an existing input stream for loading a document — for example,
if you have the document in memory and don’t want to write it to disk first.

InteractionHandler Passes an interaction handler to handle errors and obtains a password if required.

JumpMark Jumps to a marked position after loading the component. A similar thing can be
accomplished by appending a '#' and the jump mark name in the URL used to
open the document; the syntax with a '#' is not specified in most URL schemas.

MacroExecutionMode The numeric value specifies if macros are executed when the document is loaded
(see Table 99).

MediaType Specifies the MIME type of the data that will be loaded.

OpenNewView A value of True forces the component to create a new window even if the
document is already loaded. Some components support multiple views for the
same data. If the opened component does not support multiple views, a new
window is opened. It is not a view, but merely the document loaded one more
time.

OutputStream If used when storing a document (not for reading), the stream must be used to
write the data. If a stream is not provided, the loader will create a stream by itself
using the other properties.

Overwrite A value of True overwrites any existing file with the same name while saving.

Password Password for loading or storing a document. If a document that requires a
password is loaded and no password is specified, the document is not loaded.

PostData Posts data to an HTTP address and then loads the response as a document.
PostData is usually used to obtain a result from a Web form on a Web site.

Preview A value of True specifies that the document is loaded for preview. OOo may
make some optimizations when it opens a document in preview mode.

ReadOnly Opens the document as read-only. Read-only documents are not modifiable from
the user interface, but you can modify them by using the OOo API (in other
words, from a macro).

Referer A URL indicating the referrer who opened this document. Without a referrer, a
document that requires security checks is denied. (Yes, the argument name is
“Referer,” not “Referrer.”)

RepairPackage OOo documents are stored in a compressed zipped format. A value of True
attempts to recover information from a damaged ZIP file.

StartPresentation If the document contains a presentation, it is started immediately.

StatusIndicator Value is an object to use as a progress indicator as the document is loaded or
saved.

SuggestedSaveAsDir Specify the URL that is used next time SaveAs dialog is opened.

SuggestedSaveAsName Specify the suggested file name that is used next time SaveAs dialog is opened.

TemplateName Name of the template instead of the URL. Must also use the

280

Argument Description

TemplateRegionName.

TemplateRegionName Path to the template instead of the URL. Must also use the TemplateName.

Unpacked OOo stores documents in a zipped format. A value of True stores the file in a
folder if it is supported for the component type.

UpdateDocMode The numeric value specifies how the document is updated. See the API site for
the constant com.sun.star.document.UpdateDocMode.

URL Fully qualified URL of the document to load, including the JumpDescriptor if
required.

Version If versioning is supported for the component, this argument indicates the version
to load or save. The main document is loaded or saved if no version is specified.

ViewControllerName While loading a document into a frame, this specifies the name of the view
controller to create. That is, the property is passed to the document's
createViewController method. If the loaded document does not support the
XModel2 interface, the property is ignored.

ViewData The value for this argument is component specific and usually supplied by the
frame controller.

ViewId Some components support different views of the same data. The value specifies
the view to use after loading. The default is zero and is treated as the default
view.

 12.4.2. Loading a template

While loading a document using LoadComponentFromUrl(), the OOo API treats all documents the same.
You can open an OOo template for editing (changing a template and then saving it as a new template) or you
can use a template as the starting point for a new document. The named argument AsTemplate directs OOo
to open the specified document as a template rather than opening a document for editing. The macro in
Listing 263 opens a document as a template.

Listing 263. Load a document as a template.
Sub UseTemplate
 REM This is an array from 0 To 0 of type PropertyValue
 Dim args(0) As New com.sun.star.beans.PropertyValue
 Dim sURL As String 'URL of the document to load

 sURL = "file:///home/andy/doc1.ott"
 args(0).Name = "AsTemplate"
 args(0).Value = True
 StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, args())
End Sub

The method LoadComponentFromUrl() assumes that a URL is used to specify the document location; this is
not operating-system specific. Although I ran the macro in Listing 263 on my Linux computer, it will work
on a Windows computer as well. On a Windows computer, the URL usually includes the drive letter.

sURL = "file://c:/home/andy/doc1.ott"

TIP Use the functions ConvertFromURL and ConvertToURL to convert between the operating-system-specific
notation and URL notation.

281

 12.4.3. Enabling macros while loading a document

When a document that contains a macro is opened from the user interface (UI), a security dialog opens,
asking if macros should be run. When a document is loaded from a macro using the OOo API, macros are
disabled in the document. Some macros run based on events that occur in a document. If macros are
disabled in the document, you can still manually run the contained macros, but the macros that are usually
started from an event in the document will never run.

The named argument MacroExecutionMode directs OOo how to treat macros when a document is loaded.
Table 99 enumerates the valid values for the MacroExecutionMode argument.

Table 99. com.sun.star.document.MacroExecutionMode constants.
Name Description

0 NEVER_EXECUTE A macro should not be executed at all.

1 FROM_LIST Execute macros from secure list quietly.

2 ALWAYS_EXECUTE Execute any macro, macros signed with trusted certificates and
macros from secure list are executed quietly.

3 USE_CONFIG Use configuration to retrieve macro settings. In case a user
confirmation is required a dialog is output.

4 ALWAYS_EXECUTE_NO_WARN Macros are always executed without confirmation.

5 USE_CONFIG_REJECT_CONFIRMATION Use configuration to retrieve macro settings. Treat cases when user
confirmation required as rejected.

6 USE_CONFIG_APPROVE_CONFIRMATION Use configuration to retrieve macro settings. Treat cases when user
confirmation required as approved.

7 FROM_LIST_NO_WARN Execute only macros from secure list. Macros that are not from the
list are not executed.

8 FROM_LIST_AND_SIGNED_WARN Execute only macros from secure list or macros that are signed by
trusted certificates.

9 FROM_LIST_AND_SIGNED_NO_WARN Execute only macros from secure list or macros that are signed by
trusted certificates. No warning/conformation should be shown.

The macro in Listing 264 loads a document as a template and allows macros to run when the document is
loaded. This macro also demonstrates that multiple named arguments can be used simultaneously.

Listing 264. Load a document as a template and enable contained macros.
Sub UseTemplateRunMacro
 REM This is an array from 0 To 1 of type PropertyValue
 Dim args(1) As New com.sun.star.beans.PropertyValue
 Dim sURL As String 'URL of the document to load

 Print com.sun.star.document.MacroExecMode.USE_CONFIG
 sURL = "file:///home/andy/doc1.odt"
 args(0).Name = "AsTemplate"
 args(0).Value = True
 args(1).Name = "MacroExecutionMode"
 args(1).Value = com.sun.star.document.MacroExecMode.ALWAYS_EXECUTE_NO_WARN
 StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, args())
End Sub

282

 12.4.4. Importing and exporting

OpenOffice.org has a type-detection mechanism to determine a document’s type when it is loaded. This
mechanism has been reliable for the limited number of document types that I deal with daily. Sometimes,
however, you must specify the filter name when importing a document. To export a document, you must
always specify the export filter type. The code in Listing 265 opens a Microsoft Word document. In my
testing the documents opened correctly even when I did not specify the filter name.

Listing 265. Specify the filter name while loading a document.
Sub LoadDocFile
 Dim noArgs(0) As New com.sun.star.beans.PropertyValue
 Dim sURL As String
 noArgs(0).Name = "FilterName"
 noArgs(0).Value = "Microsoft Word 97/2000/XP"
 sURL = "file:///home/andy/one.doc"
 StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, noArgs())
End Sub

 12.4.5. Filter names

New filters are frequently added to OOo, so it seems silly to list the supported filters, when a macro can
retrieve the latest list. The following macro creates a new Calc document and then displays the list of
supported filters. A recorded macro is used to format the data.

The UIName is the general name; or localized name. The Name column contains the internal name to use
when specifying a filter name for import or export. The Import and Export columns identify if the filter can
be used for import or export. The Options column, indicates if options can be passed to the filter. These
options direct the filter.

The filter names are also stored in the file TypeDetection.xcu stored in the OOo configuration folders.

Listing 266. List supported filters in a Calc Sheet.
sub FiltersToCalc
 Dim oFF ' FilterFactory service
 Dim oFilterNames ' Array of filter names.
 Dim oDoc ' Document created to hold the filter names.
 Dim oSheet ' Sheet that will hold the filter information.
 Dim oCell ' Cell to update
 Dim i% ' Index Variable.
 Dim fProps() ' Properties for each filter.
 Dim fp% ' Filter property index
 Dim fpCol% ' Column for the specified filter data.
 Dim s$ ' Work string that holds some property values.
 Dim iUserData% ' For enumerating array property values.
 Dim oProp ' A single property.
 Dim oArrayData ' Array of user properties.
 Dim sPropNames(7) As String
 Dim flags As Long
 sPropNames(0) = "Name"
 sPropNames(1) = "Import"
 sPropNames(2) = "Export"
 sPropNames(3) = "Options"
 sPropNames(4) = "Visible"
 sPropNames(5) = "Flags"

283

 sPropNames(6) = "DocumentService"
 sPropNames(7) = "UIName"

 oFF = createUnoService("com.sun.star.document.FilterFactory")
 oFilterNames = oFF.getElementNames()

 ' Create a Calc doc and save the filter names to it.
 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_blank", 0, Array())
 oSheet = oDoc.getSheets().getByIndex(0)

 ' Print the filter names into a document.
 For i = LBound(oFilterNames) To UBound(oFilterNames)
 fProps() = oFF.getByName(oFilterNames(i))
 For fp = LBound(fProps) To UBound(fProps)
 oCell = oSheet.getCellByPosition(fp, i+1)
 oProp = fProps(fp)
 fpCol = FindInArrayAdd(oProp.Name, sPropNames)
 If fpCol > UBound(sPropNames) Then
 ReDim Preserve sPropNames(fpCol) As String
 sPropNames(fpCol) = oProp.Name
 End If

 oCell = oSheet.getCellByPosition(fpCol, i+1)
 If Not IsArray(oProp.Value) Then
 oCell.setString(oProp.Value)
 If oProp.Name = "Flags" Then
 flags = oProp.Value
 oCell.setString(CStr(flags) & " = " & flags_int2str(flags)
 If flags and 1 Then
 oCell = oSheet.getCellByPosition(FindInArrayAdd("Import", sPropNames), i+1)
 oCell.setString("X")
 Endif
 If flags and 2 Then
 oCell = oSheet.getCellByPosition(FindInArrayAdd("Export", sPropNames), i+1)
 oCell.setString("X")
 Endif
 If flags and 128 Then
 oCell = oSheet.getCellByPosition(FindInArrayAdd("Options", sPropNames), i+1)
 oCell.setString("X")
 Endif
 If ((flags and 4096) or (flags and 8192)) Then
 oCell = oSheet.getCellByPosition(FindInArrayAdd("Visible", sPropNames), i+1)
 oCell.setString("X")
 Endif
 End If
 ElseIf LBound(oProp.Value) <= UBound(oProp.Value) Then
 s = ""
 oArrayData = oProp.Value
 For iUserData = LBound(oArrayData) To UBound(oArrayData)
 If VarType(oArrayData(iUserData)) = 8 Then
 s = s & "(String:" & oArrayData(iUserData) & ")"
 Else
 s = s & "(" & oArrayData(iUserData).Name & ":" & oArrayData(iUserData).Value & ")"

284

 End If
 Next
 oCell.setString(s)
 End If
 Next
 Next
 For fp = LBound(sPropNames) To Ubound(sPropNames)
 oCell = oSheet.getCellByPosition(fp, 0)
 oCell.setString(sPropnames(fp))
 Next
 FinalFormat(oDoc)
End Sub

function flags_int2str(flags as long) as string
 Dim cflags as long
 Dim strval as string
 Dim curFlag As Long

 cflags = flags
strval = ""

 if cflags and &H00000001 then
 strval = strval + " Import"
 cflags = cflags-1
 endif
 if cflags and &H00000002 then
 strval = strval + " Export"
 cflags = cflags-2
 endif
 if cflags and &H00000004 then
 strval = strval + " Template"
 cflags = cflags-4
 endif
 if cflags and &H00000008 then
 strval = strval + " Internal"
 cflags = cflags-8
 endif
 if cflags and &H00000010 then
 strval = strval + " TemplatePath"
 cflags = cflags-16
 endif
 if cflags and &H00000020 then
 strval = strval + " Own"
 cflags = cflags-32
 endif
 if cflags and &H00000040 then
 strval = strval + " Alien"
 cflags = cflags-64
 endif
 if cflags and &H00000080 then
 strval = strval + " UseOptions"
 cflags = cflags-128
 endif

285

 if cflags and &H00000100 then
 strval = strval + " Default"
 cflags = cflags-256
 endif
 if cflags and &H00000200 then
 strval = strval + " Executable"
 cflags = cflags-512
 endif
 if cflags and &H00000400 then
 strval = strval + " SupportSelection"
 cflags = cflags-1024
 endif
 if cflags and &H00000800 then
 strval = strval + " MapToAppPlug"
 cflags = cflags-2048
 endif
 if cflags and &H00001000 then
 strval = strval + " NotInFileDialog"
 cflags = cflags-4096
 endif
 if cflags and &H00002000 then
 strval = strval + " NotInChooser"
 cflags = cflags-8192
 endif
 if cflags and &H00004000 then
 strval = strval + " Acynchronas"
 cflags = cflags-16384
 endif
 if cflags and &H00008000 then
 strval = strval + " Creator"
 cflags = cflags-32768
 endif
 if cflags and &H00010000 then
 strval = strval + " Readonly"
 cflags = cflags-65536
 endif
 if cflags and &H00020000 then
 strval = strval + " NotInstalled"
 cflags = cflags-131072
 endif
 if cflags and &H00040000 then
 strval = strval + " ConsultService"
 cflags = cflags-262144
 endif
 if cflags and &H00080000 then
 strval = strval + " 3rdPartyFilter"
 cflags = cflags-524288
 endif
 if cflags and &H00100000 then
 strval = strval + " Packed"
 cflags = cflags-1048576
 endif
 if cflags and &H00200000 then

286

 strval = strval + " SilentExport"
 cflags = cflags-2097152
 endif
 if cflags and &H00400000 then
 strval = strval + " BrowserPreferred"
 cflags = cflags-4194304
 endif
 if cflags and &H00800000 then
 strval = strval + " [H00800000]"
 cflags = cflags-8388608
 endif

 if cflags and &H01000000 then
 strval = strval + " [H01000000]"
 cflags = cflags-16777216
 endif

 if cflags and &H02000000 then
 strval = strval + " [H02000000]"
 cflags = cflags-33554432
 endif

 if cflags and &H10000000 then
 strval = strval + " Preferred"
 cflags = cflags-268435456
 endif

 if cflags <> 0 then
 strval = strval + " !!! ATTENTION: unsupported flag ["+cflags+"] detected !!!"
 endif

 flags_int2str = strval
end function

Function FindInArrayAdd(sName$, nameArray) As Integer
 Dim i As Integer
 For i = LBound(nameArray()) To UBound(nameArray())
 'Print nameArray(i) & " and " & sName
 If nameArray(i) = sName Then
 FindInArrayAdd = i
 Exit Function
 End If
 Next
 i = UBound(nameArray()) + 1
 FindInArrayAdd = i
End Function

sub FinalFormat(oDoc)
rem --
rem define variables
Dim document as object
Dim dispatcher as object
rem --

287

rem get access to the document
document = oDoc.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
Dim args1(0) as new com.sun.star.beans.PropertyValue
args1(0).Name = "ToPoint"
args1(0).Value = "A1"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args1())

rem --
Dim args2(1) as new com.sun.star.beans.PropertyValue
args2(0).Name = "By"
args2(0).Value = 1
args2(1).Name = "Sel"
args2(1).Value = true

dispatcher.executeDispatch(document, ".uno:GoRightToEndOfData", "", 0, args2())

rem --
Dim args3(2) as new com.sun.star.beans.PropertyValue
args3(0).Name = "FontHeight.Height"
args3(0).Value = 12
args3(1).Name = "FontHeight.Prop"
args3(1).Value = 100
args3(2).Name = "FontHeight.Diff"
args3(2).Value = 0

dispatcher.executeDispatch(document, ".uno:FontHeight", "", 0, args3())

rem --
Dim args4(0) as new com.sun.star.beans.PropertyValue
args4(0).Name = "Bold"
args4(0).Value = true

dispatcher.executeDispatch(document, ".uno:Bold", "", 0, args4())

rem --
Dim args5(0) as new com.sun.star.beans.PropertyValue
args5(0).Name = "HorizontalAlignment"
args5(0).Value = com.sun.star.table.CellHoriJustify.CENTER

dispatcher.executeDispatch(document, ".uno:HorizontalAlignment", "", 0, args5())

rem --
Dim args6(1) as new com.sun.star.beans.PropertyValue
args6(0).Name = "By"
args6(0).Value = 1
args6(1).Name = "Sel"
args6(1).Value = true

dispatcher.executeDispatch(document, ".uno:GoDownToEndOfData", "", 0, args6())

288

rem --
Dim args7(0) as new com.sun.star.beans.PropertyValue
args7(0).Name = "aExtraWidth"
args7(0).Value = 254

dispatcher.executeDispatch(document, ".uno:SetOptimalColumnWidth", "", 0, args7())

rem --
Dim args8(8) as new com.sun.star.beans.PropertyValue
args8(0).Name = "ByRows"
args8(0).Value = true
args8(1).Name = "HasHeader"
args8(1).Value = true
args8(2).Name = "CaseSensitive"
args8(2).Value = false
args8(3).Name = "IncludeAttribs"
args8(3).Value = true
args8(4).Name = "UserDefIndex"
args8(4).Value = 0
args8(5).Name = "Col1"
args8(5).Value = 7
args8(6).Name = "Ascending1"
args8(6).Value = true
args8(7).Name = "Col2"
args8(7).Value = 1
args8(8).Name = "Ascending2"
args8(8).Value = true

dispatcher.executeDispatch(document, ".uno:DataSort", "", 0, args8())
dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args1())

end sub

 12.4.6. Loading and saving documents

The desktop or a frame is used to load a document. To store a document, use the method storeToURL(),
which is implemented by the Document object. The first argument to this method is the URL to which the
document will be stored. The second argument is an array of named arguments (see Table 98). To export a
document to a different type, the FilterName must specify the document export type. The code in Listing 267
exports a Writer document to a PDF file.

Listing 267. Export the current document, assuming it is a Writer document, as PDF.
Dim args(0) as new com.sun.star.beans.PropertyValue
args(0).Name = "FilterName"
args(0).Value = "writer_pdf_Export"
ThisComponent.storeToURL("file:///test.pdf",args())

TIP Filter names are case sensitive.

Some Calc import and export filters support options; for example, DIF, dBase, and Lotus filters all use the
same filter option, a numeric index that identifies which character set to use for single-byte characters.

289

Listing 268. The DIF, dBase, and Lotus filters all use the same filter option.
Dim args(1) as new com.sun.star.beans.PropertyValue
args(0).Name = "FilterName"
args(0).Value = "dBase"
args(1).Name = "FilterOptions" 'Identify character set for single-byte chars
args(1).Value = 0 'System character set

More detailed information on CSV files is found in AndrewBase.odt.

The discussion of the CSV filter assumes familiarity with the CSV file format. If you aren’t familiar with
this format, feel free to skip this section. The Text CSV filter, unlike the dBase filter, uses a complicated
string containing five tokens. Each token can contain multiple values separated by a slash mark (/). The
tokens are then separated by a comma (,).

Listing 269. The CSV filter options are complicated.
Dim args(1) as new com.sun.star.beans.PropertyValue
args(0).Name = "FilterName"
args(0).Value = "scalc: Text - txt - csv (StarCalc)"
args(1).Name = "FilterOptions"
args(1).Value = "44,34,0,1,1/5/2/1/3/1/4/1"

The first token contains the field separators as ASCII values. For example, to specify a comma as the
delimiter, use the ASCII value 44 (see Listing 269). To specify that some fields are separated by a a space
(ASCII 32) and some are separated by a tab (ASCII 9), Listing 269 would use “32/9,34,0,1,1/5/2/1/3/1/4/1”
for the filter options.

In a CSV file, the text portions are usually surrounded by either double quotation marks (") or single
quotation marks ('). Listing 269 specifies that text portions should be surrounded by double quotation marks,
using an ASCII value of 34. If you want to use multiple text delimiters, separate them with a slash.

The third token identifies the character set to use; this is the same value used to identify the character set in
the DIF, dBase, and Lotus filters. The code in Listing 269 specifies a zero for the character set.

The fourth token identifies the first line to import — typically line one. Listing 269 specifies that the first
line of text should be input.

The last token identifies the format of each column in the CSV file. The columns can be formatted as either
delimited text (see Listing 270) or as fixed-width text (see Listing 271).

Listing 270. Delimited-text-format string for the CSV filter.
<field_num>/<format>/<field_num>/<format>/<field_num>/<format>/...

The <field_num> is an integer that identifies a field, where 1 is the leftmost field. For example, given the
fields “one”, “two”, and “three”, a field_num of 2 refers to “two”. The <format> is an integer that identifies
the format of the field (see Table 100). The code in Listing 269 specifies that fields one through four use a
format of 1, which is the standard format.

Table 100. CSV field format values.
Format Description

1 Standard

2 Text

3 MM/DD/YY

4 DD/MM/YY

5 YY/MM/DD

290

Format Description

9 Do not import; ignore this field.

10 Import a number formatted in the US-English locale regardless of the current locale.

Listing 271. Fixed-width-columns format string for the CSV filter.
FIX/<start>/<format>/<start>/<format>/<start>/<format>/...

Tell the filter that the file uses a fixed-width format by using the text “FIX” as the first portion of the last
token. Fixed-width CSV files identify fields by specifying where each field starts (see Listing 271). The
<start> value specifies the first character in a field. A start of 0 refers to the leftmost character of the text.
The <format> is an integer that identifies the format of the text (see Table 100).

 12.4.7. Error handling while loading a document

Exceptions are not thrown while loading a document; instead, errors are thrown using an interaction handler
that is passed as a named argument. Unfortunately, you cannot implement an OOo Basic interaction handler.
The OOo Developer’s Guide, however, has examples of error handlers using other languages. In other
words, in BASIC, you cannot trap errors while loading a document; the document simply fails to load and
returns null.

The Graphical User Interface (GUI) provides an interaction handler that interacts with the user. The GUI’s
interaction handler displays error messages when errors occur and prompts the user for a password if it is
required. If no handler is included as a named argument, a default handler is used. The default handler
simply ignores most errors, providing little feedback to the user.

 12.5. Conclusion

The desktop acts as the main application that controls OpenOffice.org, so when you need to obtain
something that is globally related to the documents or frames, look at the desktop. The globally available
variables StarDesktop and ThisComponent provide easy access to the OOo Desktop object and the current
document. This chapter introduced techniques for accessing containers with multiple objects. Familiarize
yourself with the basic capabilities for opening documents, for importing and exporting file types, and the
capabilities and limitations of OOo, in order to expand your ability to use and create a wide variety of file
types within the OOo environment.

291

 13. Generic Document Methods
OpenOffice.org supports six primary document types: text, spreadsheet, drawing, math, database, and
presentation. The different document types share significant functionality and interfaces, such as accessing
the document model, printing, and saving. This chapter introduces common tasks across all of the document
types.

Every document contains data that can be manipulated and printed. For example, the primary data in a
Writer document is text, but it can also contain tables and graphics. The data model consists of this
underlying data that can be manipulated independently of how it is displayed. To manipulate the data by
means of a macro, you manipulate the data model directly. Although you can use the dispatcher to indirectly
manipulate the data, the changes are still made directly to the model. A typical usage of the dispatcher is to
paste the clipboard contents into the document (see Chapter 11 The Dispatcher).

The data model contains a Controller object, which manipulates the visual presentation of the data. The
controller doesn’t change the data; it only controls how the document is presented. The controller interacts
directly with the user interface to control the location of the displayed cursor, to control which page is
displayed, and to select portions of the document. Use the controller to determine display-related
information such as the current page or the currently selected text.

TIP OOo supports a mode called “headless,” which has no startup screen, no default document,
no user interface, and supports no user interaction. (Use “soffice -?” to see a list of supported modes.) If
OOo is started in headless mode, there is no display component. Therefore, a controller is not required and
may not exist. If it’s possible for your macro to run on OOo in headless mode, you must check the
controller to see if it is null before using it.

 13.1. Service Manager

OpenOffice.org has a general global service manager, which is used to create and obtain instances of general
UNO services. A service manager accepts a string that identifies a type of object, and it returns an instance
of that object. The global service manager is made available in OOo Basic through the function
createUnoService(String). The global service manager returns general objects such as a dispatch helper or an
object for simple file access.

Listing 272. Use the global service manager.
oDispatcher = createUnoService("com.sun.star.frame.DispatchHelper")
oSimpleFileAccess = createUnoService("com.sun.star.ucb.SimpleFileAccess")

Documents are a service manager to create objects that they contain (or that are directly related to the
document); for example, a Writer document is able to create a text table or text field that can be inserted into
the document. In general, objects that were not created by a document cannot be inserted into the document.
A Writer document is unable to return global objects, and the global service manager is unable to return
objects that are then inserted into a document.

Listing 273. Use a document as a service manager.
REM Let the document create the text table.
oTable = oDoc.createInstance("com.sun.star.text.TextTable")
oTable.initialize(3, 2) 'Three rows, two columns
REM Now insert the text table at the end of the document.
oDoc.Text.insertTextContent(oDoc.Text.getEnd(), oTable, False)

292

 13.2. Services and interfaces

Think of an OOo component as a window owned by the desktop. Use the Desktop object to enumerate the
components, including documents, the Basic IDE and the help window along with the actual documents. If a
component supports the com.sun.star.frame.XModel interface, the component is a document (rather than the
Basic IDE or the help window). Every document supports the XModel interface and each document type has
a unique service that it supports (see Table 101). Use HasUnoInterfaces to determine if an object supports
the XModel interface; then use the object method supportsService to determine the document type.

TIP The method supportsService() is defined by the com.sun.star.lang.XServiceInfo interface.
This interface also defines the method getImplementationName(), which returns a unique
string identifying the object type.

Table 101. Unique services that identify the document’s type.
Service Document Type

com.sun.star.text.TextDocument Writer text document.

com.sun.star.sheet.SpreadsheetDocument Calc spreadsheet document.

com.sun.star.drawing.DrawingDocument Draw drawing document.

com.sun.star.presentation.PresentationDocument Impress presentation document.

com.sun.star.formula.FormulaProperties Math formula document.

com.sun.star.comp.dba.ODatabaseDocument Base Document

OOo contains numerous interfaces that are used by many (if not all) of the document types. Consider this
partial list of common interfaces.

Interface Description

com.sun.star.beans.XPropertySet Get and set object properties.

com.sun.star.container.XChild For objects with a single parent, get and set that parent.

com.sun.star.datatransfer.XTransferable Get data for data transfer; like copying to the clipboard.

com.sun.star.document.XDocumentPropertiesSupplier Access a documents properties; for example, author and creation
date.

com.sun.star.document.XDocumentEventBroadcaster Register to be notified when events occur.

com.sun.star.document.XEventsSupplier Get a list of events supported by this object.

com.sun.star.document.XLinkTargetSupplier Get the list of link targets in a document.

com.sun.star.document.XViewDataSupplier Get properties describing a document's open views.

com.sun.star.drawing.XDrawPagesSupplier Get draw pages for documents that support multiple draw pages;
for example, a drawing or a presentation.

com.sun.star.frame.XLoadable Functionality to load documents.

com.sun.star.frame.XModel Representation of a resource (document) in the sense that it was
created/loaded from a resource; off hand, I am not aware of any
document that does not implement XModel. This interface also
provides access to the model's components.

com.sun.star.frame.XStorable Methods to store a document.

com.sun.star.lang.XComponent Allows an object to own and dispose (free) an object; for
example, a text table.

293

com.sun.star.lang.XEventListener Base interface for all listeners; provides a disposing method.

com.sun.star.lang.XMultiServiceFactory Implemented by factories to create objects and determine what
objects the factor can create.

com.sun.star.lang.XServiceInfo Determine which services an object supports.

com.sun.star.lang.XTypeProvider Determine the types (interfaces) an object supports.

com.sun.star.script.XStarBasicAccess Deprecated, but provides access to libraries.

com.sun.star.style.XStyleFamiliesSupplier Get style families supported by a document; for example,
paragraph styles.

com.sun.star.util.XCloseBroadcaster Allows an object to veto a close request.

com.sun.star.util.XCloseable Ask a document to close; this is preferred to dispose.

com.sun.star.util.XModifiable Determine if a document has been modified.

com.sun.star.util.XModifyBroadcaster Register and be notified when a document is modified.

com.sun.star.util.XNumberFormatsSupplier Get the document's number formats.

com.sun.star.view.XPrintJobBroadcaster Register and be notified about print progress.

com.sun.star.view.XPrintable Document print functionality.

com.sun.star.view.XRenderable Functionality to render a document.

Ironically, searching is not supported by all document types. This is because searching functionality is very
specific to the document. For example, searching a text document is very different than searching a
spreadsheet (in terms of desired options). In Calc, searching is provided by the each sheet rather than by the
document.

A Calc document is composed of multiple spreadsheets. A significant portion of the functionality, therefore,
exists in the spreadsheet objects rather than in the parent Calc document. For example, searching text or
obtaining draw pages both exist in spreadsheet objects — draw pages are discussed in depth in Chapter 16
Draw and Impress Documents.

The OpenOffice.org API Web site contains extensive, detailed help on most of the services and interfaces.
The page is built by starting with the Web address “http://api.openoffice.org/docs/common/ref/” and then
using the interface name to build the rest of the address. For example, the com.sun.star.beans.XPropertySet
interface has an Internet address as follows:

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

 13.3. Getting and setting properties

The dbg_properties property is a string containing a list of properties supported the object containing the
property; you should read that last sentence again.

OOo Basic automatically makes these properties available for direct access; other languages may not. The
com.sun.star.beans.XPropertySet interface provides methods to get, set, and enumerate the object’s
properties, as shown in Table 102.

294

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

Table 102. Object methods defined by the interface XPropertySet.
Object Method Description

getPropertySetInfo() Return an object supporting the
com.sun.star.beans.XPropertySetInfo interface. This object describes
the object’s properties but may be null.

setPropertyValue(name, value) Set the value of the named property. A listener may veto this change.

getPropertyValue(name) Return the value of the named property.

addPropertyChangeListener(name, listener) Add an XPropertyChangeListener for the named property. An empty
name listens for all properties.

removePropertyChangeListener(name, listener) Remove an XPropertyChangeListener.

addVetoableChangeListener(name, listener) Add an XVetoableChangeListener for the named property. An empty
name listens for all properties.

removeVetoableChangeListener(name, listener) Removes an XVetoableChangeListener.

In OOo Basic, properties are usually accessed directly. Listing 274 demonstrates two ways to obtain the
CharFontName property from a Writer document — these methods return the name of the font style.

Listing 274. Two methods to obtain the name of the font style.
Print ThisComponent.CharFontName
Print CStr(ThisComponent.getPropertyValue("CharFontName"))

Accessing the property directly is the most expedient method while using OOo Basic, but there are
advantages to using the methods defined by the XPropertySetInfo interface. Some properties are defined as
optional, so not every document contains every property. The XPropertySetInfo interface defines the object
method hasPropertyByName(), which can be used to test for the existence of a property before use; errors
can still be avoided by using error-handling routines. Another use is to generically enumerate all of the
contained properties and possibly their values as shown in Listing 275. Figure 82 shows some properties of a
Writer document using the macro in Listing 275.

Listing 275. Display general document properties.
Sub getPropertyValues
 Dim vPropInfo 'PropertySetInfo object
 Dim vProps 'Array of properties
 Dim vProp 'com.sun.star.beans.Property
 Dim v 'Value of a single property
 Dim i% 'Index variable
 Dim s$ 'General message string
 Dim nCount%

 REM Object implements interface com.sun.star.beans.XPropertySetInfo
 vPropInfo = ThisComponent.getPropertySetInfo()
 REM sequence< Property > vPropInfo.getProperties()
 REM Property vPropInfo.getPropertyByName(name)
 REM boolean vPropInfo.hasPropertyByName(name)
 vProps = vPropInfo.getProperties()
 For i = 0 To UBound(vProps)
 If nCount = 30 Then
 nCount = 0
 MsgBox s, 0, "Properties"
 s = ""

295

 End If
 nCount = nCount + 1
 vProp = vProps(i) 'com.sun.star.beans.Property
 s = S & vProp.Name & " = "
 v = ThisComponent.getPropertyValue(vProp.Name)
 If IsNull(v) Then
 s = S & "Null"
 ElseIf IsEmpty(v) Then
 s = S & "Empty"
 ElseIf VarType(v) < 9 Then
 s = S & CStr(v)
 Else
 s = S & "Object or Array"
 End If
 s = S & CHR$(10)
 Next
 MsgBox s, 0, "Properties"
End Sub

Figure 82. The first 10 properties of ThisComponent.

TIP In case you missed the implications of the macro in Listing 275, it allows you to generically inspect any
object that supports the XPropertySet interface. The ability to inspect an object is invaluable when you
aren’t certain what you can do with an object.

After getting a property set information object,

• Use getProperties() to get an array of Property objects.

• Use hasProperty(name) to determine if a property exists.

• Use getPropertyByName(name) to get a specific property.

 13.4. Document properties

Document properties contain information related to the document such as the author and creation time; as
opposed to the properties discussed in the previous section that are related to the document contents such as
the current font.

296

Previous methods for obtaining document properties have been deprecated; for example, using
getDocumentInfo to obtain and modify user fields. Use File | Properties to open the document properties
dialog. Use getDocumentProperties to obtain the DocumentProperties object.

Listing 276. Use the DocumentProperties object.
 ' com.sun.star.document.DocumentProperties
 printDocProperties(ThisComponent.getDocumentProperties())
End Sub

Sub printDocProperties(oDocProps)
 Dim s$
 Dim oData

 s = "Author : " & oDocProps.Author & CHR$(10) & _
 "AutoloadSecs : " & oDocProps.AutoloadSecs & CHR$(10) & _
 "AutoloadURL : " & oDocProps.AutoloadURL & CHR$(10) & _
 "DefaultTarget : " & oDocProps.DefaultTarget & CHR$(10) & _
 "Description : " & oDocProps.Description & CHR$(10) & _
 "EditingCycles : " & oDocProps.EditingCycles & CHR$(10) & _
 "EditingDuration : " & _
 secondsAsPrettyTime(oDocProps.EditingDuration) & CHR$(10) & _
 "Generator : " & oDocProps.Generator & CHR$(10) & _
 "ModifiedBy : " & oDocProps.ModifiedBy & CHR$(10) & _
 "Title : " & oDocProps.Title & CHR$(10) & _
 "Language : " & oDocProps.Language.Country & ":" & _
 oDocProps.Language.Language & CHR$(10) & _
 "ModificationDate : " & oDocProps.ModificationDate.Day & "/" & _
 oDocProps.ModificationDate.Month & "/" & _
 oDocProps.ModificationDate.Year & " " & _
 oDocProps.ModificationDate.Hours & ":" & _
 oDocProps.ModificationDate.Minutes & ":" & _
 oDocProps.ModificationDate.Seconds & "." & _
 oDocProps.ModificationDate.HundredthSeconds & CHR$(10) & _
 "PrintDate : " & oDocProps.PrintDate.Month & "/" & _
 oDocProps.PrintDate.Day & "/" & _
 oDocProps.PrintDate.Year & " " & _
 oDocProps.PrintDate.Hours & ":" & _
 oDocProps.PrintDate.Minutes & ":" & _
 oDocProps.PrintDate.Seconds & "." & _
 oDocProps.PrintDate.HundredthSeconds & CHR$(10) & _
 "PrintedBy : " & oDocProps.PrintedBy & CHR$(10) & _
 "Subject : " & oDocProps.Subject & CHR$(10) & _
 "TemplateDate : " & oDocProps.TemplateDate.Month & "/" & _
 oDocProps.TemplateDate.Day & "/" & _
 oDocProps.TemplateDate.Year & " " & _
 oDocProps.TemplateDate.Hours & ":" & _
 oDocProps.TemplateDate.Minutes & ":" & _
 oDocProps.TemplateDate.Seconds & "." & _
 oDocProps.TemplateDate.HundredthSeconds & CHR$(10) & _
 "TemplateName : " & oDocProps.TemplateName & CHR$(10) & _
 "TemplateURL : " & oDocProps.TemplateURL & CHR$(10) & _
 "Title : " & oDocProps.Title & CHR$(10)
 MsgBox s, 0, "Document Properties"

297

 Dim i%
 oData = oDocProps.DocumentStatistics
 s = ""
 For i = LBound(oData) To UBound(oData)
 s = s & oData(i).Name & " : " & oData(i).Value & CHR$(10)
 Next
 MsgBox s, 0, "Document Statistics"

 oData = oDocProps.Keywords
 s = ""
 For i = LBound(oData) To UBound(oData)
 s = s & oData(i) & CHR$(10)
 Next
 MsgBox s, 0, "Keywords"

 'I have little experience with this object.
 'Seems that the user defined properties are available here.
 'com.sun.star.comp.comphelper.OPropertyBag
 oData = oDocProps.UserDefinedProperties
End Sub

 13.4.1. Document properties from a closed document

It is easy to access the document properties from a document that is not open.

Listing 277. Read the document properties from a document that is not open.
Sub loadExternalProperties
 Dim sPath$
 Dim sPathUrl
 Dim oDocProps
 sPath = ConvertToUrl("/andrew0/home/andy/MoveFigsFromFrames.odt")
 oDocProps = CreateUnoService("com.sun.star.document.DocumentProperties")
 oDocProps.loadFromMedium(sPath, Array())
 printDocProperties(oDocProps)
End Sub

 13.4.2. Custom properties

You can create and remove your own custom document properties. Use the PropertyAttribute constants
shown in Table 103 while creating an attribute to control the behavior of created properties.

298

Table 103. com.sun.star.beans.PropertyAttribute constants.
Constant Value Description

MAYBEVOID 1 The property value can be void.

BOUND 2 A PropertyChangeEvent will be fired to all registered property change
listeners when the value of this property changes.

CONSTRAINED 4 A PropertyChangeEvent will be fired to all registered vetoable change
listeners when the value of this property changes.

TRANSIENT 8 The property value is not saved with the document.

READONLY 16 The property value is read-only.

MAYBEAMBIGUOUS 32 The property value may be ambiguous.

MAYBEDEFAULT 64 The property can be set to default.

REMOVEABLE 128 The property can be removed. This used to be called REMOVABLE.

OPTIONAL 256 The property is optional.

Use addProperty(name, attributes, default_value) to create a new property and removeProperty(name) to
remove a property from the document properties. When a property is created, that property is added to the
document's properties, so you can use the property set information object

Listing 278. Add a new document property.
Sub AddNewDocumentProperty
 Dim oUDP
 oUDP = ThisComponent.getDocumentProperties().UserDefinedProperties
 If NOT oUDP.getPropertySetInfo().hasPropertyByName("AuthorLastName") Then
 oUDP.addProperty("AuthorLastName", _
 com.sun.star.beans.PropertyAttribute.MAYBEVOID + _
 com.sun.star.beans.PropertyAttribute.REMOVEABLE + _
 com.sun.star.beans.PropertyAttribute.MAYBEDEFAULT, _
 "Default Last Name")
 End If
End Sub

 13.4.3. Deprecated document information object

The deprecated method getDocumentInfo was the previous method for obtaining and modifying user data.
The macro in Listing 279 sets the value of a user field and then displays its value.

TIP DocumentInfo and StandaloneDocumentInfo are deprecated and replaced by DocumentProperties.

Listing 279. Deprecated method for getting and setting user information data.
Sub GetUserInfoFields
 Dim vDocInfo 'Document Information Object
 Dim s$ 'General string to print
 Dim i% 'Index variable
 vDocInfo = ThisComponent.getDocumentInfo()
 vDocInfo.setUserFieldValue(1, "My special user value")
 For i% = 0 To vDocInfo().getUserFieldCount()-1
 s$ = s$ & vDocInfo.getUserFieldName(i) & " = " &_
 CStr(vDocInfo.getUserFieldValue(i)) & CHR$(10)
 Next

299

 MsgBox s$, 0, "Info Fields"
End Sub

 13.5. List events

As OOo operates, it generates events to inform listeners that something has occurred. The event
listener/supplier framework allows a macro to be called or a listener to be notified when a specific event
occurs — for example, when a document is loaded or modified, or when text selection changes. Each
document type supports the two interfaces com.sun.star.document.XEventBroadcaster and
com.sun.star.document.XEventsSupplier, allowing them to support event-related activities — for example,
broadcasting events to listeners and providing a list of supported events.

The macro in Listing 280 lists the event listeners registered with the current document and for OOo. Another
use for this macro is to list the events supported by the document. Although there are no registered listeners,
this macro provides a nice list of the supported event types.

Listing 280. List the document's events.
Sub DisplayAvailableEvents
 Dim oGEB ' GlobalEventBroadcaster
 Dim oDoc
 Dim s$
 Dim oText

 oDoc = StarDesktop.LoadComponentFromUrl("private:factory/swriter", "_blank", 0, Array())
 oGEB = createUnoservice("com.sun.star.frame.GlobalEventBroadcaster")
 s = Join(oGEB.Events.getElementNames(), CHR$(10))
 oText = oDoc.Text
 oText.InsertString(oText.End, "===Global Events" & CHR$(10), False)
 oText.InsertString(oText.End, s, False)

 s = Join(oDoc.Events.getElementNames(), CHR$(10))
 oText.InsertString(oText.End, CHR$(10) & CHR$(10) & "===Writer Events" & CHR$(10), False)
 oText.InsertString(oText.End, s, False)
End Sub

Here is a list of events:

1. OnStartApp

2. OnCloseApp

3. OnCreate

4. OnNew

5. OnLoadFinished

6. OnLoad

7. OnPrepareUnload

8. OnUnload

9. OnSave

10. OnSaveDone

300

11. OnSaveFailed

12. OnSaveAs

13. OnSaveAsDone

14. OnSaveAsFailed

15. OnCopyTo

16. OnCopyToDone

17. OnCopyToFailed

18. OnFocus

19. OnUnfocus

20. OnPrint

21. OnViewCreated

22. OnPrepareViewClosing

23. OnViewClosed

24. OnModifyChanged

25. OnTitleChanged

26. OnVisAreaChanged

27. OnModeChanged

28. OnStorageChanged

29. OnPageCountChange

30. OnMailMerge

31. OnMailMergeFinished

32. OnFieldMerge

33. OnFieldMergeFinished

34. OnLayoutFinished

TIP Many objects besides documents support event listeners. For example, you can listen
to an individual cell in a Calc document.

 13.5.1. Registering your own listener

The macro in Listing 280 uses the GlobalEventBroadcaster to access event listeners at the OOo level. The
macro in Listing 281 replaces the documents OnSave listener with a macro named MySave, in Module1, in
the Standard library for My Macros. When the document is saved, MySave is automatically called. The
association is maintained even after closing and opening the document.

Listing 281. Register your own listener.
Sub StealAnEvent
 Dim mEventProps(1) as new com.sun.star.beans.PropertyValue

301

 mEventProps(0).Name = "EventType"
 mEventProps(0).Value = "StarBasic"
 mEventProps(1).Name = "Script"
 mEventProps(1).Value = "macro:///Standard.Module1.MySave()"

 'oGlobalEventBroadcaster = createUnoservice("com.sun.star.frame.GlobalEventBroadcaster")
 'oGlobalEventBroadcaster.Events.ReplaceByName("OnStartApp", mEventProps())
 ThisComponent.Events.ReplaceByName("OnSave", mEventProps())
End Sub

Warn Use the location “macro://hello/Standard.Module1.MySave()” to specify a macro in the document named
“hello.odt”. Although this works fine, the association is not lost when the document is closed.

An event can just as easily be stored at the OOo level by using the GlobalEventBroadcaster.

Do not mistake the value location for the same URL type syntax used to associate a form control to a macro:

"vnd.sun.star.script:Standard.Module1.LocalMySave?language=Basic&location=document"

 13.5.2. Intercepting dispatch commands

Replacing a listener event is not the same as intercepting the File > Save dispatch, this is merely a listener
used after the command has been executed. Intercepting a dispatch will look more like this code provided by
Paolo Montavoni. One of the problems with this is that a status listener is not used, so, if a command is
disabled, the menu will not show the command as disabled.

Warn Be very careful while writing listeners and intercepting dispatches. Assume that something will change, or
that you did something wrong and that OOo will crash; you have been warned.

Listing 282. Replace a few menu commands.
Global oDispatchInterceptor
Global oSlaveDispatchProvider
Global oMasterDispatchProvider
Global oFrame
Global bDebug As Boolean

Dim oCopyDispatch

Sub RegisterInterceptor
 oFrame = ThisComponent.currentController.Frame
 oDispatchInterceptor = CreateUnoListener("ThisFrame_", _
 "com.sun.star.frame.XDispatchProviderInterceptor")
 oFrame.registerDispatchProviderInterceptor(oDispatchInterceptor)
End Sub

Sub ReleaseInterceptor()
On Error Resume Next
 oFrame.releaseDispatchProviderInterceptor(oDispatchInterceptor)
End Sub

Function ThisFrame_queryDispatch (oUrl, _
 sTargetFrameName As String, lSearchFlags As Long) As Variant

302

Dim oDisp
Dim sUrl As String

 'slot protocol causes OOo crash...
 if oUrl.Protocol = "slot:" Then
 Exit Function
 End If

 If bDebug Then
 Print oUrl.complete
 End If

 'do your dispatch management here:
 Select Case oUrl.complete

 Case ".uno:Copy"
 oDisp = GetCopyDispatch 'replace the original dispatch
 Case ".uno:Paste"
 oDisp = GetCopyDispatch 'replace the original dispatch
 Case ".uno:Save"
 oDisp = GetCopyDispatch 'replace the original dispatch
 Case ".uno:Undo"
 oDisp = GetCopyDispatch 'replace the original dispatch
 'Case ".uno:blabla"
 'do something
 Case Else
 oDisp = _
 oSlaveDispatchProvider.queryDispatch(oUrl, sTargetFrameName, lSearchFlags)

 End Select

 ThisFrame_queryDispatch = oDisp

End Function

Function ThisFrame_queryDispatches (mDispatches) As Variant
 'ThisFrame_queryDispatches = mDispatches()
End Function

Function ThisFrame_getSlaveDispatchProvider () As Variant
 ThisFrame_getSlaveDispatchProvider = oSlaveDispatchProvider
End Function

Sub ThisFrame_setSlaveDispatchProvider (oSDP)
 oSlaveDispatchProvider = oSDP
End Sub

Function ThisFrame_getMasterDispatchProvider () As Variant
 ThisFrame_getMasterDispatchProvider = oMasterDispatchProvider
End Function

Sub ThisFrame_setMasterDispatchProvider (oMDP)

303

 oMasterDispatchProvider = oMDP
End Sub

Sub toggleDebug
 bDebug = Not bDebug
End Sub

Function GetCopyDispatch()
 If Not IsNull(oCopyDispatch) Then
 oCopyDispatch = _
 CreateUnoListener("MyCustom_", "com.sun.star.frame.XDispatch")
 End If

 GetCopyDispatch = oCopyDispatch

End Function

Sub MyCustom_dispatch(URL, Arguments)
 Select Case URL.complete
 Case ".uno:Copy"
 MsgBox "Sorry, the original " & URL.complete & _
 " dispatch was stolen from Paolo M.", 48

 Case ".uno:Paste"
 ThisComponent.CurrentSelection(0).String = _
 "**** ARBITRARY CLIPBOARD CONTENT PROVIDED BY PAOLO M. ****"
 Case ".uno:Save"
 MsgBox "Sorry, the original " & URL.complete & _
 " dispatch was stolen from Paolo M.", 48

 Case ".uno:Undo"
 MsgBox "Undo What????!!!???", 16

 Case Else

 End Select
End Sub

Sub MyCustom_addStatusListener(Control, URL)
End Sub

Sub MyCustom_removeStatusListener (Control, URL)
End Sub

A similar method has been used to intercept context menus using a XContextMenuInterceptor.

 13.6. Link targets

Link targets, also called “jump marks,” can be used to jump directly to a specific location. The document
navigator contains a list of link targets. The object method getLinks(), defined by the
com.sun.star.document.XLinkTargetSupplier interface, provides access to the link targets. The getLinks()
method returns an object that supports the XNameAccess interface. In other words, you can access the links
using the methods getByName(), getElementNames(), hasByName(), and hasElements().

304

The object returned by the getLinks() method does not access the links directly, but rather it provides access
to other objects that can. To access all of the individual links, first use the getLinks() method to access the
master list of links. Use this returned object to access each “family” of links based on the family name. For
example, to obtain an object that can access all of the table links, use:

oDoc.getLinks().getByName("Tables")

After obtaining a family of links, you can also obtain the individual links by name. At this final step, you
have access to both the name of the link and the object that is linked. The macro in Listing 283 obtains all of
the link families and the links that they contain, and then displays the link’s name in a newly created Write
document.

Listing 283. Get jump targets for the current document.
Sub GetJumpTargets
 Dim sLinkNames 'Tables, Text Frames, Headings, Bookmarks, etc...
 Dim vOneLink 'One link type
 Dim i% 'Index variable
 Dim s$ 'General string
 Dim vtemp
 Dim oNewDoc
 Dim noArgs() 'An empty array for the arguments
 Dim vComp 'The loaded component
 Dim sURLs() 'URLs of the new document types to load
 Dim sURL As String 'URL of the document to load
 Dim oText

 sURL = "private:factory/swriter"
 vComp = StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, noArgs())
 oText = vComp.Text
 oText.insertString(oText.End, "LINK TYPES" & CHR$(10), False)
 sLinkNames = ThisComponent.getLinks().getElementNames()
 oText.insertString(oText.End, Join(sLinkNames, Chr$(10)), False)
 oText.insertString(oText.End, _
 CHR$(10) & CHR$(10) & "JUMP TARGETS" & CHR$(10), _
 False)
 For i = 0 To UBound(sLinkNames)
 vOneLink = ThisComponent.getLinks().getByName(sLinkNames(i))
 s = s & sLinkNames(i) & " = "
 If IsEmpty(vOneLink) Then
 s = s & "Empty"
 Else
 s = s & sLinkNames(i) & " : " & _
 Join(vOneLink.getElementNames(), CHR$(10) & sLinkNames(i) & " : ")
 REM To obtain the actual link object, such as a
 REM text table or a graphics object, use the following
 REM vtemp = vOneLink.getElementNames()
 REM vObj = vOneLink.getByName(vtemp(0))
 End If
 s = s & CHR$(10)
 Next
 'MsgBox s, 0, "Jump Targets"
 oText.insertString(oText.End, s, False)
End Sub

305

You can use jump marks (link targets) to jump directly to a specific location when a document is loaded. Use
jump marks to focus the cursor at a specific location when a document is opened, as shown in Listing 284.
The JumpMark attribute sets the name from the values shown in the created document (if you run the macro
above); for example, “Table1|table” jumps to the specified table.

Listing 284. Use the JumpMark property to jump to a link target.
Dim Props(0)
Props(0).Name = "JumpMark"
Props(0).Value = "Table1|table"
sUrl = "file://c:/docs/Special_doc.odt"
vDoc = StarDesktop.LoadComponentFromUrl(sUrl, "_blank", 0, Props())

You can also use the jump mark as part of the URL (see Listing 285) by placing it at the end of the URL
separated by an octothorpe character (#). If the jump mark contains any special characters, such as spaces,
they must be encoded using standard URL notation. For example, a space is encoded as %20.

Listing 285. Use the JumpMark property to jump to a link target.
sUrl = "file://c:/docs/Special_doc.odt#Table1|table"
vDoc = StarDesktop.LoadComponentFromUrl(sUrl, "_blank", 0, Props())

TIP The character “#” has many names, including: number sign, pound sign, hash, sharp, crunch, hex, grid,
pigpen, tic-tac-toe, splat, crosshatch, and octothorpe, to name a few.

 13.7. Accessing view data: XViewDataSupplier

Using OOo, open a document, edit it or change something (for example, move to another page or change the
zoom factor), close the document, and open the document again. When you do this, the document opens at
the same screen location, at the same size, with the same zoom factor as was active when it was last saved.
This information is stored with the document and is available through the interface
com.sun.star.document.XViewDataSupplier. This interface provides one object method, getViewData().
Listing 286 displays the view data for ThisComponent (see Figure 83).

Listing 286. GetViewData is found in the
Sub GetViewData
 Dim vViewData 'View data object
 Dim i% 'Index variable
 Dim j% 'Index variable
 Dim s$ 'General string
 Dim vtemp 'View data for one object
 vViewData = ThisComponent.getViewData()
 REM For each view of the data
 For i = 0 To vViewData.getCount() - 1
 vtemp = vViewData.getByIndex(i)
 For j = 0 To UBound(vtemp)
 s = s & vtemp(j).Name & " = " & CStr(vtemp(j).Value) & CHR$(10)
 Next
 MsgBox s, 0, "View Data"
 Next
End Sub

306

Figure 83. View data for a document.

 13.8. Close a document: XCloseable

As of OOo 1.1.0, each document type supports the com.sun.star.util.XCloseable interface. To close these
objects, call the object method close(bForce). If bForce is True, the object must close. In other words, it may
not refuse to close. If, however, bForce is False, the object may refuse to close.

Before a document is closed, a message is sent to all registered listeners, giving them an opportunity to
prevent the closure. If the close request is not vetoed by any listener, a message is sent to each registered
listener, advising them that the document will close. The XCloseBroadcaster interface provides methods to
add and remove a close listener (see Table 104).

Table 104. Object methods defined by the interface XCloseBroadcaster.
Object Method Description

addCloseListener(XCloseListener) Add listener to receive or have a veto for “close” events.

removeCloseListener(XCloseListener) Remove an object registered as a close listener using addCloseListener().

The macro in Listing 287 demonstrates the safe way to close a document using the object’s close() method.
For versions of OOo prior to 1.1.0, the close() method is not available, so you must use the dispose() method
instead. The dispose() method is unconditional and is not the preferred method to close a document (by
document I really mean any object that supports both close and dispose) because it doesn’t allow a registered
user who might be using the document to veto the close and finish what he or she is doing.

Listing 287. The safe way to close a document.
If HasUnoInterfaces(oDoc, "com.sun.star.util.XCloseable") Then
 oDoc.close(true)
Else
 oDoc.dispose()
End If

TIP Do not use dispose to close a document, it is there for legacy purposes. Assume, for example, that you start
printing a document and then immediately dispose() the document. The document that is being used for
printing is suddenly gone and OOo crashes.

307

 13.9. Draw Pages: XDrawPagesSupplier

 13.9.1. Draw and Impress

Draw and Impress are almost identical in the interfaces that they support. Draw is specifically designed to
handle independent graphic objects, whereas Impress is designed for business effects and presentations. The
drawing functionality of Draw and Impress is identical, however. The graphic objects are drawn and
displayed on “draw pages.” By their design, both Draw and Impress support multiple draw pages. The
functionality to retrieve a DrawPage object is defined by the com.sun.star.drawing.XDrawPagesSupplier
interface. The interface com.sun.star.drawing.XDrawPages defines methods to retrieve, insert, and remove
individual pages (see Table 105).

Table 105. Object methods defined by the interface XDrawPages.
Object Method Description

InsertNewByIndex(index) Create and insert a new draw page or master page.

remove(XDrawPage) Remove a draw page or master page.

getCount() Return the number of draw pages.

getByIndex(index) Return a specific draw page.

hasElements() Return True if there are documents.

The macro in Listing 288 demonstrates how to iterate through each of the draw pages. Each draw page is
exported to a JPG file. The export type is specified by the MediaType property.

Listing 288. Export each graphics page to a JPG.
oFilter=CreateUnoService("com.sun.star.drawing.GraphicExportFilter")
Dim args(1) as new com.sun.star.beans.PropertyValue
For i=0 to oDoc.getDrawPages().getcount()-1
 oPage = oDoc.getDrawPages().getByIndex(i)
 name = oPage.name
 oFilter.setSourceDocument(opage)
 args(0).Name = "URL"
 args(0).Value = "file:///c|/"&oPage.name&".JPG"
 args(1).Name = "MediaType"
 args(1).Value = "image/jpeg"
 oFilter.filter(args())
Next

TIP The index used to access draw pages is zero based. This means that the first draw page is at location 0. If a
document contains four draw pages, they are numbered 0 through 3. This is why the For loop in Listing
288 is from 0 To oDoc.getDrawPages().getcount()-1.

The macro in Listing 289 creates a new Impress document and then adds a graphic image to the first draw
page. The draw image is sized to retain the aspect ratio.

Listing 289. Add a proportionally sized graphic to a draw page.
Sub AddProportionalGraphic
 Dim oDoc 'Newly created Impress document
 Dim oDrawPage 'The draw page that will contain the graphic image
 Dim oGraph 'The created graphic image

308

 REM Create an Impress presentation document!
 oDoc = StarDesktop.loadComponentFromURL("private:factory/simpress",_
 "_default", 0, Array())

 REM Insert a second draw page if desired,
 REM leaving the first draw page untouched!
 REM Could use the property DrawPages
 REM oDrawPage = oDoc.DrawPages.insertNewByIndex(1)
 REM oDrawPage = oDoc.getDrawPages().insertNewByIndex(1)
 REM In this case, simply use the first draw page!
 oDrawPage = oDoc.getDrawPages().getByIndex(0)

 REM Create a graphics object that can be inserted into the document
 oGraph = oDoc.createInstance("com.sun.star.drawing.GraphicObjectShape")

 REM Set the URL of the image so that it can be added to the document
 oGraph.GraphicURL = "http://www.openoffice.org/images/AOO_logos/orb.jpg"
 oDrawPage.add(oGraph)

 REM If I stop here, there will be a very small graphic image in the
 REM upper-left corner of the document. This is pretty much useless.
 REM Although I could simply size the graphic to the same size as the bitmap
 REM size, I choose instead to size this so that it is as large as possible
 REM without changing the aspect ratio.
 REM Determine the ratio of the height to the width for the image and
 REM also for the draw page.

 Dim oNewSize As New com.sun.star.awt.Size 'New Image size
 Dim oBitmapSize As New com.sun.star.awt.Size 'Bitmap size

 Dim dImageRatio As Double 'Ratio of the height to width
 Dim dPageRatio As Double 'Ratio of the height to width

 oBitmapSize = oGraph.GraphicObjectFillBitmap.GetSize
 dImageRatio = CDbl(oBitmapSize.Height) / CDbl(oBitmapSize.Width)
 dPageRatio = CDbl(oDrawPage.Height) / CDbl(oDrawPage.Width)

 REM Compare the ratios to see which is wider, relatively speaking
 If dPageRatio > dImageRatio Then
 oNewSize.Width = oDrawPage.Width
 oNewSize.Height = CLng(CDbl(oDrawPage.Width) * dImageRatio)
 Else
 oNewSize.Width = CLng(CDbl(oDrawPage.Height) / dImageRatio)
 oNewSize.Height = oDrawPage.Height
 End If

 REM Center the image on the Impress page!
 Dim oPosition as new com.sun.star.awt.Point
 oPosition.X = (oDrawPage.Width - oNewSize.Width)/2
 oPosition.Y = (oDrawPage.Height - oNewSize.Height)/2

 oGraph.SetSize(oNewSize)
 oGraph.SetPosition(oPosition)

309

End Sub

As already stated, Impress and Draw documents are very similar in the API that they support. The macro in
Listing 290 draws lines in a Draw document (see Figure 84).

Listing 290. Draw lines in a new graphic document.
Sub DrawLinesInDrawDocument
 Dim oDoc 'Newly created Draw document
 Dim oDrawPage 'The draw page that will contain the graphics image
 Dim oShape 'Shape to insert

 REM Create a new Draw document!
 oDoc = StarDesktop.loadComponentFromURL("private:factory/sdraw",_
 "_default", 0, Array())

 REM Use the first draw page
 oDrawPage = oDoc.getDrawPages().getByIndex(0)

 Dim i As Long
 Dim oPos as new com.sun.star.awt.Point
 Dim oSize as new com.sun.star.awt.Size
 Dim dStepSize As Double
 dStepSize = CDbl(oDrawPage.Height) / 10

 For i = 0 To 10
 oShape = oDoc.createInstance("com.sun.star.drawing.LineShape")
 oShape.LineColor = rgb(0, 255 - 20 * i, 20 * i)
 oShape.LineWidth = 250

 oPos.X = 0
 oPos.Y = CLng(CDbl(i) * dStepSize)
 oShape.setPosition(oPos)

 oSize.width = oDrawPage.Width
 oSize.height= oDrawPage.Height - 2 * oPos.Y
 oShape.setSize(oSize)
 oDrawPage.add(oShape)
 Next
End Sub

Figure 84. These lines drawn in a Draw document overlap.

310

 13.9.2. Draw lines with arrows in Calc

Each Calc document contains a single draw page for each sheet In Calc, each sheet is like a transparent layer
containing drawing data on top of the standard document data. The following macro demonstrates a couple
of useful things:

• Each cell has a position on the draw page. This macro draws a line between specific cells by using
the Position attribute on a cell. The line is draw from the upper left corner of cell B2 to the upper left
corner of cell D4.

• A LineShape is created by the document.

• After creation, attributes are set on the LineShape; for example, position, size, and color.

• The LineShape is added to the draw page.

• Arrows, and other line endings, are added after the LineShape has been added to the draw page – at
least this is required in OOo version 3.3.0.

Arrow line endings are set by setting the LineEndName and LineStartName. I was not able to find a list of
supported arrow names, so, I used the GUI to find the names mentioned in the GUI, and the few that I tried
worked. Next, I searched the source code and I found filter/source/msfilter/escherex.cx and
svx/source/dialog/sdstring.src, which contains the following names:

• Arrow

• Arrow concave

• Circle

• Dimension Lines

• Double Arrow

• Line Arrow

• Rounded large Arrow

• Rounded short Arrow

• Small Arrow

• Square

• Square 45

• Symmetric Arrow

In testing, the en-US names worked in other locales. Locale specific names work, but the value that is stored
is based on the en-US locale name. In other words, using "Double flèche" with a French locale sets the
property to “Double Arrow”.

Listing 291. Draw lines in a Calc document.
Sub InsertLineInCalcDocument
 Dim oLine
 Dim oCell1
 Dim oCell2
 Dim oSheet

311

 Dim oPos as new com.sun.star.awt.Point
 Dim oSize as new com.sun.star.awt.Size
 Dim oPage

 oSheet = ThisComponent.Sheets(0)
 oCell1 = oSheet.getCellByPosition(1, 1)
 oCell2 = oSheet.getCellByPosition(3, 3)

 oLine = ThisComponent.createInstance("com.sun.star.drawing.LineShape")

 oPos.x = oCell1.Position.X
 oPos.y = oCell1.Position.Y
 oLine.Position = oPos

 oSize.Width = oCell2.Position.X - oCell1.Position.X
 oSize.Height = oCell2.Position.Y - oCell1.Position.Y
 oLine.Size = oSize

 oLine.LineWidth = 4
 oLine.LineColor = RGB(128, 0, 0)
 oPage = oSheet.getDrawPage()

 oPage.add(oLine)

 REM You must do this AFTER inserting the line into the page.
 oLine.LineEndName = "Arrow"
 oLine.LineStartName = "Double Arrow"
End Sub

Figure 85. Draw a line in a Calc document.

 13.9.3. Writer

Each Writer document contains a single draw page for the entire document. In Writer, the page is like a
transparent layer containing drawing data on top of the standard document data.

Writer documents do not support the XDrawPagesSupplier interface, because they only contain a single
draw page. They do, however, support the XDrawPageSupplier interface, which defines the single object
method getDrawPage().

The macro in Listing 290 uses optional draw page properties — namely height and width. The draw page
from a Writer document does not contain these properties. The draw page in a Writer document has other
peculiarities, however. For example, adding lines to the draw page — as done in Listing 290 — adds them as
characters at the cursor position rather than interpreting the positions as specific locations in the document.
The macro in Listing 292 draws lines to demonstrate this behavior (also see Figure 86).

Listing 292. Draw lines in a Write document.
Sub DrawLinesInWriteDocument

312

 Dim oDoc 'Newly created Writer document
 Dim oDrawPage 'The draw page that will contain the graphics image
 Dim oShape 'Shape to insert

 REM Create a new Writer document!
 oDoc = StarDesktop.loadComponentFromURL("private:factory/swriter",_
 "_default", 0, Array())

 oDrawPage = oDoc.getDrawPage()

 Dim i As Long
 Dim oSize as new com.sun.star.awt.Size
 Dim dStepSize As Double
 dStepSize = 800

 For i = 0 To 10
 oShape = oDoc.createInstance("com.sun.star.drawing.LineShape")
 oShape.LineColor = rgb(255, 255 - 20 * i, 20 * i)
 oShape.LineWidth = 50

 oSize.width = dStepSize - CLng(CDbl(i) * dStepSize / 10)/2
 oSize.width = CLng(dStepSize/5 * i - dStepSize)
 oSize.height= dStepSize
 oShape.setSize(oSize)
 oDrawPage.add(oShape)
 Next
End Sub

Figure 86. These lines drawn in a Writer document are treated as characters.

 13.10. The model

XModel is the primary interface that distinguishes a component as a document, as opposed to the OOo Basic
IDE or the included help pages. Objects that implement the interface com.sun.star.frame.XModel represent a
component created from a URL. OOo document objects may be controlled by a controller, which is also
considered a view of the document. The XModel interface defines the object methods in Table 106.

313

Table 106. Object methods defined by the interface com.sun.star.frame.XModel.
Object Method Description

getURL() URL of the document returned as a String.

getArgs() Return a copy of the com.sun.star.document.MediaDescriptor for this model
(document).

lockControllers() Prevent some display updates — macros may run faster. Be sure to unlock the
controllers when you are finished.

unlockControllers() Call this once for each call to lockControllers().

hasControllersLocked() Is there at least one lock remaining?

getCurrentController() The controller that currently controls this model.

getCurrentSelection() Current selection on the current controller.

 13.10.1. Document arguments

Arguments passed to the document loader control how the document is loaded; for example, opening a
document as read-only. Use getArgs() to obtain the documents media descriptor, which details how the
document was loaded. The MediaDescriptor service can be accessed as a series of optional properties or as
an array of properties (see Listing 293 and Figure 87).

Listing 293. Print the document media descriptor.
Sub printDocumentArgs()
 REM This says to ignore any lines that cause an error.
 REM Obtaining a value may cause an error, but that is
 REM not a problem. It just prevents a value from being printed.
 On Error Resume Next

 Dim vArgs 'Media descriptor as an array of com.sun.star.beans.PropertyValue
 Dim s$ 'Display string
 Dim i% 'Index variable

 REM Obtain the media descriptor. It turns out that this
 REM can be represented as an array of PropertyValue services.
 vArgs = ThisComponent.getArgs()

 For i = 0 To UBound(vArgs) 'For each property
 s = s & vArgs(i).Name & " = " 'Add the property name and an equals sign
 s = s & vArgs(i).Value 'Obtaining the value may fail!
 s = s & CHR$(10) 'Add a new-line character
 Next
 MsgBox s, 0, "Args"
End Sub

314

Figure 87. Properties returned by the getArgs() object method.
A text file is not a standard OOo Writer file, but rather, a simple file that has typically been created by a
simple editor such as Notepad. Text files contain no information that identify the character set that was used,
or how lines are terminated. Text files usually use the file extension TXT. When a text file is opened, OOo
displays a dialog and asks questions about the file so that it knows how the text file is encoded. I was asked
how to load a text file using a macro, avoiding the dialog and explicitly specifying the import values.
Although I was able to correctly determine the import filter name, I had no idea how to specify the required
filter options. I had no idea, that is, until I found the getArgs() object method.

TIP If you know how to open a document using the GUI, but are uncertain how the arguments must be set to
load the document using loadComponentFromURL, then first load the document using the GUI, then
inspect the document's media descriptor. Hint: look at FilterOptions.

 Figure 87 shows the arguments for an imported text file. The FilterName property indicates the name of the
import filter, and the FilterOptions property indicates the filter options that were used to open the file. Using
these properties with the desktop object method LoadComponentFromUrl(), the file is correctly imported
and the dialog is not displayed. Table 107 contains a list of the properties that may be returned from the
getArgs() object method. The OOo API Web site contains a few more properties, but they are obscure or
deprecated.

Table 107. Object properties defined by the service MediaDescriptor.
Property Description

Aborted May be set if document load is aborted while entering a password.

AsTemplate Document was loaded as a template.

Author Author of this document version; this is for versioning.

CharacterSet Document character set for single-byte characters.

Comment Comment on the current document version; this is for versioning.

DocumentTitle If the document title is specified, it is included here.

FilterName Filter used to import or save this document.

FilterOptions Filter used to import this document.

FilterData Additional import properties if the FilterOptions string is not sufficient.

315

Property Description

Hidden If the Hidden argument is specified during load, it is included here.

HierarchicalDocumentName The hierarchical path to the embedded document from topmost container.

InputStream If the InputStream is specified during load, it is included here.

InteractionHandler Exception handler if an error occurs during import.

JumpMark Jump to this marked position after loading the document.

MediaType MIME type of this document.

OpenNewView Opens a new view for an already loaded document, rather than just opening the
document twice. In other words, request two views of the same data.

OutputStream Stream to use while writing the document.

Overwrite Overwrite any existing file on save.

Password Password for loading or storing the document.

Preview Document loaded in preview mode; optimizes for preview-only use.

ReadOnly Document opened as read-only; controller will not change the document.

Referer URL of document referrer — for example, if opened by clicking an HTTP link.

RepairPackage Open the document in repair mode.

StartPresentation Immediately after loading an Impress document, start the presentation.

StatusIndicator If a status indicator was specified when the document was loaded, it is included here.

Unpacked If True, an OOo document is stored as a folder rather than a ZIP file.

URL URL of the document.

Version Current document version, if versioning is supported.

ViewData The view data to use.

ViewId The ID of the initial view.

MacroExecutionMode Specifies how macros are treated when the document is loaded.

 13.11. Saving a document

The location where a document is saved is called its Uniform Resource Locator (URL) — in other words, its
file name. A file URL usually contains the complete path to the file. When the file name is referred to as the
URL, it has a form similar to “file:///c:/myfile.sxw” rather than “c:\myfile.sxw”. A URL is a general way of
writing a storage location, one that can be extended conveniently to include a wide range of storage location
types in a manufacturer-independent and computer-independent manner. OOo Basic supports the functions
ConvertToURL and ConvertFromURL to convert between the two notations. The XStorable interface
defines object methods to save a document to a URL (see Table 108).

Table 108. Object methods defined by the service com.sun.star.frame.XStorable.
Object Method Description

hasLocation() True if the document has a storage location and False if this is a new blank document.

getLocation() Return the URL where the object was stored after calling storeAsURL().

isReadonly() You cannot call store() if the file was called from a read-only location.

store() Stores the data to the current URL.

storeAsURL(URL, args) Stores the document to the specified URL, which becomes the current URL.

316

Object Method Description

storeToURL(URL, args) Stores the document to the specified URL, but the current URL does not change.

Use the object method hasLocation() to determine if a document knows where to save itself, and use the
method store() to save it to the current URL. The macro in Listing 294 uses methods defined by both
XStorable and XModifiable to save a document to disk. The document is stored only if it knows where to
store itself, it has changed, and it is not read-only.

Listing 294. Proper method to save a document.
If (ThisComponent.isModified()) Then
 If (ThisComponent.hasLocation() AND (Not ThisComponent.isReadOnly())) Then
 ThisComponent.store()
 Else
 REM Either the document does not have a location or you cannot
 REM save the document because the location is read-only.
 setModified(False)
 End If
End If

A document does not have a storage location immediately after it is created. A document loaded from disk,
however, has a known location. Use the object method storeAsURL() or storeToURL() to save a document
to a specified location. The difference between the methods is that storeAsURL() sets the current location
(URL) and storeToURL() does not. The sequence of actions in Table 109 helps clarify the difference.

Table 109. Difference between storeToURL and storeAsURL.
Step Action Comment

1 Create document Cannot use the store() method because the document has no location.

2 Use storeToURL Document saved, but cannot use the store() methodbecause it has no location.

3 Use storeAsURL Can use the store() method because now the document has a location.

4 Use storeToURL Document saved, but the location is the same as set in step 3.

TIP The method storeAsURL() is similar to the menu option File | Save As, which changes the current location.
The method storeToURL() is usually used to export a document so that the file URL does not change and
contain a non-OOo document extension.

The two object methods for storing a document, storeAsURL() and storeToURL(), accept the same
arguments; learn to use one and you’ll know how to use the other.

ThisComponent.storeAsURL(url, args())
ThisComponent.storeToURL(url, args())

The second argument is an array of property values (see Table 107) that direct how the document is saved
(see Listing 295). The files can just as easily be stored with no arguments (see Listing 296).

Listing 295. Save a document to a new location.
Dim args(0) As New com.sun.star.beans.PropertyValue
Dim sUrl As String
sUrl = "file:///c:/My%20Documents/test_file.sxw"
args(0).Name = "Overwrite" 'This property is defined in Table 107
args(0).Value = False 'Do not overwrite an existing document.

317

ThisComponent.storeAsURL(sUrl, args())

TIP The com.sun.star.frame.XComponentLoader interface defines the object method
LoadComponentFromUrl(), which is used to load a file. The different document types do not implement
this interface, but the document frame and the desktop both implement the interface. The method
LoadComponentFromUrl() also uses the values in Table 107 to direct how the file is loaded.

Listing 296. Save the document with an inappropriate file extension.
ThisComponent.storeToURL("file:///c:/two.xls", Array())

TIP The macro in Listing 296 uses the file extension “xls”, which is typically used by Microsoft Excel. This
does not cause the file to be stored using the Microsoft Excel format. The file is saved using the standard
OOo file format if an export filter is not explicitly stated.

When you open a file, OOo checks to see if the file is in a standard OOo file format. If not, the file type is
determined based on the file extension. I cannot even count the number of times that I have been asked why
OOo is not able to open a comma-delimited text file. The usual answer is that a comma-delimited file must
have the file extension CSV or OOo cannot recognize the file. Although the file extension is important while
loading a file from the GUI, it is not important while saving. If you want to save a file in a non-
OpenOffice.org native format, you must explicitly tell OOo to save in a different file format (see Listing
297).

Listing 297. Export a document to the specified Microsoft Excel file format.
Dim args(0) as new com.sun.star.beans.PropertyValue
args(0).Name = "FilterName" 'I am so excited, which filter will we use?
args(0).Value = "MS Excel 97" 'Oh, the Excel 97 format!
ThisComponent.storeToURL("file:///c:/one.xls",args())

TIP Although the export filter names are the same as the import filter names, not every import filter can export
and not every export filter can import.

Impress and Draw, used to edit graphical content, support multiple draw pages. To export a draw page to a
specific graphics format requires the use of a graphics export filter (see Listing 298). The media type must
be specified or the export will fail.

Listing 298. Export the first draw page to a JPG file.
Dim oFilter
Dim args(1) as new com.sun.star.beans.PropertyValue
oFilter=CreateUnoService("com.sun.star.drawing.GraphicExportFilter")
oFilter.setSourceDocument(ThisComponent.drawPages(0))
args(0).Name = "URL" 'Where the file will be saved
args(0).Value = "file:///c:/one.JPG" 'The destination URL
args(1).Name = "MediaType" 'What type of file
args(1).Value = "image/jpeg" 'The file type
oFilter.filter(args())

318

 13.12. Manipulating styles

Styles provide a method of grouping formatting information. For example, a paragraph style defines the
font, character size, margins, and many other formatting options. Changing a style changes every object
using the style. The interface com.sun.star.style.XStyleFamiliesSupplier provides access to the styles used by
a document. The macro in Listing 299 displays the names of all styles in the current document; Figure 88
shows the results for one of my documents.

Listing 299. Display styles used in a document.
Sub DisplayAllStyles
 Dim oFamilies 'Families is interface com.sun.star.container.XNameAccess
 Dim oFamilyNames 'Names of family types. Array of string
 Dim oStyleNames 'Names of styles. Array of string
 Dim oStyles 'Styles is interface com.sun.star.container.XNameAccess
 Dim oStyle 'An individual style
 Dim s As String 'Utility string variable
 Dim n As Integer 'Index variable
 Dim i As Integer 'Index variable

 oFamilies = ThisComponent.StyleFamilies
 oFamilyNames = oFamilies.getElementNames()

 REM First, display the style types and the number
 REM of each style type.
 For n = LBound(oFamilyNames) To UBound(oFamilyNames)
 oStyles = oFamilies.getByName(oFamilyNames(n))
 s = s & oStyles.getCount() & " " & oFamilyNames(n) & CHR$(10)
 Next
 MsgBox s, 0, "Style Families"

 REM Now, display all of the different style names
 For n = LBound(oFamilyNames) To UBound(oFamilyNames)
 s = ""
 oStyles = oFamilies.getByName(oFamilyNames(n))
 oStyleNames = oStyles.getElementNames()
 For i = LBound(oStyleNames) To UBound (oStyleNames)
 s=s + i + " : " + oStyleNames(i) + CHR$(10)
 If ((i + 1) Mod 30 = 0) Then
 MsgBox s,0,oFamilyNames(n)
 s = ""
 End If
 Next i
 If Len(s) <> 0 Then MsgBox s,0,oFamilyNames(n)
 Next n
End Sub

319

Figure 88. The style families in one of my Writer documents.
The different document types contain different types of styles. Figure 88 shows the style families in a Writer
document. Calc documents contain the style families CellStyles and PageStyles; Impress documents contain
the style families Graphics and Default; Draw documents contain the style family Graphic. Although each
style type is different, they do have similarities. For example, each style implements both the
com.sun.star.style.Style service and the com.sun.star.style.XStyle interface. The common methods and
properties provide very rudimentary functionality (see Table 110).

Table 110. Object methods defined in the com.sun.star.style.Style service.
Method or
Property

Description

isUserDefined() Is this style user-defined? If not, it is included with OOo.

isInUse() Is this style used in the document?

getParentStyle() What is the parent style?

setParentStyle(name) Set the parent style.

IsPhysical Is the style physically created?

FollowStyle Style name applied to the next paragraph. For example, while using a heading
style I might want the next paragraph to be regular text.

DisplayName Name of the style as displayed in the user interface.

IsAutoUpdate If the properties of an object using this style are changed (for example, if I
change the font), are these changes automatically updated to the style?

Table 110 shows methods and properties that can be used to answer the common question, “How do I obtain
a list of styles that are currently used by a document?” See Listing 300 and Figure 89.

TIP Listing 299 accesses styles by name; Listing 300 accesses styles by index. Notice that when getCount()
returns 10, there are 10 items present, indexed 0 through 9.

Listing 300. Display all used paragraph styles.
Sub DisplayAllUsedParagraphStyles
 Dim oStyles 'Styles is interface com.sun.star.container.XNameAccess
 Dim oStyle 'An individual style
 Dim s As String 'Utility string variable
 Dim i As Integer 'Index variable

 oStyles = ThisComponent.StyleFamilies.getByName("ParagraphStyles")

320

 REM If getCount() says that there are 10 styles, this means from 0 to 9
 For i = 1 To oStyles.getCount()
 oStyle = oStyles.getByIndex(i-1)
 If oStyle.isInUse() Then s = s & oStyle.DisplayName & CHR$(10)
 Next
 MsgBox s,0,"Paragraph Styles In Use"
End Sub

Figure 89. Paragraph styles used in a Writer document.
Initially, I was confused by the results shown in Figure 89 because it included paragraph styles that I thought
I wasn’t using. I assumed that I had made a mistake while writing my document, so I started looking for
these accidentally used styles. To find the incorrectly styled text, I started with the Find & Replace dialog
(Edit | Find & Replace). If you check the box labeled “Search for Styles,” all of the styles used in the
document become available in the “Search for” drop-down box. I used this method to search for the style
“Text body” (shown in Figure 89), but it was not found in the document. After some moments of confusion
— in this case, roughly five minutes — I realized that I had not found a bug in OpenOffice.org, but rather I
had uncovered an interesting behavior of which I had not been previously aware. When a style is used in a
document, the parent style is listed as used even if it is not directly used. For example, in my document, the
style “Table Contents” uses “Text body” as the parent style.

The different style types contain methods and properties appropriate for their type. See
http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html for the common services,
interfaces, structs, and constants related to styles. The types shown in the style module are the base on which
the other styles are built. For example, the two services com.sun.star.text.TextPageStyle and
com.sun.star.sheet.TablePageStyle both have the service com.sun.star.style.PageStyle in common. To get a
feel for a style it is frequently expedient to start by inspecting the object.

MsgBox vObj.dbg_methods
MsgBox vObj.dbg_supportedInterfaces
MsgBox vObj.dbg_properties

The style objects, like many other objects, implement the XPropertySet interface. The macro in Listing 301
uses this interface to display a list of properties contained in the “_body text” paragraph style. Listing 301
does not display the value of each property; it only displays the name of each property. It is an interesting
exercise to modify Listing 301 to also display the value of each property that is a standard data type — a
property may be a complex object.

Listing 301. Display Properties for a paragraph style.
Sub StyleProperties
 Dim oStyles 'Styles is interface com.sun.star.container.XNameAccess
 Dim s As String 'Utility string variable

321

 Dim i As Integer 'Index variable
 Dim Props 'Array of properties

 REM Each style supports the com.sun.star.beans.XPropertySet interface
 REM This supports the method getPropertySetInfo(), which allows
 REM an enumeration of the contained properties.
 REM Get properties returns an array of com.sun.star.beans.Property
 oStyles = ThisComponent.StyleFamilies.getByName("ParagraphStyles")
 Props = oStyles.getByName("_body text").getPropertySetInfo().getProperties()

 For i = 0 To UBound(Props) 'For each property
 s = s & Props(i).Name & CHR$(10) 'Include the property name and new line
 If (i+1) MOD 30 = 0 Then 'If the string becomes too large
 MsgBox s,0,"Style Properties" 'display the current string
 s = "" 'Reset the list
 End If
 Next
 REM In case the entire list was not printed.
 If Len(s) <> 0 Then MsgBox s,0,"Style Properties"
End Sub

In my experience, it’s rare to access and inspect styles. It’s even less common to modify a style from a
macro. There are times, however, when this is done. For example, the page size is defined by the current
page style. Use the current controller to determine the current page style, and then use that to determine the
page dimensions. Listing 302 displays the size of the page, the margins, and the current cursor position on
the page. Figure 90 shows the results.

TIP The most common reason that I have seen for modifying a page style is to add a header or footer to the
current page style.

Portions of this code are speculative and have changed since I originally created the code. The current
controller returns the current cursor position based on the leftmost corner of the first page in the document.
On page 200, therefore, the Y coordinate may be very large. The following code attempts to compensate for
this, but, it does so poorly – where poorly means that I believe the answer is incorrect with respect to the top
and the bottom of the page.

Listing 302. PrintPageInformation
Sub PrintPageInformation
 Dim oViewCursor 'Current view cursor
 Dim oStyle 'Current page style
 Dim lHeight As Long 'Page height from Page Style in 1/100 mm
 Dim lWidth As Long 'Page width from Page Style in 1/100 mm
 Dim s As String 'Temporary string variable
 REM The current controller interfaces with the human — that's you!
 REM Well, we hope you are human anyway.
 REM Obtain the current view cursor from the controller. It is
 REM the thing that knows where the current cursor is, after all.
 oViewCursor = ThisComponent.CurrentController.getViewCursor()

 REM That view cursor knows a lot of things, including the
 REM current page style. Use the page style name to get
 REM a reference to the current page style.
 s = oViewCursor.PageStyleName

322

 oStyle = ThisComponent.StyleFamilies.getByName("PageStyles").getByName(s)
 s = "Page Style = " & s & CHR$(10)

 lHeight = oStyle.Height 'Page height in 1/100 mm
 lWidth = oStyle.Width 'Page width in 1/100 mm

 REM Page dimensions in mm, inches, and picas.
 s = s & "Page size is " & CHR$(10) &_
 " " & CStr(lWidth / 100.0) & " mm By " &_
 " " & CStr(lHeight / 100.0) & " mm" & CHR$(10) &_
 " " & CStr(lWidth / 2540.0) & " inches By " &_
 " " & CStr(lHeight / 2540.0) & " inches" & CHR$(10) &_
 " " & CStr(lWidth *72.0 / 2540.0) & " picas By " &_
 " " & CStr(lHeight *72.0 / 2540.0) & " picas" & CHR$(10)

 Dim dCharHeight As Double 'Character height in inches
 Dim iCurPage As Integer 'Current page

 Dim dXCursor As Double 'Distance from cursor to left in inches
 Dim dYCursor As Double 'Distance from cursor to top in inches
 Dim dXRight As Double 'Distance from cursor to right in inches
 Dim dYBottom As Double 'Distance from cursor to bottom in inches
 Dim dBottom As Double 'Bottom margin in inches
 Dim dLeft As Double 'Left margin in inches
 Dim dRight As Double 'Right margin in inches
 Dim dTop As Double 'Top margin in inches

 dCharHeight = oViewCursor.CharHeight / 72.0 'Convert points to inches
 iCurPage = oViewCursor.getPage() 'Page number
 s = s & "Current page = " & iCurPage & CHR$(10)

 dBottom = oStyle.BottomMargin / 2540.0 : dLeft = oStyle.LeftMargin / 2540.0
 dRight = oStyle.RightMargin / 2540.0 : dTop = oStyle.TopMargin / 2540.0
 s = s & "Margin (inches): Left= " & dLeft & " Right= " & dRight & CHR$(10)
 s = s & "Margin (inches): Top= " & dTop & " Bottom= " & dBottom & CHR$(10)

 Dim v
 REM Cursor's coordinates relative to the top left position of the page
 REM Return type is com.sun.star.awt.Point
 REM Units are in twips. Convert them to inches.
 v = oViewCursor.getPosition()

 REM Page number from the view cursor includes "phantom" pages because
 REM two pages in a row must both be on say a right side.
 REM v.Y does not include this.
 Dim realPageNumber As Long
 realPageNumber = Fix(v.Y / lHeight)

 Dim realY : realY = v.Y - realPageNumber * lHeight

 REM Place the cursor as the distance to the margin and then add the margin.
 REM For the vertical height add half the character height. I should
 REM probably do this for the character width as well for horizontal.

323

 dYCursor = realY/2540.0 + dTop + dCharHeight / 2
 dYBottom = (lHeight - realY)/2540.0 - dTop - dCharHeight / 2
 dXCursor = v.X/2540.0 + dLeft
 dXRight = (lWidth - v.X)/2540.0 - dLeft

 s=s &"Cursor is "&Format(dXCursor, "0.##") & " inches from left "&CHR$(10)
 s=s &"Cursor is "&Format(dXRight, "0.##") & " inches from right "&CHR$(10)
 s=s &"Cursor is "&Format(dYCursor, "0.##") & " inches from top "&CHR$(10)
 s=s &"Cursor is "&Format(dYBottom, "0.##") & " inches from bottom "&CHR$(10)
 s=s &"Char height = " & Format(dCharHeight, "0.####") & " inches"&CHR$(10)
 MsgBox s, 0, "Page information"
End Sub

Figure 90. Information from the page style.
Calc documents are composed of spreadsheets. Each sheet can use a different page style. The macro in
Listing 302 obtains the current page style using the view cursor. To obtain the style from a Calc document,
use the active sheet.

REM Use the currently active sheet to obtain the page style.
REM In a Calc document, the current controller knows which sheet
REM is active.
Print "Style = " & ThisComponent.CurrentController.getActiveSheet().PageStyle

 13.12.1. Style utilities

Although modifying styles using macros is easy, small details can cause big problems; for example,
specifying a paragraph style is not available on the current computer.

Listing 303. Check a document for a paragraph style.
Function DocHasParStyle(oDoc, sName$) As Boolean
 Dim oStyles
 oStyles = oDoc.StyleFamilies.getByName("ParagraphStyles")
 DocHasParStyle() = oStyles.hasByName(sName)
End Function

Checking for the character style is equally trivial.

Listing 304. Check a document for a character style.
Function DocHasCharStyle(oDoc, sName$) As Boolean
 Dim oStyles
 oStyles = oDoc.StyleFamilies.getByName("CharacterStyles")

324

 DocHasCharStyle() = oStyles.hasByName(sName)
End Function

To determine if a document supports a specific font, check the font descriptors available from the container
window.

Listing 305. Check a document for a font.
Function DocHasFontName(oDoc, sName$) As Boolean
 Dim oWindow
 Dim oFonts()
 Dim i%

 oWindow = oDoc.getCurrentController().getFrame().getContainerWindow()
 oFonts() = oWindow.getFontDescriptors()
 For i = LBound(oFonts()) To UBound(oFonts())
 If oFonts(i).Name = sName Then
 DocHasFontName() = True
 Exit Function
 End If
 Next
 DocHasFontName() = False
End Function

A property is a structure with a name and a value. The following macro accepts a name and a value and
returns a property with the name and value.

Listing 306. Create a property with the specified name and value.
'**
'** Create and return a PropertyValue structure.
'**
Function CreateProperty(Optional cName As String, Optional uValue) As
com.sun.star.beans.PropertyValue
 Dim oPropertyValue As New com.sun.star.beans.PropertyValue
 If Not IsMissing(cName) Then
 oPropertyValue.Name = cName
 EndIf
 If Not IsMissing(uValue) Then
 oPropertyValue.Value = uValue
 EndIf
 CreateProperty() = oPropertyValue
End Function

Listing 306 allows properties to be created directly in an array.

Listing 307. Creating properties used to create a character style.
 REM Base style for all.
 REM computer code that is not color coded and used in regular text
 REM uses this style.
 oProps() = Array(CreateProperty("CharFontName", sFontName), _
 CreateProperty("CharColor", RGB(0, 0, 0)), _
 CreateProperty("CharNoHyphenation", True))

 CreateCharacterStyle("OOoComputerCode", oProps())

 REM Base style for normal listings.
 oProps() = Array(CreateProperty("ParentStyle", "OOoComputerCode"))

325

 CreateCharacterStyle("_OOoComputerBase", oProps())

The difficult part is determining what properties to set and what properties to not set. It is a useful exercise
to inspect a manually created style containing the values of interest. A property that is not specifically set
inherits its value from the parent style or existing format; for example, setting a character style to bold but
not specifying the font or font size, produces a character style that will not affect font or font size and only
set the font to be bold.

Listing 308. Character styles used to format code examples.
'**
'** Create character styles for StarBasic using the same colors
'** as the OOo IDE.
'**
Function CreateStarBasicCharStyles()
 Dim oProps()

 REM If you do not want something to have a language, which prevents
 REM a spell check, set CharLocale to noLocale.
 Dim noLocale As New com.sun.star.lang.Locale
 noLocale.Country = ""
 noLocale.Language = "zxx"

 If NOT CreateBaseCharStyles() Then
 CreateStarBasicCharStyles() = False
 Exit Function
 End If

 oProps() = Array(CreateProperty("ParentStyle", "_OOoComputerBase"), _
 CreateProperty("CharColor", RGB(76, 76, 76)))
 CreateCharacterStyle("_OOoComputerComment", oProps())

 oProps() = Array(CreateProperty("ParentStyle", "_OOoComputerBase"), _
 CreateProperty("CharColor", RGB(255, 0, 0)))
 CreateCharacterStyle("_OOoComputerLiteral", oProps())

 oProps() = Array(CreateProperty("ParentStyle", "_OOoComputerBase"), _
 CreateProperty("CharLocale", noLocale), _
 CreateProperty("CharColor", RGB(0, 0, 128)))
 CreateCharacterStyle("_OOoComputerKeyWord", oProps())

 oProps() = Array(CreateProperty("ParentStyle", "_OOoComputerBase"), _
 CreateProperty("CharColor", RGB(0, 128, 0)))
 CreateCharacterStyle("_OOoComputerIdent", oProps())
 CreateStarBasicCharStyles() = True
End Function

The following macro creates a character style if it does not exist. A special check is performed to verify that
the parent style exists; the parent style must be created before the child style.

Listing 309. Create a character style if it does not exist.
Sub CreateCharacterStyle(sStyleName$, oProps())
 Dim i%
 Dim oFamilies

326

 Dim oStyle
 Dim oStyles

 oFamilies = ThisComponent.StyleFamilies
 oStyles = oFamilies.getByName("CharacterStyles")
 If oStyles.HasByName(sStyleName) Then
 'PrintColor(oStyles.getByName(sStyleName).CharColor)
 Exit Sub
 End If
 oStyle = ThisComponent.createInstance("com.sun.star.style.CharacterStyle")
 For i=LBound(oProps) To UBound(oProps)
 If oProps(i).Name = "ParentStyle" Then

 If oStyles.HasByName(oProps(i).Value) Then
 oStyle.ParentStyle = oProps(i).Value
 Else
 Print "Parent character style (" & oProps(i).Value & _
 ") does not exist, ignoring parent."
 End If
 oStyle.ParentStyle = oProps(i).Value
 Else
 oStyle.setPropertyValue(oProps(i).Name, oProps(i).Value)
 End If
 Next
 oStyles.insertByName(sStyleName, oStyle)
End Sub

A paragraph style is a bit more complicated because a few elements require special consideration; for
example, setting tab stops.

Listing 310. Create a paragraph style if it does not exist.
Sub CreateParStyle(sStyleName$, oProps())
 Dim i%, j%
 Dim oFamilies
 Dim oStyle
 Dim oStyles
 Dim tabStops%

 oFamilies = ThisComponent.StyleFamilies
 oStyles = oFamilies.getByName("ParagraphStyles")
 If oStyles.HasByName(sStyleName) Then
 Exit Sub
 End If
 oStyle = ThisComponent.createInstance("com.sun.star.style.ParagraphStyle")
 For i=LBound(oProps) To UBound(oProps)
 If oProps(i).Name = "ParentStyle" Then
 If oStyles.HasByName(oProps(i).Value) Then
 oStyle.ParentStyle = oProps(i).Value
 Else
 Print "Parent paragraph style (" & oProps(i).Value & _
 ") does not exist, ignoring parent"
 End If
 ElseIf oProps(i).Name = "ParaTabStops" Then
 tabStops = oProps(i).Value

327

 Dim tab(0 To 19) As New com.sun.star.style.TabStop
 For j =LBound(tab) To UBound(tab)
 tab(j).Alignment = com.sun.star.style.TabAlign.LEFT
 tab(j).DecimalChar = ASC(".")
 tab(j).FillChar = 32
 tab(j).Position = (j+1) * tabStops
 Next
 oStyle.ParaTabStops = tab
 ElseIf oProps(i).Name = "FollowStyle" Then
 If oStyles.HasByName(oProps(i).Value) OR oProps(i).Value = sStyleName Then
 oStyle.setPropertyValue(oProps(i).Name, oProps(i).Value)
 Else
 Print "Next paragraph style (" & oProps(i).Value & _
 ") does not exist, ignoring for style " & sStyleName
 End If
 Else
 oStyle.setPropertyValue(oProps(i).Name, oProps(i).Value)
 End If
 Next
 oStyles.insertByName(sStyleName, oStyle)
End Sub

This code creates the primary paragraph styles used to format code styles in this document.

Listing 311. Properties to create a paragraph style.
 REM Tab stops are set in the paragraph style
 ' 1/4 of an inch
 tabStopLoc% = 2540 / 4

 oProps() = Array(CreateProperty("ParaTopMargin", CLng(0)), _
 CreateProperty("ParaBottomMargin", CLng(2540 * 0.03)), _
 CreateProperty("ParaLeftMargin", CLng(2540 * 0.20)), _
 CreateProperty("ParaRightMargin", CLng(0)), _
 CreateProperty("ParaFirstLineIndent", CLng(0)), _
 CreateProperty("CharFontName",sFontName), _
 CreateProperty("ParaTabStops", tabStopLoc), _
 CreateProperty("ParaLineNumberCount", False), _
 CreateProperty("WritingMode", com.sun.star.text.WritingMode.LR_TB), _
 CreateProperty("CharAutoKerning", False), _
 CreateProperty("CharHeight", fParNormalCharHeight))
 CreateParStyle("_OOoComputerCode", oProps())

 oProps() = Array(CreateProperty("ParentStyle", "_OOoComputerCode"), _
 CreateProperty("ParaTopMargin", CLng(0)), _
 CreateProperty("ParaBottomMargin", CLng(2540 * 0.10)), _
 CreateProperty("ParaLeftMargin", CLng(2540 * 0.20)), _
 CreateProperty("ParaRightMargin", CLng(0)), _
 CreateProperty("ParaFirstLineIndent", CLng(0)), _
 CreateProperty("CharFontName",sFontName), _
 CreateProperty("ParaTabStops", tabStopLoc), _
 CreateProperty("ParaLineNumberCount", False), _
 CreateProperty("WritingMode", com.sun.star.text.WritingMode.LR_TB), _
 CreateProperty("CharAutoKerning", False), _
 CreateProperty("CharHeight", fParNormalCharHeight), _

328

 CreateProperty("FollowStyle", sNextStyle))
 CreateParStyle("_OOoComputerCodeLastLine", oProps())

 13.13. Dealing with locale

A locale represents a specific geographical, political, or cultural region. Numbers and dates are considered
locale-sensitive, so number formats are associated with a locale. Use Tools | Options | Language Settings |
Languages to see which locale is used for your computer. Creating a locale is very easy.

Dim aLocale As New com.sun.star.lang.Locale
aLocale.Language = "fr"
aLocale.Country = "FR"

TIP OOo may not support every possible locale, but it will attempt to use the best possible match.

The locale depends upon both the language and the country. Some countries use multiple languages and
some languages are used in multiple countries. Table 111 contains the two-character code that identifies each
language, and Table 112 contains the two-character code that identifies each country.

TIP Although the locale codes are not case sensitive, they are typically written in lowercase for the language
and uppercase for the country.

Table 111. Locale language codes, alphabetized by code.
Code Language Code Language Code Language

aa Afar ab Abkhazian af Afrikaans

am Amharic ar Arabic as Assamese

ay Aymara az Azerbaijani ba Bashkir

be Byelorussian bg Bulgarian bh Bihari

bi Bislama bn Bengali; Bangla bo Tibetan

br Breton ca Catalan co Corsican

cs Czech cy Welsh da Danish

de German dz Bhutani el Greek

en English eo Esperanto es Spanish

et Estonian eu Basque fa Persian

fi Finnish fj Fiji fo Faroese

fr French fy Frisian ga Irish

gd Scots Gaelic gl Galician gn Guarani

gu Gujarati ha Hausa he Hebrew (formerly iw)

hi Hindi hr Croatian hu Hungarian

hy Armenian ia Interlingua id Indonesian (formerly in)

ie Interlingue ik Inupiak is Icelandic

it Italian iu Inuktitut ja Japanese

jw Javanese ka Georgian kk Kazakh

329

Code Language Code Language Code Language

kl Greenlandic km Cambodian kn Kannada

ko Korean ks Kashmiri ku Kurdish

ky Kirghiz la Latin ln Lingala

lo Laothian lt Lithuanian lv Latvian, Lettish

mg Malagasy mi Maori mk Macedonian

ml Malayalam mn Mongolian mo Moldavian

mr Marathi ms Malay mt Maltese

my Burmese na Nauru ne Nepali

nl Dutch no Norwegian oc Occitan

om (Afan) Oromo or Oriya pa Punjabi

pl Polish ps Pashto, Pushto pt Portuguese

qu Quechua rm Rhaeto-Romance rn Kirundi

ro Romanian ru Russian rw Kinyarwanda

sa Sanskrit sd Sindhi sg Sangho

sh Serbo-Croatian si Sinhalese sk Slovak

sl Slovenian sm Samoan sn Shona

so Somali sq Albanian su Sundanese

ss Siswati st Sesotho sv Swedish

sw Swahili ta Tamil te Telugu

tg Tajik th Thai ti Tigrinya

tk Turkmen tl Tagalog tn Setswana

to Tonga tr Turkish ts Tsonga

tt Tatar tw Twi ug Uighur

uk Ukrainian ur Urdu uz Uzbek

vi Vietnamese vo Volapuk wo Wolof

xh Xhosa yi Yiddish (formerly ji) yo Yoruba

za Zhuang zh Chinese zu Zulu

330

Table 112. Locale country codes, capitalized by country.
Code Country Code Country

AF Afghanistan AL Albania

DZ Algeria AS American Samoa

AD Andorra AO Angola

AI Anguilla AQ Antarctica

AG Antigua and Barbuda AR Argentina

AM Armenia AW Aruba

AU Australia AT Austria

AZ Azerbaijan BS Bahamas

BH Bahrain BD Bangladesh

BB Barbados BY Belarus

BE Belgium BZ Belize

BJ Benin BM Bermuda

BT Bhutan BO Bolivia

BA Bosnia and Herzegowina BW Botswana

BV Bouvet Island BR Brazil

IO British Indian Ocean Territory BN Brunei Darussalam

BG Bulgaria BF Burkina Faso

BI Burundi KH Cambodia

CM Cameroon CA Canada

CV Cape Verde KY Cayman Islands

CF Central African Republic TD Chad

CL Chile CN China

CX Christmas Island CC Cocos (Keeling) Islands

CO Colombia KM Comoros

CD Congo, Democratic Republic of (was
Zaire)

CG Congo, People’s Republic of

CK Cook Islands CR Costa Rica

CI Cote D’Ivoire HR Croatia (local name: Hrvatska)

CU Cuba CY Cyprus

CZ Czech Republic DK Denmark

DJ Djibouti DM Dominica

DO Dominican Republic TL East Timor

EC Ecuador EG Egypt

SV El Salvador GQ Equatorial Guinea

ER Eritrea EE Estonia

ET Ethiopia FK Falkland Islands (Malvinas)

FO Faroe Islands FJ Fiji

FI Finland FR France

331

Code Country Code Country

FX France, Metropolitan GF French Guiana

PF French Polynesia TF French Southern Territories

GA Gabon GM Gambia

GE Georgia DE Germany

GH Ghana GI Gibraltar

GR Greece GL Greenland

GD Grenada GP Guadeloupe

GU Guam GT Guatemala

GN Guinea GW Guinea-Bissau

GY Guyana HT Haiti

HM Heard and Mc Donald Islands HN Honduras

HK Hong Kong HU Hungary

IS Iceland IN India

ID Indonesia IR Iran (Islamic Republic Of)

IQ Iraq IE Ireland

IL Israel IT Italy

JM Jamaica JP Japan

JO Jordan KZ Kazakhstan

KE Kenya KI Kiribati

KP Korea, Democratic People’s Republic Of KR Korea, Republic Of

KW Kuwait KG Kyrgyzstan

LA Lao People’s Democratic Republic LV Latvia

LB Lebanon LS Lesotho

LR Liberia LY Libyan Arab Jamahiriya

LI Liechtenstein LT Lithuania

LU Luxembourg MK Macedonia, The Former Yugoslav Republic Of

MG Madagascar MW Malawi

MY Malaysia MV Maldives

ML Mali MT Malta

MH Marshall Islands MQ Martinique

MR Mauritania MU Mauritius

YT Mayotte MX Mexico

FM Micronesia, Federated States Of MD Moldova, Republic Of

MC Monaco MN Mongolia

MS Montserrat MA Morocco

MZ Mozambique MM Myanmar

NA Namibia NR Nauru

NP Nepal NL Netherlands

332

Code Country Code Country

AN Netherlands Antilles NC New Caledonia

NZ New Zealand NI Nicaragua

NE Niger NG Nigeria

NU Niue NF Norfolk Island

MP Northern Mariana Islands NO Norway

OM Oman PK Pakistan

PW Palau PS Palestinian Territory, Occupied

PA Panama PG Papua New Guinea

PY Paraguay PE Peru

PH Philippines PN Pitcairn

PL Poland PT Portugal

PR Puerto Rico QA Qatar

RE Reunion RO Romania

RU Russian Federation RW Rwanda

KN Saint Kitts And Nevis LC Saint Lucia

VC Saint Vincent and The Grenadines WS Samoa

SM San Marino ST Sao Tome and Principe

SA Saudi Arabia SN Senegal

SC Seychelles SL Sierra Leone

SG Singapore SK Slovakia (Slovak Republic)

SI Slovenia SB Solomon Islands

SO Somalia ZA South Africa

GS South Georgia and The South Sandwich
Islands

ES Spain

LK Sri Lanka SH St. Helena

PM St. Pierre And Miquelon SD Sudan

SR Suriname SJ Svalbard And Jan Mayen Islands

SZ Swaziland SE Sweden

CH Switzerland SY Syrian Arab Republic

TW Taiwan TJ Tajikistan

TZ Tanzania, United Republic Of TH Thailand

TG Togo TK Tokelau

TO Tonga TT Trinidad and tobago

TN Tunisia TR Turkey

TM Turkmenistan TC Turks And Caicos Islands

TV Tuvalu UG Uganda

UA Ukraine AE United Arab Emirates

GB United Kingdom US United States

333

Code Country Code Country

UM United States Minor Outlying Islands UY Uruguay

UZ Uzbekistan VU Vanuatu

VA Vatican City State (Holy See) VE Venezuela

VN Viet Nam VG Virgin Islands (British)

VI Virgin Islands (U.S.) WF Wallis and Futuna Islands

EH Western Sahara YE Yemen

YU Yugoslavia ZM Zambia

ZW Zimbabwe

I make extensive use of styles in the OOo documents that I write. I use a specific paragraph style to format
my code samples. Each paragraph style allows you to set the default character attributes to use in the
paragraph. In OOo, characters specify the locale so I set the locale for this paragraph style to unknown; this
prevents the spell-checker from checking my code samples.

To tell OOo that a word is French, and should be checked as French, set the locale of the characters to
French. The code in Listing 312 traverses the paragraphs in a document and sets the locale on each one.

Listing 312. Set a simple Writer document to use a French locale.
Sub SetDocumentLocale
 Dim aLocale As New com.sun.star.lang.Locale
 aLocale.Language = "fr" 'Set the Locale to use the French language
 aLocale.Country = "FR" 'Set the Locale to use France as the country
 Dim oCursor 'Cursor used to traverse the document.
 Dim oText 'The document text object

 oText = ThisComponent.Text 'Writer documents have a Text object
 oCursor = oText.createTextCursor() 'Create a text cursor

 REM Move cursor to the start of the document and do not select text.
 oCursor.GoToStart(False)

 REM Move to the end of the paragraph, selecting the entire paragraph.
 REM gotoNextParagraph() returns False if it fails.
 Do While oCursor.gotoNextParagraph(True)
 oCursor.CharLocale = aLocale 'This can fail for some paragraph types
 oCursor.goRight(0, False) 'Deselect all text
 Loop
End Sub

The spell-checker, hyphenation, and thesaurus all require a locale to function. They will not function,
however, if they aren’t properly configured. Use Tools | Options | Language Settings | Writing Aids to
configure these in OOo. The macro in Listing 313 obtains a SpellChecker, Hyphenator, and Thesaurus, all of
which require a Locale object.

Listing 313. Spell Check, Hyphenate, and Thesaurus.
Sub SpellCheckExample
 Dim s() 'Contains the words to check
 Dim vReturn 'Value returned from SpellChecker, Hyphenator, and Thesaurus
 Dim i As Integer 'Utility index variable

334

 Dim msg$ 'Message string

 REM Although I create an empty argument array, I could also
 REM use Array() to return an empty array.
 Dim emptyArgs() as new com.sun.star.beans.PropertyValue

 Dim aLocale As New com.sun.star.lang.Locale
 aLocale.Language = "en" 'Use the English language
 aLocale.Country = "US" 'Use the United States as the country

 REM Words to check for spelling, hyphenation, and thesaurus
 s = Array("hello", "anesthesiologist",_
 "PNEUMONOULTRAMICROSCOPICSILICOVOLCANOCONIOSIS",_
 "Pitonyak", "misspell")

 REM *********Spell Check Example!
 Dim vSpeller As Variant
 vSpeller = createUnoService("com.sun.star.linguistic2.SpellChecker")
 'Use vReturn = vSpeller.spell(s, aLocale, emptyArgs()) if you want options!
 For i = LBound(s()) To UBound(s())
 vReturn = vSpeller.isValid(s(i), aLocale, emptyArgs())
 msg = msg & vReturn & " for " & s(i) & CHR$(10)
 Next
 MsgBox msg, 0, "Spell Check Words"
 msg = ""

 '******Hyphenation Example!
 Dim vHyphen As Variant
 vHyphen = createUnoService("com.sun.star.linguistic2.Hyphenator")
 For i = LBound(s()) To UBound(s())
 'vReturn = vHyphen.hyphenate(s(i), aLocale, 0, emptyArgs())
 vReturn = vHyphen.createPossibleHyphens(s(i), aLocale, emptyArgs())
 If IsNull(vReturn) Then
 'hyphenation is probablly off in the configuration
 msg = msg & " null for " & s(i) & CHR$(10)
 Else
 msg = msg & vReturn.getPossibleHyphens() & " for " & s(i) & CHR$(10)
 End If
 Next
 MsgBox msg, 0, "Hyphenate Words"
 msg = ""

335

 '******Thesaurus Example!
 Dim vThesaurus As Variant
 Dim j As Integer, k As Integer
 vThesaurus = createUnoService("com.sun.star.linguistic2.Thesaurus")
 s = Array("hello", "stamp", "cool")
 For i = LBound(s()) To UBound(s())
 vReturn = vThesaurus.queryMeanings(s(i), aLocale, emptyArgs())
 If UBound(vReturn) < 0 Then
 Print "Thesaurus found nothing for " & s(i)
 Else
 msg = "Word " & s(i) & " has the following meanings:" & CHR$(10)
 For j = LBound(vReturn) To UBound(vReturn)
 msg=msg & CHR$(10) & "Meaning = " & vReturn(j).getMeaning() & CHR$(10)
 msg = msg & Join(vReturn(j).querySynonyms(), " ") & CHR$(10)
 Next
 MsgBox msg, 0, "Althernate Meanings"
 End If
 Next
End Sub

It is possible to obtain the default locale that is configured for OOo. Laurent Godard, an active
OpenOffice.org volunteer, wrote the macro in Listing 314, which obtains OOo’s currently configured locale.

Listing 314. Currently configured language (Locale).
Sub OOoLang()
 'Retreives the running OOO version
 'Author : Laurent Godard
 'e-mail : listes.godard@laposte.net
 '
 Dim aSettings, aConfigProvider
 Dim aParams2(0) As new com.sun.star.beans.PropertyValue
 Dim sProvider$, sAccess$
 sProvider = "com.sun.star.configuration.ConfigurationProvider"
 sAccess = "com.sun.star.configuration.ConfigurationAccess"
 aConfigProvider = createUnoService(sProvider)
 aParams2(0).Name = "nodepath"
 aParams2(0).Value = "/org.openoffice.Setup/L10N"
 aSettings = aConfigProvider.createInstanceWithArguments(sAccess, aParams2())

 Dim OOLangue as string
 OOLangue= aSettings.getbyname("ooLocale") 'en-US
 MsgBox "OOo is configured with Locale " & OOLangue, 0, "OOo Locale"
End Sub

The above macro is reputed to fail on AOO, but, the following should work correctly. The macro does
function correctly with LO. The macro shown below should work for both AOO and LO.

Listing 315. You can use the tools library to get the current locale as a string.
GlobalScope.BasicLibraries.loadLibrary("Tools")
Print GetRegistryKeyContent("org.openoffice.Setup/L10N",FALSE).getByName("ooLocale")

336

 13.14. Enumerating printers

The ability to enumerate printers has long been lacking in OOo. To obtain a printer list in OOo version 1.x
or 2.x I used the .uno:print dispatch to open the print dialog, and then I directly access the dialog to extract
the list of available printers.

The PrinterServer service was introduced, but it was not properly constructed, so the methods in the
XPrinterServer interface are not directly available; according to Ariel Constenla-Haile this is slated to be
ready in OOo 3.5. Thankfully, Niklas Nebel provided a working solution. The solution is a bit tricky, but it
demonstrates how to work around the problem.

Listing 316. Display available printers.
Sub PrintAllPrinterNames()
 Dim oPrintServer ' The print server service.
 Dim oCore ' Get classes and other objects by name.
 Dim oClass ' XPrinterServer class object.
 Dim oMethod ' getPrinterNames method from the XPrinterServer class.
 Dim aNames ' List of printer names.

 ' Create the object that will not be directly usable until OOo 3.5.
 oPrintServer = CreateUnoService("com.sun.star.awt.PrinterServer")
 oCore = CreateUnoService("com.sun.star.reflection.CoreReflection")

 ' Get the class object for the XPrinterServer interface.
 oClass = oCore.forName("com.sun.star.awt.XPrinterServer")

 ' Get the getPrinterNames method for the XPrinterServer class.
 oMethod = oClass.getMethod("getPrinterNames")

 ' Call the getPrinterNames method on the PrinterServer object.
 aNames = oMethod.invoke(oPrintServer, Array())
 MsgBox Join(aNames, CHR$(10))
End Sub

TIP If OOo does not recognize your printer by it's name, surround the printer name with angle brackets
“<printer_name>”, in the past some printers required this.

Prior to OOo 3.5, the PrinterServer cannot be used from Basic, because XTypeProvider is not declared to be
inherited by that class; although it is implemented in the class. Basic cannot, therefore, recognize the
methods supported by the object. The code in Listing 316 demonstrates how to call the method directly.

 13.15. Printing documents

The primary printing functionality is common to all OOo document types. The interface
com.sun.star.view.XPrintable defines three methods (see Table 113).

Table 113. Object methods defined by com.sun.star.view.XPrintable.
Object Method Description

getPrinter() Default printer as an array of properties (com.sun.star.view.PrinterDescriptor).

setPrinter(properties) Assign a new printer to the object (com.sun.star.view.PrinterDescriptor).

print(properties) Print the document (com.sun.star.view.PrintOptions).

337

The object method getPrinter() returns an array of properties that describe the printer (see Figure 91). The
macro in Listing 317 demonstrates how to access and interpret each of the properties (see Table 114 for
supported properties).

Listing 317. Display printer properties.
Sub DisplayPrinterProperties
 Dim Props 'Array of com.sun.star.beans.PropertyValue
 Dim i% 'Index variable of type Integer
 Dim s$ 'Display string
 Dim v '
 Dim sName$ '
 On Error Resume Next
 Props = ThisComponent.getPrinter()
 For i = 0 To UBound(Props)
 sName = props(i).Name
 v = props(i).Value
 s = s & sName & " = "
 If sName = "PaperOrientation" Then
 REM com.sun.star.view.PaperOrientation.LANDSCAPE also supported
 s = s & IIf(v=com.sun.star.view.PaperOrientation.PORTRAIT,_
 "Portrait", "Landscape") & " = " & CStr(v)
 ElseIf sName = "PaperFormat" Then
 Select Case v
 Case com.sun.star.view.PaperFormat.A3
 s = s & "A3"
 Case com.sun.star.view.PaperFormat.A4
 s = s & "A4"
 Case com.sun.star.view.PaperFormat.A5
 s = s & "A5"
 Case com.sun.star.view.PaperFormat.B4
 s = s & "B4"
 Case com.sun.star.view.PaperFormat.B5
 s = s & "B5"
 Case com.sun.star.view.PaperFormat.LETTER
 s = s & "LETTER"
 Case com.sun.star.view.PaperFormat.LEGAL
 s = s & "LEGAL"
 Case com.sun.star.view.PaperFormat.TABLOID
 s = s & "TABLOID"
 Case com.sun.star.view.PaperFormat.USER
 s = s & "USER"
 Case Else
 s = s & "Unknown value"
 End Select
 s = s & " = " & CStr(v)
 ElseIf sName = "PaperSize" Then
 REM type is com.sun.star.awt.Size
 REM The size is in TWIPS and there are 1440 twips per inch
 s=s & CDbl(v.Width)/1440.0 & "x" & CDbl(v.Height)/1440.0 & " (inches)"
 Else
 s = s & CStr(v)

338

 End If
 s = s & CHR$(10)
 Next
 MsgBox s, 0, "Printer Properties"
End Sub

Figure 91. Properties of the default printer.
Table 114. Properties defined by the service com.sun.star.view.PrinterDescriptor.
Property Description

Name Name of the printer queue.

PaperOrientation Paper orientation (com.sun.star.view.PaperOrientation).

PaperFormat Predefined paper sizes (com.sun.star.view.PaperFormat).

PaperSize Paper size in twips (com.sun.star.awt.Size).

IsBusy Is the printer busy?

CanSetPaperOrientation Can the paper orientation be set?

CanSetPaperFormat Are other paper formats supported?

CanSetPaperSize Can the paper size be set?

Call the print() method with no properties to print a single copy of the document to the current printer. All of
the document types support the properties in Table 115. The Pages property supports the standard format
used in the Print dialog. The format string “1, 3, 4-7, 9-” prints pages 1, 3, 4 through 7, and 9 through the
last page.

Table 115. Properties defined by com.sun.star.view.PrintOptions.
Property Description

Collate Collate the printed pages (set to True or False).

CopyCount Number of copies to print.

DuplexMode Use the com.sun.star.view.DuplexMode constants to set duplex mode. Supported
values include UNKNOWN (0), OFF (1), LONGEDGE (2), and SHORTEDGE
(3).

FileName Send the output to a file rather than to the printer.

Pages Specifies pages and page ranges to print.

Wait If TRUE, the print request is synchronous; wait for the job to finish before
returning.

339

Listing 318. Print pages 30 and 31 of the current document.
Dim Props(1) As New com.sun.star.beans.PropertyValue
Props(0).Name = "Pages" : Props(0).Value = "30-31"
ThisComponent.print(Props())

When a document is printed, control returns to the caller before the printing is complete. If you close the
document before printing is done, OpenOffice is likely to crash because the OO internals are still using the
document. It’s possible to set up an event listener that watches for the print job to finish, but there’s an easier
way that isn’t currently documented. The print() method accepts an array of properties that direct the
printing. The “wait” argument with a Boolean value of True instructs the print() method to not return until
after printing is complete. As of May 17, 2011 with OOo 3.3, the wait argument does not work; print listener
is demonstrated in section 13.15.3 A Calc example with a Print listener.

TIP Closing a document while OpenOffice.org is printing the document can cause OpenOffice.org
to crash. Use the “wait” property to avoid this problem.

On Unix-type computers, printers are configured to work with OpenOffice.org using the “spadmin” utility.
After a printer has been configured for OOo, it is available for use by name. You can still use printers that
have not been configured for OOo, but you must enclose the printer name between the characters “<” and
“>”. To print with a printer other than the default, use code similar to the following:

Public oProps(0) as New com.sun.star.beans.PropertyValue
Public oOpts(1) as New com.sun.star.beans.PropertyValue
Dim oDoc 'Document to print.
Dim oPrinter 'Array of properties that define the printer.
Dim sUrl$ 'URL of the document to load and print.
Dim sPrinter$ 'Name of the printer.

REM Set the name of the printer as known by the system.
sPrinter = "HP-Color-LaserJet-4650DN"

REM Load the document in hidden mode so it is not visible
REM on the screen.
oProps(0).Name = "Hidden"
oProps(0).Value = True

REM Now load the document.
sUrl = "file:///c:/test_doc.sxw"
oDoc = oDesk.LoadComponentFromUrl(sUrl, "_blank", 63, oProps())

REM Obtain the current printer object from the document.
REM This is really an array of property values.
REM Change the name of the object to reference the printer that
REM you want to use. Notice that the printer name is the system name.
oPrinter = oDoc.getPrinter()
For i = LBound(oPrinter) to UBound(oPrinter)
 If oPrinter(i).Name = "Name" Then
 oPrinter(i).Value = sPrinter
 End If
Next i

340

REM Set the printer back into the document. The only thing
REM that has changed is the printer name.
oDoc.setPrinter(oPrinter)

REM Now, set up the print options for actual printing.
REM Notice that the printer name is surrounded by the characters < and >.
REM Also notice that the print() method is set to not return until
REM after printing is completed.
oOpts(0).Name = "Name"
oOpts(0).Value = "<" & sPrinter & ">"
oOpts(1).Name = "Wait"
oOpts(1).Value = True
oDoc.Print(oOpts())

TIP Historically, it has been experimentally determined that you must set the destination printer in the
document before trying to print to a printer other than the default.

 13.15.1. Printing Writer documents

Different document types support extra options for printing. Text documents support the interface
com.sun.star.text.XPagePrintable (see Table 116). The XPagePrintable interface implements an alternate
method of printing the document that provides more control of the output. The primary advantage is that you
can print multiple pages from the document on a single output page.

Table 116. Methods defined by the com.sun.star.text.XPagePrintable interface.
Object Methods Description

getPagePrintSettings() Returns an array of properties (see Table 117).

setPagePrintSettings(properties) Change the settings (see Table 117).

printPages(properties) Print using properties in Table 115.

The object method printPages() accepts the same properties as the print() method (see Table 115). The
methods to get and set the page print properties are outlined in Table 117. The macro in Listing 319 obtains
and prints the current page print properties, shown in Figure 92.

Table 117. Properties used by the com.sun.star.text.XPagePrintable interface.
Property Description

PageRows Number of rows of pages on each printed page.

PageColumns Number of columns of pages on each printed page.

LeftMargin Left margin.

RightMargin Right margin.

TopMargin Top margin.

BottomMargin Bottom margin.

HoriMargin Margin between rows of pages.

VertMargin Margin between columns of pages.

IsLandscape True or False; print in landscape format.

341

Listing 319. Display Page Print Properties.
Sub DisplayPagePrintProperties
 Dim Props 'Array of com.sun.star.beans.PropertyValue
 Dim i% 'Index variable of type Integer
 Dim s$ 'Display string
 If HasUnoInterfaces(ThisComponent, "com.sun.star.text.XPagePrintable") Then
 Props = ThisComponent.getPagePrintSettings()
 For i = 0 To UBound(Props)
 s = s & props(i).Name & " = " & CStr(props(i).Value) & CHR$(10)
 Next
 MsgBox s, 0, "Page Print Properties"
 Else
 Print "Sorry, this document does not support the XPagePrintable interface"
 End If
End Sub

Figure 92. Page print properties of a Writer document.
The macro in Listing 320 attempts to print a document with two pages on each printed page in landscape
mode. With my latest testing in OOo version 3.3, the document is printed normally, which is an
improvement over the previous behavior of crashing OOo.

Listing 320. Print Two Per Page.
Sub PrintTwoPerPage
 Dim Props(0 To 1) As New com.sun.star.beans.PropertyValue
 Props(0).Name = "PageColumns" : Props(0).Value = 2
 Props(1).Name = "IsLandscape" : Props(1).Value = True
 If HasUnoInterfaces(ThisComponent, "com.sun.star.text.XPagePrintable") Then
 ThisComponent.setPagePrintSettings(Props()) '
 ThisComponent.printPages(Array()) 'Use default properties
 Else
 Print "Sorry, this document does not support the XPagePrintable interface"
 End If
End Sub

Although the macro in Listing 320 stopped working with OOo 1.1.1, a small modification allows the macro
to run. The new macro still causes OOo to crash under Linux and to close the document under Windows, but
it does manage to print the document. As with Listing 320, the document is printed in portrait mode rather
than landscape mode — this is an OOo bug.

342

 13.15.2. Printing Calc documents

To perform special printing functions with a Writer document, a special object method is called. To perform
special printing functions with Calc documents, you must modify the document properties and page-style
properties and then use the standard print() method. For example, it is common for a Calc sheet to be too
large to fit on a single sheet of paper. To scale the sheet to fit on a specified number of pages, set the
ScaleToPages property to contain the number of pages that should contain the sheet. To simply scale the
page based on a percentage, use the PageScale property (see Listing 321).

Listing 321. Print a spreadsheet at 25 percent; this is very small!
Sub PrintScaledSpreadsheet
 Dim s$ 'Style name
 Dim oStyle 'The current page style

 REM Use the currently active sheet to obtain the page style.
 REM In a Calc document, the current controller knows which sheet
 REM is active.
 s = ThisComponent.CurrentController.getActiveSheet().PageStyle
 oStyle = ThisComponent.StyleFamilies.getByName("PageStyles").getByName(s)
 REM oStyle.PageScale = 100 Default value is 100 (as in 100%)
 REM oStyle.ScaleToPages = 0 Default value is 0, as in don't scale
 oStyle.PageScale = 25 'Scale document to 25% (very very very small)
 ThisComponent.Print(Array()) 'Print the document
End Sub

The second aspect to printing Calc documents involves setting the area to print along with the column and
row titles (see Table 118).

Table 118. Properties used by the com.sun.star.sheet.XPrintAreas interface.
Object Method Description

getPrintAreas() Return array of type com.sun.star.table.CellRangeAddress.

setPrintAreas(ranges) Set print areas for the sheet with array of type CellRangeAddress. Print everything if
nothing is set.

getPrintTitleColumns() Return True if title columns are repeated to the right.

setPrintTitleColumns(boolean) Set True if title columns are repeated on all print pages to the right.

getTitleColumns() Array of type com.sun.star.table.CellRangeAddress.

setTitleColumns(ranges) Set columns to use as titles. Rows are ignored; only columns matter.

getPrintTitleRows() Return True if title rows are repeated on all print pages.

setPrintTitleRows(boolean) Set to True if row titles are repeated on all print pages to the bottom.

getTitleRows() Return array of type com.sun.star.table.CellRangeAddress.

setTitleRows(ranges) Set rows to use as titles. Columns are ignored; only rows matter.

The methods in Table 118 are based on sheets in a Calc document; as opposed to the entire Calc document.
The macro in Listing 322 sets two print ranges and then prints the document. Each print range is printed on a
new page.

Listing 322. Set and print multiple ranges in a Calc document.
Sub PrintSpreadsheetAreas
 Dim oRanges(1) As New com.sun.star.table.CellRangeAddress

343

 oRanges(0).Sheet = 0
 oRanges(0).StartColumn = 0 : oRanges(0).StartRow = 0 'A1
 oRanges(0).EndColumn = 3 : oRanges(0).EndRow = 4 'D5

 oRanges(1).Sheet = 0
 oRanges(1).StartColumn = 0 : oRanges(1).StartRow = 8 'A9
 oRanges(1).EndColumn = 3 : oRanges(1).EndRow = 10 'D11

 ThisComponent.CurrentController.getActiveSheet().setPrintAreas(oRanges())
 ThisComponent.Print(Array())
End Sub

 13.15.3. A Calc example with a Print listener

Sheet1 in a Calc document contains a button that prints Sheet2 and leaves Sheet1 as the active sheet. To
print Sheet2, it must be made the active sheet. The code was structured as follows:

1. Set Sheet2 active.

2. Call the document level print method.

3. Set Sheet1 active.

The print method returns immediately and the document is printed in the background. Sheet1, therefore,
becomes the active sheet before printing begins, so Sheet1 is printed rather than Sheet2. The correct solution
is to register a print listener that sets Sheet1 active after printing is complete.

A listener is stored in a Global variable so that is lives after the macro is finished running. Be warned,
however, that if you edit any macro the global variable will be erased but the listener will still be registered;
and you will have no way to unregister it without closing the document. So, first, create the variables to
reference the listener. The document is also stored, but I could have referenced ThisComponent instead.

Listing 323. Global variables that reference the listener and the document.
Global oPrintListener
Global oPrintJobListnerDoc

The current active sheet is set as part of the real world macro, so it is also shown here.

Listing 324. Utility routine to set a Calc document's active sheet.
REM *******************************
REM ** oDoc - Calc sheet on which to operate. No error checking is performed
REM ** sSheetName - Sheet name to make active. The sheet is verified to exist.
REM *******************************
Sub set_active_sheet(oDoc, sSheetName)
 Dim oSheets
 oSheets = oDoc.Sheets
 If oSheets.hasByName(sSheetName) Then
 oDoc.currentController.setActiveSheet(oSheets.getByName(sSheetName))
 End If
End Sub

An event is sent to the listener if the listener is being disposed. The text “print_listener_” prefixes the
routines used to implement the listener.

344

Listing 325. Print listener disposing method.
REM *******************************
REM ** The print job is disposing, so, remove it.
REM *******************************
Sub print_listener_disposing(oEvent)
 On Error Resume Next
 Dim emptyObj
 If NOT IsNull(oPrintJobListnerDoc) AND NOT IsEMpty(oPrintJobListnerDoc) Then
 oPrintJobListnerDoc.removePrintJobListener(oPrintListener)
 oPrintJobListnerDoc = emptyObj
 End If
End Sub

The listener is called every time the print job changes state.

Listing 326. Print listener status changed event.
REM *******************************
REM ** Called everytime the state of the print job changes.
REM ** Error messages are printed if they occur.
REM ** If the event announces an error or that the job is finished,
REM ** the print job listener is removed and the "Input Data" sheet is set to active.
REM *******************************
Sub print_listener_printJobEvent(oPrintJobEvent)
 Dim bCleanup As Boolean ' Set to true if the listener should be removed.
 Dim sMessage$ ' If not empty, a message is printed.

 REM All supported event state changes are shown.
 Select Case oPrintJobEvent.State
 Case com.sun.star.view.PrintableState.JOB_STARTED
 ' Rendering the document to print.
 bCleanup = False
 Case com.sun.star.view.PrintableState.JOB_COMPLETED
 ' Rendering is finished, start spooling.
 bCleanup = False
 Case com.sun.star.view.PrintableState.JOB_SPOOLED
 ' Success!
 'sMessage = "Print job spooled to the printer."
 bCleanup = True
 Case com.sun.star.view.PrintableState.JOB_ABORTED
 sMessage = "Printing was aborted."
 bCleanup = True
 Case com.sun.star.view.PrintableState.JOB_FAILED
 sMessage = "Error printing."
 bCleanup = True
 Case com.sun.star.view.PrintableState.JOB_SPOOLING_FAILED
 sMessage = "Document failed to print or spool to the print."
 bCleanup = True
 Case Else
 sMessage = "Unknown unexpected print state."
 bCleanup = True
 End Select

 REM Remove the listener if printing is finished, then call a worker macro
 REM to set Sheet1 as active.

345

 If bCleanup AND NOT IsNull(oPrintJobListnerDoc) AND NOT IsEMpty(oPrintJobListnerDoc) Then
 On Error Resume Next
 Dim emptyObj
 oPrintJobListnerDoc.removePrintJobListener(oPrintListener)
 Call set_active_sheet(oPrintJobListnerDoc, "Sheet1")
 oPrintJobListnerDoc = emptyObj
 End If
 If sMessage <> "" Then
 MsgBox sMessage
 End If
End Sub

If the sheet name exists, the desired sheet is set to be active, the print job listener is created and registered,
and then document printing is requested.

Listing 327. Print the specified sheet.
Sub PrintSheet(oDoc, sSheetToPrint)
 Dim sPrefix$ ' Prefix used to identify the print listener routines.
 Dim sService$ ' Print listener service name.

 sPrefix = "print_listener_"
 sService = "com.sun.star.view.XPrintJobListener"

 If NOT oDoc.sheets().hasByName(sSheetToPrint) Then
 MsgBox "Document does not contain a sheet named " & sSheetToPrint
 Exit sub
 End If

 Call set_active_sheet(oDoc, sSheetToPrint)

 oPrintListener = CreateUnoListener(sPrefix, sService)
 oDoc.addPrintJobListener(oPrintListener)
 oPrintJobListnerDoc = oDoc
 oDoc.Print(Array())
End Sub

 13.15.4. Print examples by Vincent Van Houtte

I found some very nice examples by Vincent Van Houtte, that he has graciously allowed me to reproduce
here. Some highlights of the contained macros:

• printDoc – Print a document with specific paper size, with specific paper trays, and with (or without)
a page background image. Numerous stub methods are included to call this one routine. Note that the
method directly specifies the destination printer.

• printPage – Same as printDoc, but prints a single page.

• closeDocument – Close the specified document.

• ExportAsPdfAndSendEmail – Export as a PDF document and send an email.

TIP The very popular routine FindCreateNumberFormatStyle (see Listing 391) is used by Listing 328.

346

Listing 328. Print examples by Vincent Van Houtte.
Sub PrintWithCopyStamp()
' ------------------------------
' This macro inserts a 'COPY'-stamp and prints the document
' without the background(-image) to tray1.
'
' Written by Vincent Van Houtte (2010)
' ------------------------------
 REM Insert timestamp of sending
 Dim sActionText AS String
 sActionText = "KOPIE"
 InsertDTstamp(sActionText)

 REM Print the page
 PrintDocWithoutBgToTray1()

 REM Remove the copystamp-frame
 RemoveDTstamp()
End Sub

Sub InsertDTstamp(sActionText)
' ------------------------------
' This macro inserts a 'DATE/TIME'-stamp with sActionText 'Printed' or 'Sent'
'
' Written by Vincent Van Houtte (2011)
' ------------------------------
 DIM oCursor, oText, oDoc AS Object
 oDoc = ThisComponent
 oText = oDoc.getText()
 oCursor = oText.createTextCursor()
 oCursor.goToStart(FALSE)

 REM Create the date and time objects
 DIM oDate, oTime AS Object
 oDate = oDoc.createInstance("com.sun.star.text.TextField.DateTime")
 oDate.IsFixed = TRUE
 oDate.IsDate = TRUE
 oDate.NumberFormat = FindCreateNumberFormatStyle("D MMMM JJJJ", oDoc)

 oTime = oDoc.createInstance("com.sun.star.text.TextField.DateTime")
 oTime.IsFixed = True
 oTime.IsDate = False
 oTime.NumberFormat = FindCreateNumberFormatStyle("UU:MM", oDoc)

 REM Create the frame
 DIM oFrameDT AS Object
 oFrameDT = oDoc.createInstance("com.sun.star.text.TextFrame")
 With oFrameDT
 .setName("FrameDT")
 .AnchorType = com.sun.star.text.TextContentAnchorType.AT_PAGE
 .HoriOrient = com.sun.star.text.HoriOrientation.NONE

347

 .VertOrient = com.sun.star.text.VertOrientation.NONE
 .HoriOrientPosition = -4900
 .VertOrientPosition = -1600
 .width = 4000
 .height = 1500
 .BorderDistance = 100
 End With

 REM Insert the frame into the text document
 oText.insertTextContent(oCursor, oFrameDT, True)

 REM Write the text inside the frame
 DIM oCursor2 AS Object
 oCursor2 = oFrameDT.createTextCursor()
 With oCursor2
 .charHeight = 16
 .charWeight = com.sun.star.awt.FontWeight.BOLD
 .paraAdjust = com.sun.star.style.ParagraphAdjust.CENTER
 End With

 oFrameDT.insertString(oCursor2, sActionText, False)

 With oCursor2
 .charHeight = 9
 .charWeight = com.sun.star.awt.FontWeight.NORMAL
 .paraAdjust = com.sun.star.style.ParagraphAdjust.CENTER
 End With

 oFrameDT.insertControlCharacter(oCursor2,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)
 oFrameDT.insertTextContent(oCursor2, oDate, False)

 oFrameDT.insertControlCharacter(oCursor2, com.sun.star.text.ControlCharacter.LINE_BREAK,
False)
 oFrameDT.insertTextContent(oCursor2, oTime, False)
End Sub

Sub RemoveDTstamp()
' ------------------------------
' This macro removes the 'DATE/TIME'-stamp created with the previous macro
'
' Written by Vincent Van Houtte (2011)
' ------------------------------
 DIM oDoc, oTextFrames, oFrameDT AS Object
 oDoc = ThisComponent

 REM Look for the datetimestamp-frame and remove it
 oTextFrames = oDoc.getTextFrames
 If oTextFrames.hasByName("FrameDT") Then
 oFrameDT = oTextFrames.getByName("FrameDT")
 oFrameDT.dispose()
 EndIf

348

End Sub

Sub PrintDocWithBgToTray1
' ------------------------------
' This macro prints the document with the background(-image) to the
' first papertray. This is only used to save on stationary, if you
' have run out on stationary or if the second printertray is jammed ;)
'
' Written by Vincent Van Houtte (2010)
' ------------------------------
 DIM sTray1 AS String
 DIM sTray2 AS String
 DIM bBg1 AS Boolean
 DIM bBg2 AS Boolean
 DIM wait AS Boolean
 sTray1 = "Tray1"
 sTray2 = "Tray1"
 bBg1 = True
 bBg2 = False
 wait = True
 printDoc(sTray1, sTray2, bBg1, bBg2, wait)
End Sub

Sub PrintDocWithoutBgToTray1
' ------------------------------
' This macro prints the document without the background(-image) to the
' first papertray. This is useful for copies of the letters you sent out.
'
' Written by Vincent Van Houtte (2010)
' ------------------------------
 DIM sTray1 AS String
 DIM sTray2 AS String
 DIM bBg1 AS Boolean
 DIM bBg2 AS Boolean
 DIM wait AS Boolean
 sTray1 = "Tray1"
 sTray2 = "Tray1"
 bBg1 = False
 bBg2 = False
 wait = True
 printDoc(sTray1, sTray2, bBg1, bBg2, wait)
End Sub

Sub PrintDocWithoutBgToTray2_old
' ------------------------------
' This macro prints the document without the background(-image) to the
' second papertray. This is useful when you have pre-printed stationary:
' you can set an image as a background, that you don't want to print,
' but that you want to show up when converted to PDF.
'
' Written by Vincent Van Houtte (2010)
' ------------------------------
 DIM sTray1 AS String

349

 DIM sTray2 AS String
 DIM bBg1 AS Boolean
 DIM bBg2 AS Boolean
 DIM wait AS Boolean
 sTray1 = "Tray2"
 sTray2 = "Tray1"
 bBg1 = False
 bBg2 = False
 wait = True
 printDoc(sTray1, sTray2, bBg1, bBg2, wait)
End Sub

Sub PrintDocWithoutBgToTray2
' ------------------------------
' This macro prints the first page (without the backgroundimage) to the
' second papertray and all other pages (without the backgroundimage) to the
' first papertray.
' This is useful when you have pre-printed stationary, but want to save on it
' by only printing the first page on expensive stationary
' you can set an image as a background, that you don't want to print,
' but that you want to show up when converted to PDF.
'
' Written by Vincent Van Houtte (2011)
' ------------------------------

 DIM oDoc AS Object
 DIM iPageCount, n AS Integer
 DIM sPage AS String
 oDoc = ThisComponent

 REM Count the amount of pages
 iPageCount = oDoc.getCurrentController().getPropertyValue("PageCount")

 REM Loop over every page
 n = 1
 Do Until n > iPageCount

 REM Print every page to the right tray
 If n = 1 Then
 Print_stat(n)
 Else
 Print_plain(n)
 End If
 n = n + 1
 Loop

End Sub

Sub Print_stat(sPageNr AS String)
' ------------------------------
' This macro prints the first page without the background(-image) to the
' second papertray. This is useful when you have pre-printed stationary:
' you can set an image as a background, that you don't want to print,

350

' but that you want to show up when converted to PDF.
'
' Written by Vincent Van Houtte (2011)
' ------------------------------
 DIM sTray1 AS String
 DIM sTray2 AS String
 DIM bBg1 AS Boolean
 DIM bBg2 AS Boolean
 DIM wait AS Boolean
 sTray1 = "Tray2"
 sTray2 = "Tray1"
 bBg1 = False
 bBg2 = False
 wait = True
 printPage(sTray1, sTray2, bBg1, bBg2, wait, sPageNr)
End Sub

Sub Print_plain(sPageNr AS String)
' ------------------------------
' This macro prints the next page without the background(-image) to the
' first papertray. This is useful when you want to saveon your pre-printed stationary:
' you can set an image as a background, that you don't want to print,
' but that you want to show up when converted to PDF.
'
' Written by Vincent Van Houtte (2011)
' ------------------------------
 DIM sTray1 AS String
 DIM sTray2 AS String
 DIM bBg1 AS Boolean
 DIM bBg2 AS Boolean
 DIM wait AS Boolean
 sTray1 = "Tray1"
 sTray2 = "Tray1"
 bBg1 = False
 bBg2 = False
 wait = True
 printPage(sTray1, sTray2, bBg1, bBg2, wait, sPageNr)
End Sub

Sub printDoc(sTray1, sTray2, bBg1, bBg2, wait)
' ------------------------------
' This macro prints the document given the chosen arguments
'
' Written by Vincent Van Houtte (2010)
' ------------------------------
 DIM oDoc AS Object
 oDoc = ThisComponent

 REM Set backgroundImage-option in DocumentSettings to False
 DIM oSettings AS Object
 oSettings = oDoc.createInstance("com.sun.star.text.DocumentSettings")
 oSettings.PrintPageBackground = bBg1

351

 REM choose a certain printer
 DIM mPrinterOpts(2) AS NEW com.sun.star.beans.PropertyValue
 mPrinterOpts(0).Name = "Name"
 mPrinterOpts(0).Value = "MFC8880DN"
 mPrinterOpts(1).Name = "PaperFormat"
 mPrinterOpts(1).Value = com.sun.star.view.PaperFormat.A4
 mPrinterOpts(2).Name = "PaperOrientation"
 mPrinterOpts(2).Value = com.sun.star.view.PaperOrientation.PORTRAIT
 oDoc.Printer = mPrinterOpts()

 REM set Papertray in Styles
 DIM oStyle AS Object
 DIM sPageStyle AS String
 sPageStyle = oDoc.CurrentController.getViewCursor().PageStyleName
 ostyle = oDoc.StyleFamilies.getByName("PageStyles").getByName(sPageStyle)
 oStyle.PrinterPaperTray = sTray1

 REM Set printOptions
 DIM mPrintOpts(2) AS NEW com.sun.star.beans.PropertyValue
 mPrintOpts(0).Name = "CopyCount"
 mPrintOpts(0).Value = 1
 mPrintOpts(1).Name = "Collate"
 mPrintOpts(1).Value = True
 mPrintOpts(2).Name = "Wait"
 mPrintOpts(2).Value = True

 REM Print
 oDoc.Print(mPrintOpts())

 REM RESET OPTIONS
 REM Reset backgroundImage-option in DocumentSettings
 oSettings.PrintPageBackground = bBg2
 REM Reset Papertray in Styles
 oStyle.PrinterPaperTray = sTray2
 REM Do a 0-print to complete the reset
 DIM mPrintOpts2(0) AS NEW com.sun.star.beans.PropertyValue
 mPrintOpts2(0).Name = "CopyCount"
 mPrintOpts2(0).Value = 0
 oDoc.Print(mPrintOpts2())
End Sub

Sub printPage(sTray1, sTray2, bBg1, bBg2, wait, sPageNr)
' ------------------------------
' This macro prints the document given the chosen arguments
'
' Written by Vincent Van Houtte (2010)
' ------------------------------
 DIM oDoc AS Object
 oDoc = ThisComponent

 REM Set backgroundImage-option in DocumentSettings to False
 DIM oSettings AS Object

352

 oSettings = oDoc.createInstance("com.sun.star.text.DocumentSettings")
 oSettings.PrintPageBackground = bBg1

 REM choose a certain printer
 DIM mPrinterOpts(3) AS NEW com.sun.star.beans.PropertyValue
 mPrinterOpts(0).Name = "Name"
 mPrinterOpts(0).Value = "MFC8880DN"
 mPrinterOpts(1).Name = "PaperFormat"
 mPrinterOpts(1).Value = com.sun.star.view.PaperFormat.A4
 mPrinterOpts(2).Name = "PaperOrientation"
 mPrinterOpts(2).Value = com.sun.star.view.PaperOrientation.PORTRAIT
 oDoc.Printer = mPrinterOpts()

 REM set Papertray in Styles
 DIM oStyle AS Object
 DIM sPageStyle AS String
 sPageStyle = oDoc.CurrentController.getViewCursor().PageStyleName
 ostyle = oDoc.StyleFamilies.getByName("PageStyles").getByName(sPageStyle)
 oStyle.PrinterPaperTray = sTray1

 REM Set printOptions
 DIM mPrintOpts(3) AS NEW com.sun.star.beans.PropertyValue
 mPrintOpts(0).Name = "CopyCount"
 mPrintOpts(0).Value = 1
 mPrintOpts(1).Name = "Collate"
 mPrintOpts(1).Value = True
 mPrintOpts(2).Name = "Pages"
 mPrintOpts(2).Value = sPageNr
 mPrintOpts(3).Name = "Wait"
 mPrintOpts(3).Value = True

 REM Print
 oDoc.Print(mPrintOpts())

 REM RESET OPTIONS
 REM Reset backgroundImage-option in DocumentSettings
 oSettings.PrintPageBackground = bBg2
 REM Reset Papertray in Styles
 oStyle.PrinterPaperTray = sTray2
 REM Do a 0-print to complete the reset
 DIM mPrintOpts2(0) AS NEW com.sun.star.beans.PropertyValue
 mPrintOpts2(0).Name = "CopyCount"
 mPrintOpts2(0).Value = 0
 oDoc.Print(mPrintOpts2())
End Sub

Sub closeDocument(oDoc AS Object)
' ------------------------------
' This macro closes the current document
'
' Written by Andrew Pitonyak (2010)

353

' Adapted by Vincent Van Houtte (2011)
' ------------------------------

 REM Check if the document exists
 If IsNull(oDoc) Then
 Exit Sub
 End If

 REM Store the document if it was modified
 If (oDoc.isModified) Then
 If (oDoc.hasLocation AND (Not oDoc.isReadOnly)) Then
 oDoc.store()
 Else
 oDoc.setModified(False)
 End If
 End If

 REM Close the document
 oDoc.close(true)
End Sub

Sub ExportAsPdfAndSendEmail
' ------------------------------
' This macro converts the active document to PDF and then adds the PDF
' to a new emailmessage. The recipientaddress and subject are
' generated automagically from a textfield inside the document
'
' This macro assumes the default email application is set
' in Tools -> Options -> OpenOffice.org -> External Programs.
'
' This macro uses SimpleCommandMail, which might not work in windows
' Try SimpleSystemMail instead
'
' Written by Vincent Van Houtte (2010)
' ------------------------------
 DIM oDoc, MailClient, MailAgent, MailMessage AS Object
 DIM sDocURL, sPDFURL, sTo, sSubject AS String

 REM Get location of the doc
 oDoc = ThisComponent
 If (Not oDoc.hasLocation()) Then
 oDoc.store()
 End if

 REM Insert timestamp of sending
 Dim sActionText AS String
 sActionText = "VERZONDEN"
 InsertDTstamp(sActionText)

 REM Print the page
 PrintDocWithoutBgToTray1()

 REM Replace .odt with .pdf

354

 sDocURL = oDoc.getURL()
 sPDFURL = Left$(sDocURL,Len(sDocURL)-4) + ".pdf"

 REM Save as PDF
 DIM args(0) AS NEW com.sun.star.beans.PropertyValue
 args(0).Name = "FilterName"
 args(0).Value = "writer_pdf_Export"
 oDoc.storeToURL(sPDFURL,args())

 REM Remove the Date/time-stamp
 RemoveDTstamp()

 REM Get the values of the textfields inside the document to form the subject line
 DIM enuTF, aTextField AS Object
 DIM sDosName, sDosNum, sDosUref AS String
 enuTF = oDoc.TextFields.createEnumeration
 Do While enuTF.hasMoreElements
 aTextField = enuTF.nextElement
 if aTextField.supportsService("com.sun.star.text.TextField.Input") then
 Select Case aTextField.getPropertyValue("Hint")
 Case "DOS_NAAM":
 sDosName = aTextField.getPropertyValue("Content")
 Case "DOS_NUM":
 sDosNum = aTextField.getPropertyValue("Content")
 Case "REF_O":
 sDosNum = aTextField.getPropertyValue("Content")
 Case "UREF":
 sDosUref = aTextField.getPropertyValue("Content")
 Case "EMAIL_ADDR":
 sTo = aTextField.getPropertyValue("Content")
 End Select
 end if
 Loop
 sSubject = sDosName + " - " + sDosUref + " - " + sDosNum

 REM Send the PDF as an attachment
 MailAgent = CreateUnoService("com.sun.star.system.SimpleCommandMail")
 MailClient = MailAgent.querySimpleMailClient()
 MailMessage=MailClient.createSimpleMailMessage()
 MailMessage.setRecipient(sTo)
 MailMessage.setSubject(sSubject)
 MailMessage.setAttachement(array(sPDFURL))
 MailClient.sendSimpleMailMessage(MailMessage, 0)

 REM Save and close the document
 closeDocument(oDoc)
End Sub

355

 13.16. Creating services

An object that supports the XMultiServiceFactory interface may create services. An object is usually created
by the object that will own it. As an example, a text table is created by the text document that will contain
the text table. Similarly, the DocumentSettings object is created by the document of interest. The function
CreateUnoService creates services in the scope of the OOo application.

The oSettings object in Listing 329 supports the service com.sun.star.text.DocumentSettings. The oSettings
object is related to ThisComponent in that it reflects the settings for ThisComponent — the current
document — but not for any other document.

Listing 329. Create an object that supports the DocumentSettings service.
oSettings=ThisComponent.createInstance("com.sun.star.text.DocumentSettings")

The createInstance() method returns an object that supports the requested service if it can; if it cannot, it
returns NULL. The returned object may support other services as well (see Listing 318 and Figure 93).

Listing 330. Inspect a text document settings object.
Sub WriteDocumentSettings
 Dim oSettings 'Settings object to create
 Dim s$ 'Utility string
 Dim i% 'Uitlity index variable
 Dim v 'This will contain an array of service names

 REM Create an object that supports the DocumentSettings service
 oSettings=ThisComponent.createInstance("com.sun.star.text.DocumentSettings")

 v = oSettings.getSupportedServiceNames()
 s = "**** Specified Supported Services ****" & CHR$(10) & Join(v, CHR$(10))
 s = s & CHR$(10) & CHR$(10) & "**** Tested Services ****" & CHR$(10)

 REM Now check to see if this created object supports any other services.
 v = Array("com.sun.star.comp.Writer.DocumentSettings",_
 "com.sun.star.text.PrintSettings")

 For i = 0 To UBound(v)
 If oSettings.supportsService(v(i)) Then
 s = s & "Supports service " & v(i) & CHR$(10)
 End If
 Next
 MsgBox s, 0, "Some services for " & oSettings.getImplementationName()

 REM What is the status of the PrintControls property?
 Print oSettings.PrintControls

 REM I could set this to True or False
 'oSettings.Printcontrols = True
End Sub

356

Figure 93. Some Writer document settings.
A careful inspection of Listing 330 and Figure 93 demonstrate that the object supports multiple services.

The method getSupportedServiceNames() lists the services supported by the object.

The method getImplementationName() returns the service that uniquely identifies the returned service
(com.sun.star.comp.Writer.DocumentSettings). The unique service name is not in the list of supported
service names.

Although not shown in Listing 330, the two “Tested Services” in Figure 93 cannot be created using the
createInstance() object method. I discovered the PrintSettings service entirely by accident. I inspected the
dbg_properties property, which contained PrintControls. I then searched Google for “site:api.openoffice.org
PrintSettings”. The important things to notice are as follows:

1. There are different methods of inspecting an object; use all of them.

2. The documentation is not complete. You must manually inspect an object to see what it supports.
However, undocumented methods and properties may be deprecated and removed later — so do this
carefully.

3. You can search the Internet for services and properties.

 13.17. Document settings

OOo contains numerous document options; these are available in the Tools | Options dialog. For example,
Text Document contains a Print tab, which allows graphics to be printed, or not. The typical method for
modifying properties in a document involves using either “get” and “set” methods, or directly accessing
object properties. To access advanced document settings, however, you must use a completely different
method. First the document has to create an object that supports the document settings. Every document
type, except for the Math type, has the ability to create a service using the createInstance() method. Table
119 contains a list of the properties common to all of the document setting types; there are more.

Table 119. Common document properties in com.sun.star.document.Settings.
Property Description

ForbiddenCharacters Allow access to otherwise forbidden characters.

LinkUpdateMode The update mode for links when loading text documents.

PrinterName Printer used by the document.

357

Property Description

PrinterSetup Platform- and driver-dependent printer setup data.

IsKernAsianPunctuation Is kerning applied to Asian punctuation?

CharacterCompressionType Compression (character spacing) used for Asian characters.

ApplyUserData Should user-specific settings saved in a document be loaded again?

SaveVersionOnClose Is a new version created when a modified document is closed?

UpdateFromTemplate Should a document be updated when its creation template changes?

FieldAutoUpdate Are text document fields automatically updated?

CurrentDatabaseDataSource Name of the data source from which the current data is taken.

CurrentDatabaseCommand Displayed object’s name (or the SQL statement used).

CurrentDatabaseCommandType Specifies how to interpret the DataTableName property.

DefaultTabStop Default tab width.

IsPrintBooklet Is the document printed as a booklet (brochure)?

IsPrintBookletFront If True, only the front pages of a booklet are printed.

IsPrintBookletBack If True, only the back pages of a booklet are printed.

PrintQuality Quality to use when printing.

ColorTableURL URL of the color table (SOC file) showing a palette in dialogs that use colors.

PrinterIndependentLayout If true, do not use printer metrics for layout.

Specific document settings services exist for Writer, Calc, Draw, and Impress documents (see Table 120).
Although each of these services implements the Settings service as shown in Table 119, all of the properties
except for PrinterName and PrinterSetup are optional.

Table 120. Specific document settings service types.
Document Settings Service Document Type

com.sun.star.text.DocumentSettings Writer

com.sun.star.sheet.DocumentSettings Calc

com.sun.star.drawing.DocumentSettings Draw

com.sun.star.presentation.DocumentSettings Impress

As shown in Listing 330 and Figure 93, the Writer document settings support the PrintSettings service (see
Table 121). The Draw and Impress document settings services each contain special settings that apply only
to their respective document types.

Table 121. Properties defined by the com.sun.star.text.PrintSettings service.
Property Description

PrintGraphics If True, print graphic object.

PrintTables If True, print text tables.

PrintDrawings If True, print shapes.

PrintLeftPages If True, print left pages.

PrintRightPages If True, print right pages.

358

Property Description

PrintControls If True, print control contained in the document.

PrintReversed If True, print the pages in reverse order, starting with the last page.

PrintPaperFromSetup If True, use the paper tray specified for the system printer. If False, use the paper tray
specified by the page style.

PrintFaxName Name of the fax.

PrintAnnotationMode Specify how notes are printed. Uses com.sun.star.text.NotePrintMode enumerated value.
Possible values include NOT, ONLY, DOC_END, or PAGE_END.

PrintProspect If True, prospect printing is used; however, I cannot find a definition for prospect printing.

PrintPageBackground If True, the background color and/or background graphic is printed.

PrintBlackFonts If True, characters are always printed in black.

 13.18. The coolest trick I know

Sadly, this only works in LibreOffice, and not in OOo. While editing a document:

1. Use File > Open to open the Open dialog.

2. Enter “vnd.sun.star.tdoc:/” for the file name and click Open.

3. Currently open documents are shown for selection. Select a document; and click open.

You are looking at the document's internal structures. You can even open an image embedded in a document.
A document containing pictures is a good example to try.

 13.19. Converting to a URL in other languages

Basic provides the methods ConvertToURL and ConvertFromURL, other languages do not. Some URI
schemes leave unspecified important aspects of how to interpret URIs of those schemes. For example, it is
unspecified for “file” URLs how to map the byte sequences that constitute the path segments of a “file” URL
to filenames on a given platform: The UNO environment always assumes that path segments of “file” URLs
represent UTF-8–encoded strings (which have to be mapped to filenames in a platform-specific way), while
other applications typically assume that path segments of “file” URLs directly represent a platform's byte-
sequence filenames. The ExternalUriReferenceTranslator offers methods to translate between such internal
URIs (e.g., UTF-8–encoded “file” URLs used within the UNO environment) and external URIs (e.g., byte-
sequence–oriented “file” URLs used by other applications). Typically, only “file” URLs are affected by this
translation.

x = CreateUnoService("com.sun.star.uri.ExternalUriReferenceTranslator")
Print x.translateToExternal("file:///c:/MyDoc.oot")
Print x.translateToInternal("file:/c:/MyDoc.oot")

 13.20. Conclusion

The interfaces and services introduced in this chapter provide a good introduction to the capabilities of OOo
that are not directly related to a specific document type. OOo contains numerous other capabilities that I
could have included in this chapter, but it isn’t possible to exhaustively cover every subject. Use these topics
and methods as a starting point to investigate the other capabilities of OpenOffice.org.

359

 14. Writer Documents
Writer documents primarily deal with text content arranged in paragraphs. This chapter introduces
appropriate methods to manipulate, traverse, search, format, and modify the content contained in an
OpenOffice.org Writer document. First, a bit of review that is applicable to most document types.

Conceptually, all document types have two components: the data they contain and the controller that
determines how the data is displayed. Writer documents primarily contain simple formatted text. In addition
to simple text, Writer documents may contain other content such as tables, frames, graphics, text fields,
bookmarks, footnotes, endnotes, text sections, index entries, tracked document changes (called redlining),
objects for styling, and objects for numbering. OOo uses the same methods and interfaces to interact with
most of these capabilities. Consequently, learning to manipulate a few types of content will give you a solid
basis for dealing with all of them.

TIP In OOo, the data contained in a document is called the “model.” The base model interface is
com.sun.star.frame.XModel.

In OpenOffice.org, the data contained in a document is called the model. Each model has a controller that is
responsible for the visual presentation of the data. The controller knows the location of the visible text
cursor, the current page, and what is currently selected.

TIP While trying to determine which portion of the OOo API to use to solve a specific problem, first ask if the
problem is display-centric or data-centric. For example, a paragraph boundary is specified in the data, but a
new line is usually determined by the controller when the data is formatted.

Every text document supports the com.sun.star.text.TextDocument service. When I write a macro that must
be user friendly and requires a text document, I verify that the document is the correct type by using the
object method supportsService (see Listing 331).

Listing 331. Text documents support the com.sun.star.text.TextDocument service.
REM If it really matters, you should check the document type
REM to avoid a run-time error.
If NOT ThisComponent.supportsService("com.sun.star.text.TextDocument") Then
 MsgBox "The current document is not a Writer text document", 48, "Error"
 Exit Sub
End If

An interface defines a series of methods. If an object implements an interface, it also implements every
method defined by that interface. A service defines an object by specifying the interfaces that it implements,
the properties that it contains, and the other services that it exports. A service indirectly specifies the
implemented methods by specifying interfaces. The interfaces supported by the TextDocument service
provide a good overview of the provided functionality (see Table 122).

360

Table 122. Interfaces supported by text documents.
Service Description

com.sun.star.text.XTextDocument Main text document interface.

com.sun.star.text.XBookmarksSupplier Access the bookmarks.

com.sun.star.text.XChapterNumberingSupplier Numbering rules for chapters.

com.sun.star.text.XDocumentIndexesSupplier Access the collection of indexes.

com.sun.star.text.XTextEmbeddedObjectsSupplier Access embedded objects.

com.sun.star.text.XEndnotesSupplier Access endnote content.

com.sun.star.text.XFootnotesSupplier Access footnote content.

com.sun.star.text.XLineNumberingSupplier Numbering rules for line numbers.

com.sun.star.text.XPagePrintable Print multiple pages on one page.

com.sun.star.text.XReferenceMarksSupplier Access the document reference marks, which are used to
refer to text positions in a text document.

com.sun.star.text.XTextFieldsSupplier Access contained fields.

com.sun.star.text.XTextFramesSupplier Access contained text frames.

com.sun.star.text.XTextGraphicObjectsSupplier Access embedded and linked graphics.

com.sun.star.text.XTextSectionsSupplier Access contained text sections.

com.sun.star.text.XTextTablesSupplier Access contained tables.

com.sun.star.style.XStyleFamiliesSupplier Access contained styles by type.

com.sun.star.util.XNumberFormatsSupplier Access contained number formats.

com.sun.star.util.XRefreshable Refresh data that can be refreshed from a database.

com.sun.star.util.XReplaceable Replace text found with a search descriptor.

com.sun.star.util.XSearchable Search a text range for a specific string pattern.

com.sun.star.beans.XPropertySet Access document properties by name.

 14.1. Basic building blocks

While dealing with Writer documents, you’ll see that a few simple interfaces and concepts recur. These basic
building blocks are interrelated in that their respective interfaces are circularly defined (they refer to each
other). Fortunately, the concepts are intuitive and therefore easy to grasp, even with a brief introduction. This
section briefly introduces these basic building blocks, laying the groundwork for detailed coverage later.

 14.1.1. Primary text content: the XText interface

Text content is contained in an object that implements the XText interface. The primary purpose of a text
object is to contain text content, create text cursors to move through text, insert text, and remove text (see
Table 123).

361

Table 123. Methods defined by the com.sun.text.XText interface.
Method Description

createTextCursor() Return a TextCursor service used to traverse the text object.

createTextCursorByRange(XTextRange) Return a TextCursor that is located at the specified TextRange.

insertString(XTextRange, String, boolean) Insert a string of characters into the text at the specified text range.
Each CR (ASCII 13) inserts a new paragraph and each LF (ASCII 10)
inserts a new line. If the Boolean value is True, the text in the range is
overwritten; otherwise, the text characters are inserted after the text
range.

insertControlCharacter(XTextRange, Short,
boolean)

Insert a control character (such as a paragraph break or a hard space)
into the text. The short integer is a value from the constant group
com.sun.star.text.ControlCharacter:

• PARAGRAPH_BREAK = 0 – Start a new paragraph.

• LINE_BREAK = 1 – Start a new line in a paragraph.

• HARD_HYPHEN = 2 – Insert a dash that will not hyphenate.

• SOFT_HYPHEN = 3 – Define a preferred hyphenation point if the
word must be split at the end of a line.

• HARD_SPACE = 4 – Insert a space that prevents two words from
splitting at a line break.

• APPEND_PARAGRAPH = 5 – Append a new paragraph. If the
Boolean value is True, the text in the text range is overwritten;
otherwise, the control character is inserted after the text range.

insertTextContent(XTextRange, XTextContent,
boolean)

Insert text content such as a text table, text frame, or text field. In
general, the text content should be created by the text object. If the
Boolean value is True, the text in the text range is overwritten;
otherwise, the text content is inserted after the text range.

removeTextContent(XTextContent) Remove the specified text content from the text object.

Because the XText interface is derived from the XTextRange interface, all objects that implement the XText
interface also support the object methods defined by the XTextRange interface (see Table 124).

 14.1.2. Text ranges: the XTextRange interface

A text range is one of the most important concepts in a text document because so many interfaces derive
from the XTextRange interface. The primary purpose of a text range is to define a start and end position in
the text (see Table 124). It is possible that the start position and the end position in a text range are the same.
When the start and end positions are the same, the text range identifies a position in the text—for example,
the cursor in a text document when no text is selected. If the start and end positions of a text range are not
the same, they represent a section of text.

362

Table 124. Methods defined by the com.sun.text.XTextRange interface.
Method Description

getText() Return the XText interface that contains the text range.

getStart() A text range has a start and end position. The getStart() method returns a text range that
contains only the start position of this text range.

getEnd() A text range has a start and end position. The getStart() method returns a text range that
contains only the end position of this text range.

setString(String) A text range has a start and end position. The setString() method replaces all of the text
between the start and end positions with the argument string. All styles are removed and all text
in this text range is replaced.

getString() Return a string that represents the text in this text range. Strings in OOo Basic are limited to
64KB in size, but text ranges and text objects are not; use this with care.

Every XTextRange object is associated with a text object. It can be said that an XTextRange object is
contained in an object that implements the XText interface. The XText interface is itself derived from the
XTextRange interface. Use the getText() object method to obtain the text object that is associated with the
text range.

TIP Common tasks include obtaining a bookmark, obtaining the bookmark’s anchor position (a text range), and
then inserting text content at the bookmark’s anchor position. Although the setString() method is the
quickest way to add text at the anchor position, inserting text content requires an object that supports the
XText interface. The getText() method returns an object that can insert text content using the text range.

Writer documents primarily contain formatted text. To access the formatted text, either call the document’s
object method getText() or directly access the document’s Text property. I usually directly access the Text
property because it requires less typing.

ThisComponent.Text 'Current document's text object
ThisComponent.getText() 'Current document's text object

The document’s text object implements the XTextRange interface. The simplest method to obtain all of the
text characters contained in a text document is to call the getString() object method (see Table 124). The
getString() method returns a single string containing a text version of the document. Each cell in a text table
is returned as a single paragraph, and all formatting is lost. The object method setString() can be used to set
the entire document’s text in one call—when setString() is used, all of the existing text is lost! See Listing
332.

Listing 332. Get and set the entire document text with no formatting.
MsgBox ThisComponent.Text.getString(), 0, "Document Text String"
ThisComponent.Text.setString("This is text to set")

TIP Use getString() only on small text documents. I wrote a macro that computed word-usage statistics by first
calling the getString() object method. Because OOo Basic strings are limited to 64KB characters, the
macro failed on large documents.

The getString() and setString() object methods are limited, because OOo Basic strings are limited to 64KB
in size and they contain no formatting information. Due to these limitations, other methods are usually used
to get and set the document text. Generally, large or complex documents are best handled with the getText()
method and related methods, because they support arbitrary size and modular management of complex
documents.

363

 14.1.3. Inserting simple text

With the limited information already presented, you can already insert simple text content at the beginning
and the end of a document. The getStart() and getEnd() object methods both return a text range that can be
used to insert text into a text object (see Table 123 and Table 124). The code in Listing 333 inserts simple
text at the start of the document and a new paragraph at the end of the document.

Listing 333. Insert simple text at the start and end of the document.
Sub InsertSimpleText
 Dim oText As Object
 oText = ThisComponent.Text

 REM Insert some simple text at the start
 oText.insertString(oText.getStart(), "Text object start." & CHR$(13), False)
 REM Append a new paragraph at the end
 oText.InsertControlCharacter(oText.getEnd(),_
 com.sun.star.text.ControlCharacter.APPEND_PARAGRAPH, False)
End Sub

 14.1.4. Text content: the TextContent service

The primary purpose of the TextContent service is to anchor an object (text content) to its surrounding text.
Conceptually there are two types of text content: content that is part of the surrounding text (a text field, for
example), and content that is more like a floating field (a graphic image, for example).

To determine where text content is anchored in the text, call the getAnchor() object method. This returns a
text range that defines the anchor location. For floating text content objects, the text needs to know how to
flow around the object and how the object is anchored to the text (see Table 125). The behavior of text
content inserted as a character should be well understood. The content acts just like a character would act:
The text content is moved along between two other characters. When text content is anchored at a
paragraph, however, the text content is not required to move as the characters before and after it are moved.
It is only required that the object stay attached to a paragraph, and the object is not inserted into a paragraph.
I usually anchor an object to a paragraph when I want text to flow around the object; for example, a graphic
on the right and text on the left.

364

Table 125. Properties supported by the com.sun.star.text.TextContent service.
Property Description

AnchorType Enumeration of type com.sun.star.text.TextContentAnchorType that defines how this text content is
attached to the surrounding text.

• AT_PARAGRAPH – The anchor is set at the top left position of the paragraph. The object moves
if the paragraph moves.

• AS_CHARACTER – The text content object is anchored as a character. The size of the object
influences the height of the text line and the object can move as a character if the surrounding text
moves.

• AT_PAGE – The text content object is anchored to the page. The object does not move even if the
text content around it changes.

• AT_FRAME – The text content object is anchored to a text frame.

• AT_CHARACTER – The text content object is anchored to a character. The object moves if the
character moves.

AnchorTypes Array of TextContentAnchorType that contains the anchor types of the text content.

TextWrap Enumeration of type com.sun.star.text.WrapTextMode that defines how the surrounding text wraps
around this text content object.

• NONE – Text does not flow around the object.

• THROUGHT – Text flow ignores the object. (Yes, it is THROUGHT.) This can be thought of as
THROUGH iT, as in, “the text flows through the object.”

• PARALLEL – Text flows to the left and right of the object.

• DYNAMIC – The text formatting decides the best wrapping method.

• LEFT – Text flows to the left of the object.

• RIGHT – Text flows to the right of the object.

The text object contains methods to insert TextContent objects at specified locations (see Table 123). In
general, the TextContent type must be created by the document before it is inserted (see Listing 334).

Listing 334. Insert text content (a text table) at the end of the current document.
Sub InsertSimpleTableAtEnd
 Dim oTable 'Newly created table to insert

 REM Let the document create the text table.
 oTable = ThisComponent.createInstance("com.sun.star.text.TextTable")
 oTable.initialize(3, 2) 'Three rows, two columns

 REM Now insert the text table at the end of the document.
 ThisComponent.Text.insertTextContent(_
 ThisComponent.Text.getEnd(), oTable, False)
End Sub

TIP In general, the TextContent type must be created by the document before it is inserted.

Call the removeTextContent(XTextContent) object method (see Table 123) to remove text content. Another
method of removing text content is to write new text content in its place. A simple example of this is to call
the setString() method on a text range that includes the text content (see Listing 335).

Listing 335. Clear the entire document of all text content.
ThisComponent.Text.setString("") 'Clear an entire document!

365

 14.2. Enumerating paragraphs

Writer documents primarily contain formatted text that is arranged into paragraphs. Writer methods can
operate on words, sentences, paragraphs, and entire text objects. Paragraphs are the most basic
organizational unit for formatted text, and methods on paragraphs are often the most reliable, meaning they
contain fewer bugs. The paragraphs can be enumerated sequentially using the XEnumerationAccess
interface defined in the document’s text object. OOo treats tables as a special type of paragraph, and they are
returned while enumerating paragraphs (see Listing 336).

Listing 336. Count paragraphs and text tables.
Sub enumerateParagraphs
 Dim oEnum 'com.sun.star.container.XEnumerationAccess
 Dim oPar 'Paragraph of some sort
 Dim nPars As Integer 'Number of paragraphs
 Dim nTables As Integer 'Number of tables

 REM ThisComponent refers to the current OOo document
 REM Text is a property of ThisComponent for a text document
 REM The getText() object method returns the same thing.
 REM createEnumeration() is an object method.
 oEnum = ThisComponent.Text.createEnumeration()
 Do While oEnum.hasMoreElements()
 oPar = oEnum.nextElement()

 REM The returned paragraph will be a paragraph or a text table
 If oPar.supportsService("com.sun.star.text.Paragraph") Then
 nPars = nPars + 1
 ElseIf oPar.supportsService("com.sun.star.text.TextTable") Then
 nTables = nTables + 1
 End If
 Loop
 MsgBox CStr(nPars) & " Paragraph(s)" & CHR$(13) &_
 CStr(nTables) & " Table(s)" & CHR$(13), 0,_
 "Paragraph Types In Document"
End Sub

TIP Visual Basic for Applications (VBA) supports accessing paragraphs using an index; OOo does not.

While enumerating the paragraphs in a Writer document, both paragraphs and tables are returned. The object
method supportsService() is used to determine if a paragraph or a table is returned. Paragraph objects
support both the XTextRange interface and the XTextContent interface. TextTable objects, however, support
only the XTextContent interface.

The macro in Listing 336 enumerates paragraphs in the high level text object. Many objects contains their
own text object; fore example, each cell in a text table and each frame.

 14.2.1. Paragraph properties

Paragraphs contain numerous paragraph-related properties encapsulated in services. The properties that are
primarily related to the entire paragraph are encapsulated in the ParagraphProperties service (see Table 126).

366

TIP The Paragraph service is not the only service that supports the ParagraphProperties service. Other services,
especially those that are also a text range, also support paragraph properties. Techniques used to modify
paragraph properties in paragraphs apply to these services as well.

Table 126. Properties supported by the com.sun.style.ParagraphProperties service.
Property Description

ParaAdjust Specify how the paragraph is aligned (or justified). Five values are supported from
the com.sun.star.style.ParagraphAdjust enumeration:

• LEFT – Left-align the paragraph.

• RIGHT – Right-align the paragraph.

• CENTER – Center-align the paragraph.

• BLOCK – Fill-justify every line except for the last line.

• STRETCH – Fill-justify every line including the last line.

ParaLastLineAdjust Adjust the last line if the ParaAdjust is set to BLOCK.

ParaLineSpacing Specify the paragraph line spacing. The property is a structure of type
com.sun.star.style.LineSpacing, which contains two properties of type Short. The
Height property specifies the height and the Mode property specifies how to use the
Height property. The Mode property supports values defined in the
com.sun.star.style.LineSpacingMode constants group.

• PROP = 0 – The height is proportional.

• MINIMUM = 1 – The height is the minimum line height.

• LEADING = 2 – The height is the distance to the previous line.

• FIX = 3 – The height is fixed.

ParaBackColor Specify the paragraph background color as a Long Integer.

ParaBackTransparent If True, set the paragraph background color to transparent.

ParaBackGraphicURL Specify the URL of the paragraph background graphic.

ParaBackGraphicFilter Specify the name of the graphic filter for the paragraph background graphic.

ParaBackGraphicLocation Specify the position of the background graphic using the enumeration
sun.star.style.GraphicLocation:

• NONE – A location is not yet assigned.

• LEFT_TOP – The graphic is in the top left corner.

• MIDDLE_TOP – The graphic is in the middle of the top edge.

• RIGHT_TOP – The graphic is in the top right corner.

• LEFT_MIDDLE – The graphic is in the middle of the left edge.

• MIDDLE_MIDDLE – The graphic is in the center of the surrounding object.

• RIGHT_MIDDLE – The graphic is in the middle of the right edge.

• LEFT_BOTTOM – The graphic is in the bottom left corner.

• MIDDLE_BOTTOM – The graphic is in the middle of the bottom edge.

• RIGHT_BOTTOM – The graphic is in the bottom right corner.

• AREA – The graphic is scaled to fill the whole surrounding area.

• TILED – The graphic is repeated over the surrounding object like tiles.

ParaExpandSingleWord If True, single words may be stretched.

ParaLeftMargin Specify the left paragraph margin in 0.01 mm as a Long Integer.

367

Property Description

ParaRightMargin Specify the right paragraph margin in 0.01 mm as a Long Integer.

ParaTopMargin Specify the top paragraph margin in 0.01 mm as a Long Integer. The distance
between two paragraphs is the maximum of the bottom margin of the previous
paragraph and the top margin of the next paragraph.

ParaBottomMargin Specify the bottom paragraph margin in 0.01 mm as a Long Integer. The distance
between two paragraphs is the maximum of the bottom margin of the previous
paragraph and the top margin of the next paragraph.

ParaLineNumberCount If True, this paragraph is included in line numbering.

ParaLineNumberStartValue Specify the start value for line numbering as a Long Integer.

PageDescName Setting this string causes a page break to occur before the paragraph. The new page
uses the specified page style name.

PageNumberOffset Specify a new page number if a page break occurs.

ParaRegisterModeActive If True, and if the paragraph's page style also has the register mode set to True, the
register mode is active for this paragraph. If register mode is active, each line has
the same height.

ParaTabStops Specify the tab stops for this paragraph. This is an array of structures of type
com.sun.star.style.TabStop. Each structure contains the following properties:

• Position – Long integer position relative to the left border.

• Alignment – Alignment of the text range before the tab. This is an enumeration
of type com.sun.star.style.TabAlign. Valid values include LEFT, RIGHT,
CENTER, DECIMAL, and DEFAULT.

• DecimalChar – Specifies which character is the decimal.

• FillChar – Character used to fill space between the text.

ParaStyleName Specify the name of the current paragraph style.

DropCapFormat Structure that determines if the first characters of the paragraph use dropped capital
letters. The com.sun.star.style.DropCapFormat contains the following properties:

• Lines – Number of lines used for a drop cap.

• Count – Number of characters in the drop cap.

• Distance – Distance between the drop cap and the following text.

DropCapWholeWord If True, the DropCapFormat is applied to the entire first word.

ParaKeepTogether If True, prevents a page or column break after this paragraph—for example, to
prevent a title from being the last line on a page or column.

ParaSplit If False, prevents the paragraph from splitting into two pages or columns.

NumberingLevel Specify the numbering level of the paragraph.

NumberingRules Specify the numbering rules applied to this paragraph. This object implements the
com.sun.star.container.XIndexReplace interface.

NumberingStartValue Specify the start value for numbering if ParaIsNumberingRestart is True.

ParaIsNumberingRestart Specify if numbering restarts at the current paragraph (see NumberingStartValue).

NumberingStyleName Specify the name of the style for numbering (see ParaLineNumberCount).

ParaOrphans Specify the minimum number of lines at the bottom of a page if the paragraph spans
more than one page.

ParaWidows Specify the minimum number of lines at the top of a page if the paragraph spans
more than one page.

ParaShadowFormat Specify the paragraph shadow format as a com.sun.star.table.ShadowFormat:

368

Property Description

• Location – Specify the shadow location as an enumeration of type
com.sun.star.table.ShadowLocation. Valid values include NONE, TOP_LEFT,
TOP_RIGHT, BOTTOM_LEFT, and BOTTOM_RIGHT.

• ShadowWidth – Specify the size of the shadow as an Integer.

• IsTransparent – If True, the shadow is transparent.

• Color – Specify the color of the shadow as a Long Integer.

LeftBorder Specify the left border as a com.sun.star.table.BorderLine (see Table 163).

RightBorder Specify the right border (see Table 163).

TopBorder Specify the top border (see Table 163).

BottomBorder Specify the bottom border (see Table 163).

BorderDistance Specify the distance from the border to the object (in 0.01 mm).

LeftBorderDistance Specify the distance from the left border to the object (in 0.01 mm).

RightBorderDistance Specify the distance from the right border to the object (in 0.01 mm).

TopBorderDistance Specify the distance from the top border to the object (in 0.01 mm).

BottomBorderDistance Specify the distance from the bottom border to the object (in 0.01 mm).

BreakType Specify the type of break that is applied at the start of the paragraph. This is an
enumeration of type com.sun.star.style.BreakType with the following values:

• NONE – No column or page break is applied.

• COLUMN_BEFORE – A column break is applied before the current paragraph.
The current paragraph, therefore, is the first in the column.

• COLUMN_AFTER – A column break is applied after the current paragraph. The
current paragraph, therefore, is the last in the column.

• COLUMN_BOTH – A column break is applied before and after the current
paragraph. The current paragraph, therefore, is the only paragraph in the column.

• PAGE_BEFORE – A page break is applied before the current paragraph. The
current paragraph, therefore, is the first on the page.

• PAGE_AFTER – A page break is applied after the current paragraph. The
current paragraph, therefore, is the last on the page.

• PAGE_BOTH – A page break is applied before and after the current paragraph.
The current paragraph, therefore, is the only paragraph on the page.

DropCapCharStyleName Specify the name of the character style for drop caps.

ParaFirstLineIndent Specify the indent for the first line in a paragraph.

ParaIsAutoFirstLineIndent If True, the first line is indented automatically.

ParaIsHyphenation If True, automatic hyphenation is applied.

ParaHyphenationMaxHyphens Specify the maximum number of consecutive hyphens for each word contained in
the current paragraph.

ParaHyphenationMaxLeadingChars Specify the maximum number of characters to remain before a hyphen character.

ParaHyphenationMaxTrailingChars Specify the maximum number of characters to remain after a hyphen character.

ParaVertAlignment Specify the vertical alignment of the paragraph. This is a constant group of type
com.sun.star.text.ParagraphVertAlign with valid values:

• AUTOMATIC = 0 – In automatic mode, horizontal text is aligned to the
baseline. The same applies to text that is rotated 90 degrees. Text that is rotated
270 degrees is aligned to the center.

• BASELINE = 1 – The text is aligned to the baseline.

369

Property Description

• TOP = 2 – The text is aligned to the top.

• CENTER = 3 – The text is aligned to the center.

• BOTTOM = 4 – The text is aligned to bottom.

ParaUserDefinedAttributes Stores XML attributes that are saved and restored from the automatic styles inside
XML files. The object implements the com.sun.star.container.XNameContainer
interface.

NumberingIsNumber If True, the numbering of a paragraph is a number but has no symbol. This is void if
the paragraph is not part of a paragraph numbering sequence.

ParaIsConnectBorder If True, paragraph borders are merged with the previous paragraph if the borders are
identical. This property may be void.

TIP Paragraph properties are usually set using paragraph styles—at least they should be.

Many of the properties in Table 126 are structures; they require special care if you want to modify them,
because a structure is copied by value rather than by reference. For example, the ParaLineSpacing property
is a structure. Although the code in Listing 337 looks correct, it fails; this usage is a very common error
committed by OOo Basic programmers.

Listing 337. This code fails because ParaLineSpacing is a structure.
oPar.ParaLineSpacing.Mode = com.sun.star.style.LineSpacing.LEADING

The code in Listing 337 fails because the code “oPar.ParaLineSpacing” made a copy of the structure. The
Mode is set, but it is set only on the copy, leaving the original intact. The code in Listing 338 demonstrates
the proper way to modify the value of a structure when it is used as a property. A copy of the structure is
stored in the variable v, which is then modified and copied back.

Listing 338. This works because it makes a copy and then copies it back.
v = oPar.ParaLineSpacing
v.Mode = com.sun.star.style.LineSpacing.LEADING
oPar.ParaLineSpacing = v

Insert a page break

To insert a page break, set the PageDescName property to the name of the page style to use after the page
break. This style may be the same as the current page style; it is the act of setting the PageDescName
property—not changing it to a new value—that causes a page break to occur. The page style name must exist
in the document or a page break is not inserted. When you insert a page break, you can also set a new page
number by setting the PageNumberOffset property to the new page number. See Listing 339.

TIP It is rare to insert a page break while enumerating paragraphs. It is more common to insert a page break
using a text cursor or a text range. You can use any service that supports paragraph properties to insert a
page break.

Listing 339. Insert a page break after the last paragraph.
Sub SetPageBreakAtEndFromEnumeration
 Dim oEnum 'com.sun.star.container.XEnumerationAccess
 Dim oParTest 'Paragraph of some sort
 Dim oPar 'Last Paragraph object

370

 REM Find the last paragraph
 oEnum = ThisComponent.Text.createEnumeration()
 Do While oEnum.hasMoreElements()
 oParTest = oEnum.nextElement()
 If oParTest.supportsService("com.sun.star.text.Paragraph") Then
 oPar = oParTest
 End If
 Loop

 REM Note that this does not actually change the page style name
 oPar.PageDescName = oPar.PageStyleName

 REM Set the new page number to be 7
 oPar.PageNumberOffset = 7
End Sub

Set the paragraph style

The ParaStyleName property indicates the paragraph style for that paragraph. This property may be directly
set.

Listing 340. Enumerate the paragraph styles in the current document.
Sub EnumerateParStyles()
 Dim oEnum 'com.sun.star.container.XEnumerationAccess
 Dim oCurPar 'Last Paragraph object.
 Dim s$ 'General string variable.

 oEnum = ThisComponent.Text.createEnumeration()
 Do While oEnum.hasMoreElements()
 oCurPar = oEnum.nextElement()
 s = s & oCurPar.ParaStyleName & CHR$(10)
 Loop
 MsgBox s
End Sub

 14.2.2. Character properties

Paragraphs contain numerous character-related properties. Like the paragraph-specific properties, these
properties are optional and are encapsulated in services. The properties that are primarily related to
characters are found in the CharacterProperties service (see Table 127).

TIP Many of the properties are represented by a value in a constant group. Constant groups associate
meaningful names to constant values. For example, the CharFontFamily accepts the value
com.sun.star.awt.FontFamily.ROMAN to specify a Roman font with serifs. A value of 3 may also be used.
In almost all cases, the first value is 0, the second value is 1, and so on. Code that uses the descriptive
names is easier to read and understand.

Table 127. Properties supported by the com.sun.style.CharacterProperties service.
Property Description

CharFontName Specify the name of the font in western text. This may be a comma-separated list of
names.

CharFontStyleName Specify the name of the font style.

371

Property Description

CharFontFamily Specify the name of the font family as specified in com.sun.star.awt.FontFamily
constant group.

• DONTKNOW = 0 – The font family is not known.

• DECORATIVE = 1 – The font family uses decorative fonts.

• MODERN = 2 – The font family is a modern font; this is a specific style.

• ROMAN = 3 – The font family is a Roman font with serifs.

• SCRIPT = 4 – The font family is a script font.

• SWISS = 5 – The font family is a Roman font without serifs.

• SYSTEM = 6 – The font family is a system font.

CharFontCharSet Specify the text encoding of the font using the com.sun.star.awt.CharSet constant
group. The values are self-explanatory: DONTKNOW, ANSI, MAC, IBMPC_437
(IBM PC character set number 437), IBMPC_850, IBMPC_860, IBMPC_86,
IBMPC_863, IBMPC_865, SYSTEM, and SYMBOL.

CharFontPitch Specify the character font pitch using the com.sun.star.awt.FontPitch constant
group. The values are self-explanatory: DONTKNOW, FIXED, and VARIABLE.

CharColor Specify the text color as a Long Integer.

CharEscapement Specify the Short Integer representing the percentage of raising or lowering for
superscript/subscript characters. Negative values lower the characters.

CharHeight Specify the character height in points as a decimal number.

CharUnderline Specify the character underline type using the com.sun.star.awt.FontUnderline
constant group.

• NONE = 0 – No underlining.

• SINGLE = 1 – Single line.

• DOUBLE = 2 – Double line.

• DOTTED = 3 – Dotted line.

• DONTKNOW = 4 – Unknown underlining.

• DASH = 5 – Dashed line.

• LONGDASH = 6 – Long dashes.

• DASHDOT = 7 – Dash and dot sequence.

• DASHDOTDOT = 8 – Dash, dot, dot sequence.

• SMALLWAVE = 9 – Small wave.

• WAVE = 10 – Wave.

• DOUBLEWAVE = 11 – Double wave.

• BOLD = 12 – Bold line.

• BOLDDOTTED = 13 – Bold dots.

• BOLDDASH = 14 – Bold dashes.

• BOLDLONGDASH = 15 – Long bold dashes.

• BOLDDASHDOT = 16 – Dash and dot sequence in bold.

• BOLDDASHDOTDOT = 17 – Dash, dot, dot sequence in bold.

• BOLDWAVE = 18 – Bold wave.

CharWeight Specify the font weight using the com.sun.star.awt.FontWeight constant group.

• DONTKNOW = 0.000 – Not specified/unknown.

• THIN = 50.00 – 50% font weight.

• ULTRALIGHT = 60.00 – 60% font weight.

372

Property Description

• LIGHT = 75.00 – 75% font weight.

• SEMILIGHT = 90.00 – 90% font weight.

• NORMAL = 100.00 – normal font weight (100%).

• SEMIBOLD = 110.00 – 110% font weight.

• BOLD = 150.00 – 150% font weight.

• ULTRABOLD = 175.00 – 175% font weight.

• BLACK = 200.00 – 200% font weight.

CharPosture Specify the character posture using the com.sun.star.awt.FontSlant enumeration
with values:

• NONE – No slant, regular text.

• OBLIQUE – Oblique font (slant not designed into the font).

• ITALIC – Italic font (slant designed into the font).

• DONTKNOW – Unknown slant.

• REVERSE_OBLIQUE – Reverse oblique (slant not designed into the font).

• REVERSE_ITALIC – Reverse italic font (slant designed into the font).

CharAutoKerning Set to True to use the kerning tables for the current font. Automatic kerning adjusts
the spacing between certain pairs of characters to improve readability.

CharBackColor Specify the text background color as a Long Integer.

CharBackTransparent If True, the text background color is transparent.

CharCaseMap Specify how characters should be displayed using the com.sun.star.style.CaseMap
constant group. This does not change the actual text—only the way it is displayed.

• NONE = 0 – No case mapping is performed; this is the most commonly used
value.

• UPPERCASE = 1 – All characters are displayed in uppercase.

• LOWERCASE = 2 – All characters are displayed in lowercase.

• TITLE = 3 – The first character of each word is displayed in uppercase.

• SMALLCAPS = 4 – All characters are displayed in uppercase, but with a
smaller font.

CharCrossedOut If True, the characters have a line through them.

CharFlash If True, the characters are displayed flashing.

CharStrikeout Specify character strikeout using the com.sun.star.awt.FontStrikeout constant group:

• NONE = 0 – Do not strike out characters.

• SINGLE = 1 – Strike out the characters with a single line.

• DOUBLE = 2 – Strike out the characters with a double line.

• DONTKNOW = 3 – The strikeout mode is not specified.

• BOLD = 4 – Strike out the characters with a bold line.

• SLASH = 5 – Strike out the characters with slashes.

• X = 6 – Strike out the characters with X's.

CharWordMode If True, white spaces (spaces and tabs) ignore the CharStrikeout and CharUnderline
properties.

CharKerning Specify the character kerning value as a Short Integer.

CharLocale Specify the character locale as a com.star.lang.Locale structure.

CharKeepTogether If True, OOo tries to keep the character range on the same line. If a break must

373

Property Description

occur, it occurs before the characters.

CharNoLineBreak If True, OOo ignores a line break in the character range. If a break must occur, it
occurs after the characters so it is possible that they will cross a border.

CharShadowed If True, the characters are formatted and displayed with a shadow effect.

CharFontType Specify the fundamental technology of the font using the com.sun.star.awt.FontType
constant group.

• DONTKNOW = 0 – The type of the font is not known.

• RASTER = 1 – The font is a raster (bitmapped) font.

• DEVICE = 2 – The font is output-device specific, such as a printer font.

• SCALABLE = 3 – The font is scalable.

CharStyleName Specify the name of the font style as a string.

CharContoured If True, characters are formatted and displayed with a contour (3-D outline) effect.

CharCombineIsOn If True, text is formatted and displayed using two lines. The CharCombinePrefix
string precedes the text in full size, and the CharCombineSuffix follows the text in
full size.

CharCombinePrefix Specify the prefix (usually parentheses) used with the CharCombineIsOn property.

CharCombineSuffix Specify the suffix (usually parentheses) used with the CharCombineIsOn property.

CharEmphasize Specify the type and position of emphasis marks in Asian texts using the
com.sun.star.text.FontEmphasis constant group:

• NONE = 0 – No emphasis mark is used.

• DOT_ABOVE = 1 – A dot is set above (or right from vertical text) the text.

• CIRCLE_ABOVE = 2 – A circle is set above (or right from vertical text) the
text.

• DISK_ABOVE = 3 – A disk is set above (or right from vertical text) the text.

• ACCENT_ABOVE = 4 – An accent is set above (or right from vertical text) the
text.

• DOT_BELOW = 11 – A dot is set below (or left from vertical text) the text.

• CIRCLE_BELOW = 12 – A circle is set below (or left from vertical text) the
text.

• DISK_BELOW = 13 – A disk is set below (or left from vertical text) the text.

• ACCENT_BELOW = 14 – An accent is set below (or left from vertical text) the
text.

CharRelief Specify the relief value from the com.sun.star.text.FontRelief constant group:

• NONE = 0 – No relief is used; normal text.

• EMBOSSED = 1 – Characters look embossed (raised).

• ENGRAVED = 2 – Characters look engraved (lowered).

RubyText Specify the text that is set as ruby. “Ruby Text” acts as an annotation and is
associated with a “Ruby Base.” This is typically used in Asian writing systems,
providing a helper for uncommonly used writing characters that are not easily
recognizable, especially by children. For example, in Japanese writing, the phonetic
Hiragana alphabet is used to pair phonetic “helper” readings (called Furigana or
Yomigana in Japanese) with the Chinese character counterpart.

RubyAdjust Specify the ruby text adjustment using the com.sun.star.text.RubyAdjust
enumeration:

• LEFT – Adjust to the left.

374

Property Description

• CENTER – Adjust to the center.

• RIGHT – Adjust to the right.

• BLOCK – Adjust to both borders (stretched).

• INDENT_BLOCK – Adjust to both borders with a small indent on both sides.

RubyCharStyleName Specify the name of the character style that is applied to RubyText.

RubyIsAbove If True, the Ruby is printed above the text (right if the text is vertical).

CharRotation Specify the rotation of a character in degrees as a Short Integer. Not all
implementations support all values.

CharRotationIsFitToLine If True, OOo tries to fit the rotated text to the surrounding line height.

CharScaleWidth Specify the scaling for superscript and subscript as a percentage using a Short
Integer.

HyperLinkURL Specify the URL of a hyperlink (if set) as a String.

HyperLinkTarget Specify the name of the target for a hyperlink (if set) as a String.

HyperLinkName Specify the name of the hyperlink (if set) as a String.

VisitedCharStyleName Specify the character style for visited hyperlinks as a String.

UnvisitedCharStyleName Specify the character style name for unvisited hyperlinks as a String.

CharEscapementHeight Specify the additional height used for subscript or superscript characters as an
Integer percent. For subscript characters the value is negative.

CharNoHyphenation If True, the word cannot be hyphenated at the character.

CharUnderlineColor Specify the color of the underline as a Long Integer.

CharUnderlineHasColor If True, the CharUnderlineColor is used for an underline.

CharStyleNames An array of character style names applied to the text. The order is not necessarily
relevant.

TIP When a property supports a DONTKNOW value, the property is usually used as a hint to perform certain
operations more efficiently or to find a close replacement value if the requested value is not available. For
example, if a particular font is not available, you can use the CharFontFamily to choose a font of the
correct type.

The code in Listing 341 demonstrates modifying the character properties by modifying the FontRelief
property and then changing it back.

Listing 341. Set then restore the font relief.
Sub ViewFontRelief
 Dim oEnum 'com.sun.star.container.XEnumerationAccess
 Dim oPar 'Paragraph of some sort
 Dim i% 'General Counting variable
 Dim s$

 oEnum = ThisComponent.Text.createEnumeration()
 Do While oEnum.hasMoreElements()
 oPar = oEnum.nextElement()

375

 REM The returned paragraph will be a paragraph or a text table
 If oPar.supportsService("com.sun.star.text.Paragraph") Then
 i = i + 1
 oPar.CharRelief = i MOD 3
 End If
 Loop

 MsgBox "The document now uses NONE, EMBOSSED, and ENGRAVED character relief"

 oEnum = ThisComponent.Text.createEnumeration()
 Do While oEnum.hasMoreElements()
 oPar = oEnum.nextElement()

 REM The returned paragraph will be a paragraph or a text table
 If oPar.supportsService("com.sun.star.text.Paragraph") Then
 i = i + 1
 oPar.CharRelief = com.sun.star.text.FontRelief.NONE
 End If
 Loop
End Sub

 14.2.3. Enumerating text sections (paragraph portions)

It is not unusual for a paragraph to contain text with dissimilar formatting—for example, a single word may
be displayed in bold in the middle of a sentence that is displayed in the font’s normal state. Just as you can
enumerate the paragraphs in a document, you can enumerate the text sections in a paragraph. Text within
each enumerated portion uses the same properties and is of the same type. Table 128 lists the properties
directly supported by the TextPortion service. The TextPortion service exports the TextRange service so it
also supports the paragraph properties in Table 126 and the character properties in Table 127.

TIP An object that supports paragraph or character properties typically provides a way to enclose a range of
text. If a specific property changes value in the text range, it usually isn’t available to be set. For example, a
text range can contain more than one paragraph. If all of the contained paragraphs in the text range do not
support the same paragraph style, the paragraph style property is not available to the text range. If,
however, the text range is reduced to contain only paragraphs that support a single paragraph style, the
paragraph style property will be available to that text range.

376

Table 128. Properties supported by the com.sun.text.TextPortion service.
Property Description

TextPortionType String containing the type of the text portion. Valid content type names are:

• Text – String content.

• TextField – TextField content.

• TextContent – Indicates that text content is anchored as or to a character that is not really
part of the paragraph—for example, a text frame or a graphic object. As of OOo 1.1.0 and
OOo 1.1.1, the type “Frame” is returned rather than “TextContent”. The OOo team refers to
this as issue #24444.

• Frame – This is not a documented return value, but it is returned rather than the type
“TextContent”.

• Footnote – Footnote or endnote.

• ControlCharacter – Control character.

• ReferenceMark – Reference mark.

• DocumentIndexMark – Document index mark.

• Bookmark – Bookmark.

• Redline – Redline portion, which is a result of the change-tracking feature.

• Ruby – Ruby attribute (used in Asian text).

ControlCharacter Short Integer containing the control character if the text portion contains a ControlCharacter.

Bookmark If the text content is a bookmark, this is a reference to the bookmark. The property implements
the com.sun.star.text.XTextContent interface.

IsCollapsed If True, the text portion is a point.

IsStart If True, the text portion is a start portion if two portions are needed to include an object.
For example, a DocmentIndexMark has a start and end text portion surrounding the text
to be indexed.

The macro in Listing 342 demonstrates enumerating the text content inside a paragraph. It displays the
paragraph number and the included text portion types in a dialog. The paragraph number is calculated and is
not a property of the paragraph.

Listing 342. See text portion types.
Sub EnumerateTextSections
 Dim oParEnum 'Paragraph enumerator
 Dim osecEnum 'Text section enumerator
 Dim oPar 'Current paragraph
 Dim oParSection 'Current section
 Dim nPars As Integer 'Number of paragraphs
 Dim s$

 oParEnum = ThisComponent.Text.createEnumeration()
 Do While oParEnum.hasMoreElements()
 oPar = oParEnum.nextElement()

 If oPar.supportsService("com.sun.star.text.Paragraph") Then
 nPars = nPars + 1
 oSecEnum = oPar.createEnumeration()
 s = s & nPars & ":"
 Do While oSecEnum.hasMoreElements()
 oParSection = oSecEnum.nextElement()

377

 s = s & oParSection.TextPortionType & ":"
 Loop
 s = s & CHR$(10)
 If nPars MOD 10 = 0 Then
 MsgBox s, 0, "Paragraph Text Sections"
 s = ""
 End If
 End If
 Loop
 MsgBox s, 0, "Paragraph Text Sections"
End Sub

 14.3. Graphics

The following macro inserts a text graphic object as a link in to the current document. This is a text graphics
object, which is inserted at a cursor position. Although you must set the image size, you do not need to set
the position.

Listing 343. Insert a Graphics as a link at the start of the document.
Sub InsertGraphicObject(oDoc, sURL$)
 Dim oCursor
 Dim oGraph
 Dim oText

 oText = oDoc.getText()
 oCursor = oText.createTextCursor()
 oCursor.goToStart(FALSE)
 oGraph = oDoc.createInstance("com.sun.star.text.GraphicObject")

 With oGraph
 .GraphicURL = sURL
 .AnchorType = com.sun.star.text.TextContentAnchorType.AS_CHARACTER
 .Width = 6000
 .Height = 8000
 End With

 'now insert the image into the text document
 oText.insertTextContent(oCursor, oGraph, False)
End Sub

You can also insert a graphics object shape, which is inserted into the draw page rather than at a cursor
location, but you must use a com.sun.star.drawing.GraphicObjectShape, and then set both the location and
the size.

Sometimes, you must guess the image size because it is not available. The following method assumes that
the argument is a service of type com.sun.star.graphic.GraphicDescriptor, which optionally provides the
image size in 100th mm and in pixels. The method returns a value in 100th mm, which is what is required
for the internal display.

Integers are not used because the intermediate values may be large.

If the size is available in 100th mm, then this is used. Next, the size is checked in Pixels. An image has both
a size in pixels, and an expected pixel density (Dots Per Inch). We may have the number of pixels, but we do

378

not have the DPI. I guess the pixel density as the pixel density of the computer display. In other words, if the
expected size is not available, then assume that this was created for display on the current monitor.

Listing 344. Guess image size.
Function RecommendGraphSize(oGraph)
 Dim oSize
 Dim lMaxW As Double ' Maximum width in 100th mm
 Dim lMaxH As Double ' Maximum height in 100th mm

 lMaxW = 6.75 * 2540 ' 6.75 inches
 lMaxH = 9.5 * 2540 ' 9.5 inches

 If IsNull(oGraph) OR IsEmpty(oGraph) Then
 Exit Function
 End If
 oSize = oGraph.Size100thMM
 If oSize.Height = 0 OR oSize.Width = 0 Then
 ' 2540 is 25.40 mm in an inch, but I need 100th mm.
 ' There are 1440 twips in an inch
 oSize.Height = oGraph.SizePixel.Height * 2540.0 * TwipsPerPixelY() / 1440
 oSize.Width = oGraph.SizePixel.Width * 2540.0 * TwipsPerPixelX() / 1440
 End If
 If oSize.Height = 0 OR oSize.Width = 0 Then
 'oSize.Height = 2540
 'oSize.Width = 2540
 Exit Function
 End If
 If oSize.Width > lMaxW Then
 oSize.Height = oSize.Height * lMaxW / oSize.Width
 oSize.Width = lMaxW
 End If
 If oSize.Height > lMaxH Then
 oSize.Width = oSize.Width * lMaxH / oSize.Height
 oSize.Height = lMaxH
 End If
 RecommendGraphSize = oSize
End Function

An image is embedded as follows:

1. A shape is created and added to the draw page.

2. The graphic provider service is used to obtain image descriptor from disk before it is loaded.

3. The image descriptor is used to guess the image size. The image size is guessed, because we only
know what is in the descriptor, and the descriptor may not really know.

4. The shape is set to image as provided by the graphic provider service. At this point, the image is
loaded and known by OOo.

5. A newly created graph object sets its URL to the URL used by the shape object. As such, the graphic
and the shape should reference the same image.

6. The graph is anchored as a character and then inserted into the document at the cursor.

379

7. The shape is no longer required, so it is removed.

For reasons I do not understand, all images inserted as a very small images (less than 1 cm). I use the
guessed image size to set the graphic size.

Listing 345. Embed an image in a document.
' oDoc - document to contain the image.
' oCurs - Cursor where the image is added
' sURL - URL of the image to insert.
' sParStyle - set the paragraph style to this.
Sub EmbedGraphic(oDoc, oCurs, sURL$, sParStyle$)
 Dim oShape
 Dim oGraph 'The graphic object is text content.
 Dim oProvider 'GraphicProvider service.
 Dim oText

 oShape = oDoc.createInstance("com.sun.star.drawing.GraphicObjectShape")
 oGraph = oDoc.createInstance("com.sun.star.text.GraphicObject")

 oDoc.getDrawPage().add(oShape)

 oProvider = createUnoService("com.sun.star.graphic.GraphicProvider")

 Dim oProps(0) as new com.sun.star.beans.PropertyValue
 oProps(0).Name = "URL"
 oProps(0).Value = sURL

 REM Save the original size.
 Dim oSize100thMM
 Dim lHeight As Long
 Dim lWidth As Long
 oSize100thMM = RecommendGraphSize(oProvider.queryGraphicDescriptor(oProps))
 If NOT IsNull(oSize100thMM) AND NOT IsEmpty(oSize100thMM) Then
 lHeight = oSize100thMM.Height
 lWidth = oSize100thMM.Width
 End If

 oShape.Graphic = oProvider.queryGraphic(oProps())
 oGraph.graphicurl = oShape.graphicurl
 oGraph.AnchorType = com.sun.star.text.TextContentAnchorType.AS_CHARACTER
 oText= oCurs.getText()
 oText.insertTextContent(oCurs, oGraph, false)
 oDoc.getDrawPage().remove(oShape)

 If lHeight > 0 AND lWidth > 0 Then
 Dim oSize
 oSize = oGraph.Size
 oSize.Height = lHeight
 oSize.Width = lWidth
 oGraph.Size = oSize
 End If

 ' Set the paragraph style if it is in the document.

380

 Dim oStyles
 oStyles = oDoc.StyleFamilies.getByName("ParagraphStyles")
 If oStyles.hasByName(sParStyle) Then
 oCurs.ParaStyleName = sParStyle
 End If
End Sub

 14.4. Paste HTML then embed linked graphics

After copying a web page and pasting it into a text document, all of the images are embedded. Graphics in a
document contain the GraphicURL property. The URL for a graphic contained in the document begins with
the “vnd.sun.star.GraphiObject:”. Graphic inserted using the API are inserted as links – they are not
embedded into the document without some work.

The following macro brings many concepts together to find all linked images and convert them into
embedded images contained in the document.

Listing 346. Convert all linked images to embedded images.
Sub ConvertAllLinkedGraphics(Optional aDoc)
 Dim oDoc ' Working document
 Dim oDP ' Draw page
 Dim i% ' Index counter
 Dim oGraph ' Graph object in the draw page
 Dim iLinked% ' Number of linked images
 Dim iEmbedded% ' Number of embedded images
 Dim iConverted% ' Linked images converted to embedded
 Dim s1$ ' Graphic service name
 Dim s2$ ' Graphic service name

 REM Only know how to convert these types
 s1 = "com.sun.star.drawing.GraphicObjectShape"
 s2 = "com.sun.star.text.TextGraphicObject"

 If IsMissing(aDoc) OR IsNull(aDoc) OR IsEmpty(aDoc) Then
 oDoc = ThisComponent
 Else
 oDoc = aDoc
 End If

 REM Get the document draw page and then enumerate the images.
 oDP = oDoc.getDrawPage()
 For i=0 To oDP.getCount()-1
 oGraph = oDP.getByIndex(i)
 If oGraph.supportsService(s1) OR oGraph.supportsService(s2) Then
 If InStr(oGraph.GraphicURL, "vnd.sun") <> 0 Then
 iEmbedded = iEmbedded + 1
 Else
 iLinked = iLinked + 1
 If EmbedLinkedGraphic(oGraph, oDoc) Then
 iConverted = iConverted + 1
 End If
 End If
 End If
 Next

381

 Print "Found " & iLinked & " linked and " & iEmbedded & _
 " embedded images and converted " & iConverted
End Sub

Function EmbedLinkedGraphic(oGraph, oDoc) As Boolean
 REM Author: Andrew Pitonyak
 Dim sGraphURL$ ' External URL of the image.
 Dim oGraph_2 ' Created image.
 Dim oCurs ' Cursor where the image is located.
 Dim oText ' Text object containing image.
 Dim oAnchor ' Anchor point of the image
 Dim s1$ ' Graphic service name
 Dim s2$ ' Graphic service name

 EmbedLinkedGraphic = False
 If InStr(oGraph.GraphicURL, "vnd.sun") <> 0 Then
 REM Ignore an image that is already embedded
 Exit Function
 End If
 s1 = "com.sun.star.drawing.GraphicObjectShape"
 s2 = "com.sun.star.text.TextGraphicObject"
 If oGraph.supportsService(s1) Then

 REM Convert a GraphicObjectShape.
 oAnchor = oGraph.getAnchor()
 oText = oAnchor.getText()

 oGraph_2 = ThisComponent.createInstance(s)
 oGraph_2.GraphicObjectFillBitmap = oGraph.GraphicObjectFillBitmap
 oGraph_2.Size = oGraph.Size
 oGraph_2.Position = oGraph.Position
 oText.insertTextContent(oAnchor, oGraph_2, False)
 oText.removeTextContent(oGraph)
 EmbedLinkedGraphic = True

 ElseIf oGraph.supportsService(s2) Then

 REM Convert a TextGraphicObject.
 Dim oBitmaps
 Dim sNewURL$
 Dim sName$

 sName$ = oGraph.LinkDisplayName
 oBitmaps = oDoc.createInstance("com.sun.star.drawing.BitmapTable")
 If oBitMaps.hasByName(sName) Then
 Print "Link display name " & sName & " already exists"
 Exit Function
 End If
 'Print "Ready to insert " & sName
 oBitmaps.insertByName(sName, oGraph.GraphicURL)
 sNewURL$ = oBitmaps.getByName(sName)
 'Print "inserted URL " & sNewURL
 oGraph.GraphicURL = sNewURL

382

 EmbedLinkedGraphic = True
 End If
End Function

 14.5. Cursors

The capability to enumerate the entire text content is primarily used for tasks such as exporting a document,
because exporting requires all of the content to be accessed in sequential order. A more typical method for
accessing and manipulating a document involves the use of cursors. A TextCursor is a TextRange, which can
be moved within a Text object. In other words, a text cursor not only can specify a single point in the text,
but it also can encompass a range of text. You can use the cursor movement methods to reposition the cursor
and to expand the section of selected text. Two primary types of text cursors are available in OOo: cursors
that are view cursors (see Table 129) and cursors that are not (see Table 131).

 14.5.1. View cursors

As its name implies, the view cursor deals with the visible cursor. In a single document window, you see one
view at a time. Analogously, you can have one view cursor at a time. View cursors support commands that
are directly related to viewing. To move a cursor one line at a time, or one screen at a time, requires a view
cursor. The view cursor knows how the text is displayed (see Table 130).

Table 129. In general, view cursors are not related to text ranges or XTextCursor.
Cursor Description

com.sun.star.view.XViewCursor Simple cursor with basic movement methods that work in both
text and tables.

com.sun.star.text.XTextViewCursor Derived from XTextCursor, this describes a cursor in a text
document’s view. It supports only very simple movements.

com.sun.star.view.XLineCursor Defines line-related methods; this interface is not derived from a
text range.

com.sun.star.text.XPageCursor Defines page-related methods; this interface is not derived from
a text range.

com.sun.star.view.XScreenCursor Defines methods to move up and down one screen at a time.

Most of the cursor movement methods accept a Boolean argument that determines whether the text range of
the cursor is expanded (True) or whether the cursor is simply moved to the new position (False). In other
words, if the Boolean expression is False, the cursor is moved to the new position and no text is selected by
the cursor. The description of the Boolean variable is assumed and not explicitly stated for each of the cursor
movement methods in Table 130. Another commonality with the movement methods is that they return a
Boolean value. A True value means that the movement worked, and a False value means that the movement
failed. A movement request fails if it cannot be completed successfully. It is not possible, for example, to
move the cursor down if it is already at the end of the document. The screen cursor is obtained from the
document’s current controller (see Listing 347).

Table 130. Object methods related to view cursors.
Defined Method Description

XViewCursor goDown(n, Boolean) Move the cursor down by n lines.

XViewCursor goUp(n, Boolean) Move the cursor up by n lines.

XViewCursor goLeft(n, Boolean) Move the cursor left by n characters.

383

Defined Method Description

XViewCursor goRight(n, Boolean) Move the cursor right by n characters.

XTextViewCursor isVisible() Return True if the cursor is visible.

XTextViewCursor setVisible(Boolean) Show or hide the cursor.

XTextViewCursor getPosition() Return a com.sun.star.awt.Point structure
specifying the cursor’s coordinates relative to
the top-left position of the first page of the
document.

XLineCursor isAtStartOfLine() Return True if the cursor is at the start of the
line.

XLineCursor isAtEndOfLine() Return True if the cursor is at the end of the
line.

XLineCursor gotoEndOfLine(Boolean) Move the cursor to the end of the current line.

XLineCursor gotoStartOfLine(Boolean) Move the cursor to the start of the current line.

XPageCursor jumpToFirstPage() Move the cursor to the first page.

XPageCursor jumpToLastPage() Move the cursor to the last page.

XPageCursor jumpToPage(n) Move the cursor to the specified page.

XPageCursor getPage() Return the current page as a Short Integer.

XPageCursor jumpToNextPage() Move the cursor to the next page.

XPageCursor jumpToPreviousPage() Move the cursor to the previous page.

XPageCursor jumpToEndOfPage() Move the cursor to the end of the current page.

XPageCursor jumpToStartOfPage() Move the cursor to the start of the current page.

XScreenCursor screenDown() Scroll the view forward by one visible page.

XScreenCursor screenUp() Scroll the view backward by one visible page.

Listing 347. ScrollDownOneScreen is found in the Writer module in this chapter’s source code files as
SC13.sxw.
Sub ScrollDownOneScreen
 REM Get the view cursor from the current controller
 ThisComponent.currentController.getViewCursor().screenDown()
End Sub

A more typical use of the view cursor is to insert some special text content at the current cursor position. The
macro in Listing 348 inserts the character with Unicode value 257 (“a” with a bar over it) at the current
cursor position. This type of macro is typically associated with a keystroke to insert special characters that
are not present on the keyboard. The macro in Listing 348 is short and simple, yet very useful.

Listing 348. Insert the character with Unicode value 257 at the current cursor.
Sub InsertControlCharacterAtCurrentCursor
 Dim oViewCursor As Object
 oViewCursor = ThisComponent.CurrentController.getViewCursor()
 oViewCursor.getText.insertString(oViewCursor.getStart(), CHR$(257), False)
End Sub

384

 14.5.2. Text (non-view) cursors

The view cursor knows how the data is displayed, but doesn’t know about the data itself. Text cursors (non-
view cursors), however, know a lot about the data but very little about how it is displayed. For example,
view cursors do not know about words or paragraphs, and text cursors do not know about lines, screens, or
pages (see Table 131).

Table 131. Text cursor interfaces all implement the XTextCursor interface.
Cursor Description

com.sun.star.text.XTextCursor The primary text cursor that defines simple movement
methods.

com.sun.star.text.XWordCursor Provides word-related movement and testing methods.

com.sun.star.text.XSentenceCursor Provides sentence-related movement and testing methods.

com.sun.star.text.XParagraphCursor Provides paragraph-related movement and testing methods.

com.sun.star.text.XTextViewCursor Derived from XTextCursor, this describes a cursor in a text
document’s view.

TIP Text cursors and view cursors have some overlap. The XTextViewCursor is derived from the XTextCursor
so it supports the XTextCursor methods. This does not provide functionality with respect to the underlying
data such as word-related or paragraph-related methods (see Table 132).

The word cursor, sentence cursor, and paragraph cursor all define essentially identical object methods (see
Table 132). The XTextViewCursor interface is listed in Table 130 so it is omitted from Table 132.

Table 132. Object methods related to text cursors.
Defined Method Description

XTextCursor collapseToStart() Set the end position to the start position.

XTextCursor collapseToEnd() Set the start position to the end position.

XTextCursor isCollapsed() Return True if the start and end positions
are the same.

XTextCursor goLeft(n, Boolean) Move the cursor left by n characters.

XTextCursor goRight(n, Boolean) Move the cursor right by n characters.

XTextCursor gotoStart(Boolean) Move the cursor to the start of the text.

XTextCursor gotoEnd(Boolean) Move the cursor to the end of the text.

XTextCursor gotoRange(XTextRange, Boolean) Move or expand the cursor to the
TextRange.

XWordCursor isStartOfWord() Return True if at the start of a word.

XWordCursor isEndOfWord() Return True if at the end of a word.

XWordCursor gotoNextWord(Boolean) Move to the start of the next word.

XWordCursor gotoPreviousWord(Boolean) Move to the end of the previous word.

XWordCursor gotoEndOfWord(Boolean) Move to the end of the current word.

XWordCursor gotoStartOfWord(Boolean) Move to the start of the current word.

XSentenceCursor isStartOfSentence() Return True if at the start of a sentence.

XSentenceCursor isEndOfSentence() Return True if at the end of a sentence.

385

Defined Method Description

XSentenceCursor gotoNextSentence(Boolean) Move to the start of the next sentence.

XSentenceCursor gotoPreviousSentence(Boolean) Move to the end of the previous sentence.

XSentenceCursor gotoEndOfSentence(Boolean) Move to the end of the current sentence.

XSentenceCursor gotoStartOfSentence(Boolean) Move to the start of the current sentence.

XParagraphCursor isStartOfParagraph() True if at the start of a paragraph.

XParagraphCursor isEndOfParagraph() True if at the end of a paragraph.

XParagraphCursor gotoNextParagraph(Boolean) Move to the start of the next paragraph.

XParagraphCursor gotoPreviousParagraph(Boolean) Move to the end of the previous
paragraph.

XParagraphCursor gotoEndOfParagraph(Boolean) Move to the end of the current paragraph.

XParagraphCursor gotoStartOfParagraph(Boolean) Move to the start of the current
paragraph.

 14.5.3. Using cursors to traverse text

Although traversing text using a cursor is not inherently difficult, I struggled with cursors for a long time
before I finally realized that I had a very basic and yet simple misunderstanding. A very common, and yet
subtly incorrect, method of traversing text content using cursors is shown in Listing 349. This macro
attempts to move the cursor from one paragraph to the next, selecting one paragraph at a time. Typically,
something would be done to manipulate or modify the paragraph, such as setting the paragraph style.

Listing 349. Example of incorrect use of cursors: This code misses the last paragraph in the document.
Dim oCursor
REM Create a text cursor
oCursor = ThisComponent.Text.createTextCursor()
REM Start at the beginning of the document.
REM This is the same as the start of the first document.
oCursor.gotoStart(False)
REM And this is where things go wrong!
REM The cursor now spans from the start of the
REM first paragraph to the start of the second paragraph.
Do While oCursor.gotoNextParagraph(True)
 REM Process the paragraph here!
 REM Now, deselect all of the text, leaving the cursor at the
 REM start of the next paragraph.
 oCursor.goRight(0, False)
Loop

TIP I produced incorrect code as shown in Listing 349 before I understood cursors.

The problem in Listing 349 is that the method gotoNextParagraph(True) causes the cursor to extend its
selection from the start of one paragraph to the start of the next. The first problem with selecting from the
start of one paragraph to the start of the next is that more than just one paragraph is selected. If the two
different paragraphs do not have the same paragraph style, the ParaStyleName property will return an empty
string rather than a value. The second problem is that when the cursor (as shown in Listing 349) is
positioned at the start of the last paragraph, it is not possible to go to the next paragraph because the next
paragraph does not exist. Therefore, the statement “gotoNextParagraph(True)” returns False and the last

386

paragraph is never processed. The code in Listing 350 demonstrates one correct method of traversing all of
the paragraphs using a cursor.

Listing 350. The correct way to use cursors.
Dim oCursor
REM Create a text cursor.
oCursor = ThisComponent.Text.createTextCursor()
REM Start at the beginning of the document.
REM This is the same as the start of the first document.
oCursor.gotoStart(False)
Do
 REM The cursor is already positioned at the start
 REM of the current paragraph, so select the entire paragraph.
 oCursor.gotoEndOfParagraph(True)
 REM Process the paragraph here!
 REM The Loop statement moves to the next paragraph and
 REM it also deselects the text in the cursor.
Loop While oCursor.gotoNextParagraph(False)

The point is to align the cursor over the current paragraph, and then iterate aligned with the paragraphs,
rather than ever looking ahead to the next paragraph while in the midst of dealing with the cursor.

TIP You can use cursors and enumeration to traverse an entire document and obtain all of the paragraphs.
Using a cursor is five times faster than using an enumerator.

It is very simple to write an iterator that traverses the text while counting the words, sentences, and
paragraphs (see Listing 351).

Listing 351. Count paragraphs, sentences, and words.
Sub CountWordSentPar
 Dim oCursor
 Dim nPars As Long
 Dim nSentences As Long
 Dim nWords As Long

 REM Create a text cursor.
 oCursor = ThisComponent.Text.createTextCursor()
 oCursor.gotoStart(False)
 Do
 nPars = nPars + 1
 Loop While oCursor.gotoNextParagraph(False)
 oCursor.gotoStart(False)
 Do
 nSentences = nSentences + 1
 Loop While oCursor.gotoNextSentence(False)

 oCursor.gotoStart(False)
 Do
 nWords = nWords + 1
 Loop While oCursor.gotoNextWord(False)

 MsgBox "Paragraphs: " & nPars & CHR$(10) &_
 "Sentences: " & nSentences & CHR$(10) &_

387

 "Words: " & nWords & CHR$(10), 0, "Doc Statistics"
End Sub

TIP With OOo 1.1, I found gotoNextSentence() and gotoNextWord() to be unreliable, but the paragraph cursor
worked well. To count words, therefore, I used the word count macros from Andrew Brows:
http://www.darwinwars.com/lunatic/bugs/oo_macros.html.

Keep the view cursor and text cursor in sync

A paragraph is broken into lines based on the page margins. Adjust the page margins and the line breaks
change. Also, text copied from writer as text do not contain the page breaks. For the real world example in
Listing 352 adds real line breaks into the text based on how the lines break on screen.

Both a view cursor and a non­view cursor are required to move through the text. The view cursor knows
where a line ends, but it does not know where the paragraph starts or ends. A non­view cursor knows about
paragraphs, but the view cursor does not.

Listing 352 moves the view cursor around on the screen, demonstrating how to change its location.

Listing 352. Add line breaks in a paragraph.
Sub LineBreaksInParagraph
 Dim oText 'Save typing ThisComponent.Text
 Dim oViewCursor 'Save typing
 ThisComponent.CurrentController.getViewCursor()
 Dim oTextCursor 'Created text cursor
 Dim oSaveCursor 'In case I want to restore the view cursor

 oText = ThisComponent.Text

 REM You require a view cursor
 REM because only the view knows where a line ends.
 oViewCursor = ThisComponent.CurrentController.getViewCursor()

 REM You require a text cursor so that you know where the paragraph ends.
 REM Too bad the view cursor is not a paragraph cursor.
 oTextCursor = oText.createTextCursorByRange(oViewCursor)

 REM You only need this if you want to restore the view cursor
 oSaveCursor = oText.createTextCursorByRange(oViewCursor)

 REM Move the cursor to the start of the current paragraph
 REM so that the entire paragraph can be processed.
 If NOT oTextCursor.isStartOfParagraph() Then
 oTextCursor.gotoStartOfParagraph(False)
 oViewCursor.gotoRange(oTextCursor, False)
 End If
 REM Now visit each line of the paragraph.
 Do While True
 REM Only the view cursor knows where the end of the line is
 REM because this is a formatting issue and not determined by
 REM punctuation.
 oViewCursor.gotoEndOfLine(false)

388

http://www.darwinwars.com/lunatic/bugs/oo_macros.html

 REM Move with the view cursor to the end of the current line
 REM and then see if you're at the end of the paragraph.
 oTextCursor.gotoRange(oViewCursor, False)

 REM Check for end of paragraph BEFORE inserting the line break.
 If oTextCursor.isEndOfParagraph() Then Exit Do

 REM Insert a line break at the current view cursor.
 oText.insertControlCharacter(oViewCursor,_
 com.sun.star.text.ControlCharacter.LINE_BREAK, false)
 Loop
 REM If you only want to move the cursor away from the end of the
 REM current paragraph, then this will suffice.
 oViewCursor.goRight(1, False)
 REM I want to restore the view cursor location, however.
 REM oViewCursor.gotoRange(oSaveCursor, False)
End Sub

 14.5.4. Accessing content using cursors

I have a habit of inspecting the objects returned to me by OOo. While inspecting a view cursor, I noticed that
the view cursor contained useful undocumented properties. According to the developers at Sun, these will
eventually be documented. Some of the properties that I noticed include: Cell, DocumentIndex,
DocumentIndexMark, Endnote, Footnote, ReferenceMark, Text, TextField, TextFrame, TextSection, and
TextTable. If a cursor is in a text table, the cursor’s TextTable property is not empty. If a cursor is on a text
field, the cursor’s TextField property is not empty. These special properties are empty if they are not
relevant. I first used these undocumented properties when I was asked how to determine if the view cursor
was positioned in a text table, and if so, what cell contains the view cursor. See Listing 353.

Listing 353. Testing view cursor properties.
If NOT IsEmpty(oViewCursor.TextTable) Then

Cursors provide the ability to quickly find objects in close proximity to something else. For example, I was
recently asked how to find a text field contained in the current paragraph—the current paragraph is defined
as the paragraph containing the view cursor. It’s easy to obtain the view cursor, and you can use a paragraph
cursor to move around the current paragraph.

My first attempt called the createContentEnumeration("com.sun.star.text.TextContent") object method on
the cursor. This creates an enumeration of text content, enumerating objects such as inserted buttons. I had
mistakenly assumed that this would include text fields in the enumeration. My second attempt to find a text
field, which was successful, uses the createEnumeration() object method. The createEnumeration() method
returns an enumeration of the paragraphs contained in the cursor. Enumerating the content contained in a
paragraph provides access to the text field. My final attempt, which was also successful, moves the cursor to
the start of the document and then moves through the paragraph one location at a time looking for a text
field. The macro in Listing 354 demonstrates all of the methods that I used to try to find a text field in the
current paragraph.

Listing 354. Check current paragraph for a text field.
Sub TextFieldInCurrentParagraph
 Dim oEnum 'Cursor enumerator
 Dim oSection 'Current section
 Dim oViewCursor 'Current view cursor

389

 Dim oTextCursor 'Created text cursor
 Dim oText 'Text object in current document
 Dim s$
 Dim sTextContent$ 'Service name for text content.
 sTextContent = "com.sun.star.text.TextContent"

 oText = ThisComponent.Text
 oViewCursor = ThisComponent.CurrentController.getViewCursor()

 REM Obtain the view cursor, and then select the paragraph
 REM containing the view cursor.
 oTextCursor = oText.createTextCursorByRange(oViewCursor)

 REM Move to the start of the paragraph as a single point.
 oTextCursor.gotoStartOfParagraph(False)
 REM Move to the end of the current paragraph and expand the
 REM selection so that the entire paragraph is selected.
 oTextCursor.gotoEndOfParagraph(True)

 REM I want to enumerate the text content contained by this text cursor.
 REM Although this will find inserted drawing objects, such as the shape
 REM used by a button, it will not find a text field!
 oEnum = oTextCursor.createContentEnumeration(sTextContent)
 Do While oEnum.hasMoreElements()
 oSection = oEnum.nextElement()
 Print "Enumerating TextContent: " & oSection.ImplementationName
 Loop

 REM And this enumerates the paragraphs that are contained in
 REM the text cursor.
 oEnum = oTextCursor.createEnumeration()
 Dim v
 Do While oEnum.hasMoreElements()
 v = oEnum.nextElement()
 Dim oSubSection
 Dim oSecEnum

 REM Now create an enumeration of the paragraphs.
 REM We can enumerate the sections of the paragraph to
 REM obtain the text field and other paragraph content.
 oSecEnum = v.createEnumeration()
 s = "Enumerating section type: " & v.ImplementationName
 Do While oSecEnum.hasMoreElements()
 oSubSection = oSecEnum.nextElement()
 s = s & CHR$(10) & oSubSection.TextPortionType
 If oSubSection.TextPortionType = "TextField" Then
 s = s & " <== Type " & oSubSection.TextField.ImplementationName
 End If
 Loop
 MsgBox s, 0, "Enumerate Single Paragraph"
 Loop

 REM And this is yet another way to find the text field.

390

 REM Start at the beginning of the paragraph and then move the cursor
 REM through it, looking for text fields.
 oTextCursor.gotoStartOfParagraph(False)
 Do While oTextCursor.goRight(1, False) AND _
 NOT oTextCursor.isEndOfParagraph()
 If NOT IsEmpty(oTextCursor.TextField) Then
 Print "It is NOT empty, you can use the text field"
 End If
 Loop
End Sub

TIP As unintuitive as it sounds, it is not only possible—but common—for the end of a text range to come
before the start of a text range. The order of the start and end is primarily an issue when dealing with text
selected by a human user but may also occur due to the movement of a text cursor while expanding the text
range.

As the object methods getStart() and getEnd() imply, it’s possible for a text range to represent a single point.
It’s also possible that the start position comes after the end position. Unexpected start and end positions are
typically a problem while dealing with selected text. When you select text using a mouse or your keyboard,
the initial selection point is generally the start location. Moving the final selection point toward the start of
the document causes the end position to occur before the start position in the text range. The same behavior
may occur while manually moving and expanding a cursor. This behavior is not documented, but it has been
observed in OOo 1.1.0, and like all undocumented behavior, it may change at any time. The text object can
compare two ranges (see Table 133), but the text object must contain both text ranges—a text range has the
getText() object method to return the text object that contains the text range.

Table 133. Methods defined by the com.sun.star.text.XTextRangeCompare interface.
Method Description

compareRegionStarts(XTextRange,
XTextRange)

• Return 1 if the first range starts before the second.

• Return 0 if the first range starts at the same
position as the second.

• Return -1 if the first range starts after the second.

compareRegionEnds(XTextRange,
XTextRange)

• Return 1 if the first range ends before the second.

• Return 0 if the first range ends at the same
position as the second.

• Return -1 if the first range ends after the second.

 14.6. Selected text

Selected text refers to the text that has been selected by a user, probably using the keyboard or the mouse.
Selected text is represented as nothing more than a text range. After you find a text selection, it’s possible to
get the text [getString()] and set the text [setString()]. Although strings are limited to 64KB in size,
selections are not. There are some instances, therefore, when you can’t use the getString() and setString()
methods. Therefore, it’s probably better to use a cursor to traverse the selected text and then use the cursor’s
text object to insert text content. Most problems using selected text look the same at an abstract level.

If nothing is selected then
 do work on entire document
else

391

 for each selected area
 do work on selected area

The difficult part that changes each time is writing a macro that iterates over a selection or between two text
ranges.

 14.6.1. Is text selected?

Text documents support the XTextSectionsSupplier interface (see Table 122), which defines the single
method getCurrentSelection(). If there is no current controller (which means that you’re an advanced user
running OpenOffice.org as a server with no user interface and you won’t be looking for selected text
anyway), getCurrentSelection() returns a null rather than any selected text.

If the selection count is zero, nothing is selected. I have never seen a selection count of zero, but I check for
it anyway. If no text is selected, there is one selection of zero length—the start and end positions are the
same. I have seen examples, which I consider unsafe, where a zero-length selection is determined as follows:

If Len(oSel.getString()) = 0 Then nothing is selected

It is possible that selected text will contain more than 64KB characters, and a string cannot contain more
than 64KB characters. Therefore, don’t check the length of the selected string to see if it is zero; this is not
safe. The better solution is to create a text cursor from the selected range and then check to see if the start
and end points are the same.

oCursor = oDoc.Text.CreateTextCursorByRange(oSel)
If oCursor.IsCollapsed() Then nothing is selected

The macro function in Listing 355 performs the entire check, returning True if something is selected, and
False if nothing is selected.

Listing 355. Determine if anything is selected.
Function IsAnythingSelected(oDoc As Object) As Boolean
 Dim oSelections 'Contains all of the selections
 Dim oSel 'Contains one specific selection
 Dim oCursor 'Text cursor to check for a collapsed range
 REM Assume nothing is selected
 IsAnythingSelected = False
 If IsNull(oDoc) Then Exit Function
 ' The current selection in the current controller.
 'If there is no current controller, it returns NULL.
 oSelections = oDoc.getCurrentSelection()
 If IsNull(oSelections) Then Exit Function
 If oSelections.getCount() = 0 Then Exit Function
 If oSelections.getCount() > 1 Then
 REM There is more than one selection so return True
 IsAnythingSelected = True
 Else
 REM There is only one selection so obtain the first selection
 oSel = oSelections.getByIndex(0)

 REM Create a text cursor that covers the range and then see if it is
 REM collapsed.
 oCursor = oDoc.Text.CreateTextCursorByRange(oSel)
 If Not oCursor.IsCollapsed() Then IsAnythingSelected = True

392

 REM You can also compare these to see if the selection starts and ends at
 REM the same location.
 REM If oDoc.Text.compareRegionStarts(oSel.getStart(),_
 REM oSel.getEnd()) <> 0 Then
 REM IsAnythingSelected = True
 REM End If
 End If
End Function

Obtaining a selection is complicated because it’s possible to have multiple non-contiguous selections. Some
selections are empty and some are not. If you write code to handle text selection, it should handle all of these
cases because they occur frequently. The example in Listing 356 iterates through all selected sections and
displays them in a message box.

Listing 356. Display selected text.
Sub PrintMultipleTextSelection
 Dim oSelections 'Contains all of the selections
 Dim oSel 'Contains one specific selection
 Dim lWhichSelection As Long 'Which selection to print

 If NOT IsAnythingSelected(ThisComponent) Then
 Print "Nothing is selected"
 Else
 oSelections = ThisComponent.getCurrentSelection()
 For lWhichSelection = 0 To oSelections.getCount() - 1
 oSel = oSelections.getByIndex(lWhichSelection)
 MsgBox oSel.getString(), 0, "Selection " & lWhichSelection
 Next
 End If
End Sub

 14.6.2. Selected text: Which end is which?

Selections are text ranges with a start and an end. Although selections have both a start and an end, which
side of the text is which is determined by the selection method. For example, position the cursor in the
middle of a line, and then select text by moving the cursor either right or left. In both cases, the start position
is the same. In one of these cases, the start position is after the end position. The text object provides
methods to compare starting and ending positions of text ranges (see Table 133). I use the two methods in
Listing 357 to find the leftmost and rightmost cursor position of selected text.

Listing 357. Get left and right cursor.
'oSel is a text selection or cursor range
'oText is the text object
Function GetLeftMostCursor(oSel, oText)
 Dim oRange
 Dim oCursor

 If oText.compareRegionStarts(oSel.getEnd(), oSel) >= 0 Then
 oRange = oSel.getEnd()
 Else
 oRange = oSel.getStart()
 End If
 oCursor = oText.CreateTextCursorByRange(oRange)
 oCursor.goRight(0, False)

393

 GetLeftMostCursor = oCursor
End Function

'oSel is a text selection or cursor range
'oText is the text object
Function GetRightMostCursor(oSel, oText)
 Dim oRange
 Dim oCursor

 If oText.compareRegionStarts(oSel.getEnd(), oSel) >= 0 Then
 oRange = oSel.getStart()
 Else
 oRange = oSel.getEnd()
 End If
 oCursor = oText.CreateTextCursorByRange(oRange)
 oCursor.goLeft(0, False)
 GetRightMostCursor = oCursor
End Function

While using text cursors to move through a document, I noticed that cursors remember the direction in
which they are traveling. The cursors returned by the macros in Listing 357 are oriented to travel into the
text selection by moving the cursor left or right zero characters. This is also an issue while moving a cursor
to the right and then turning it around to move left. I always start by moving the cursor zero characters in the
desired direction before actually moving the cursor. Then my macro can use these cursors to traverse the
selected text from the start (moving right) or the end (moving left).

 14.6.3. Selected text framework

While dealing with selected text, I use a framework that returns a two-dimensional array of start and end
cursors over which to iterate. Using a framework allows me to use a very minimal code base to iterate over
selected text or the entire document. If no text is selected, the framework asks if the macro should use the
entire document. If the answer is yes, a cursor is created at the start and the end of the document. If text is
selected, each selection is retrieved, and a cursor is obtained at the start and end of each selection. See
Listing 358.

Listing 358. Create cursors with selected areas.
'sPrompt : How to ask if should iterate over the entire text
'oCursors() : Has the return cursors
'Returns True if should iterate and False if should not
Function CreateSelectedTextIterator(oDoc, sPrompt$, oCursors()) As Boolean
 Dim oSelections 'Contains all of the selections
 Dim oSel 'Contains one specific selection
 Dim oText 'Document text object
 Dim lSelCount As Long 'Number of selections
 Dim lWhichSelection As Long 'Current selection
 Dim oLCursor, oRCursor 'Temporary cursors
 CreateSelectedTextIterator = True
 oText = oDoc.Text
 If Not IsAnythingSelected(oDoc) Then
 Dim i%
 i% = MsgBox("No text selected!" + CHR$(13) + sPrompt, _
 1 OR 32 OR 256, "Warning")
 If i% = 1 Then

394

 oLCursor = oText.createTextCursorByRange(oText.getStart())
 oRCursor = oText.createTextCursorByRange(oText.getEnd())
 oCursors = DimArray(0, 1) 'Two-Dimensional array with one row
 oCursors(0, 0) = oLCursor
 oCursors(0, 1) = oRCursor
 Else
 oCursors = DimArray() 'Return an empty array
 CreateSelectedTextIterator = False
 End If
 Else
 oSelections = oDoc.getCurrentSelection()
 lSelCount = oSelections.getCount()
 oCursors = DimArray(lSelCount - 1, 1)
 For lWhichSelection = 0 To lSelCount - 1
 oSel = oSelections.getByIndex(lWhichSelection)
 oLCursor = GetLeftMostCursor(oSel, oText)
 oRCursor = GetRightMostCursor(oSel, oText)
 oCursors(lWhichSelection, 0) = oLCursor
 oCursors(lWhichSelection, 1) = oRCursor
 Next
 End If
End Function

TIP The argument oCursors() is an array that is set in the macro in Listing 358.

The macro in Listing 359 uses the selected text framework to print the Unicode values of the selected text.

Listing 359. Display Unicode of the selected text.
Sub PrintUnicodeExamples
 Dim oCursors(), i%
 If Not CreateSelectedTextIterator(ThisComponent, _
 "Print Unicode for the entire document?", oCursors()) Then Exit Sub
 For i% = LBound(oCursors()) To UBound(oCursors())
 PrintUnicode_worker(oCursors(i%, 0), oCursors(i%, 1), ThisComponent.Text)
 Next i%
End Sub

Sub PrintUnicode_worker(oLCursor, oRCursor, oText)
 Dim s As String 'contains the primary message string
 Dim ss As String 'used as a temporary string

 If IsNull(oLCursor) Or IsNull(oRCursor) Or IsNull(oText) Then Exit Sub
 If oText.compareRegionEnds(oLCursor, oRCursor) <= 0 Then Exit Sub

 REM Start the cursor in the correct direction with no text selected
 oLCursor.goRight(0, False)
 Do While oLCursor.goRight(1, True)_
 AND oText.compareRegionEnds(oLCursor, oRCursor) >= 0
 ss = oLCursor.getString()
 REM The string may be empty
 If Len(ss) > 0 Then
 s = s & oLCursor.getString() & "=" & ASC(oLCursor.getString()) & " "
 End If

395

 oLCursor.goRight(0, False)
 Loop
 msgBox s, 0, "Unicode Values"
End Sub

 14.6.4. Remove empty spaces and lines: A larger example

A common request is for a macro that removes extra blank spaces. To remove all empty paragraphs, it’s
better to use the Remove Blank Paragraphs option from the AutoCorrect dialog (Tools | AutoCorrect
Options | Options). To remove only selected paragraphs or runs of blank space, a macro is required.

This section presents a set of macros that replaces all runs of white-space characters with a single white-
space character. You can easily modify this macro to delete different types of white space. The different
types of space are ordered by importance, so if you have a regular space followed by a new paragraph, the
new paragraph stays and the single space is removed. The end effect is that leading and trailing white space
is removed from each line.

What is white space?

The term “white space” typically refers to any character that is displayed as a blank space. This includes tabs
(ASCII value 9), regular spaces (ASCII value 32), non-breaking spaces (ASCII value 160), new paragraphs
(ASCII value 13), and new lines (ASCII value 10). By encapsulating the definition of white space into a
function (see Listing 360), you can trivially change the definition of white space to ignore certain characters.

Listing 360. Determine if a character is white space.
Function IsWhiteSpace(iChar As Integer) As Boolean
 Select Case iChar
 Case 9, 10, 13, 32, 160
 IsWhiteSpace = True
 Case Else
 IsWhiteSpace = False
 End Select
End Function

If time is a serious issue, it is faster to create an array that is indexed by the Unicode value that contains true
or false to indicate if a character is white space. The problem is that the array must be set before the call.

 For i = LBound(isWhiteArray) To UBound(isWhiteArray)
 isWhiteArray(i) = False
 Next
 isWhiteArray(9) = True
 isWhiteArray(10) = True
 isWhiteArray(13) = True
 isWhiteArray(32) = True
 isWhiteArray(160) = True

The function to test is as follows:

Function IsWhiteSpace2(iChar As Integer) As Boolean
 If iChar > UBound(isWhiteArray) Then
 IsWhiteSpace2 = False
 Else
 IsWhiteSpace2 = isWhiteArray(iChar)
 End If
End Function

396

Rank characters for deletion

While removing runs of white space, each character is compared to the character before it. If both characters
are white space, the less important character is deleted. For example, if there is both a space and a new
paragraph, the space is deleted. The RankChar() function (see Listing 361) accepts two characters: the
previous character and the current character. The returned integer indicates which, if any, character should be
deleted.

Listing 361. Rank characters for deletion.
'-1 means delete the previous character
' 0 means ignore this character
' 1 means delete this character
' If an input character is 0, this is the start of a line.
' Rank from highest to lowest is: 0, 13, 10, 9, 160, 32
Function RankChar(iPrevChar, iCurChar) As Integer
 If Not IsWhiteSpace(iCurChar) Then 'Current not white space, ignore it
 RankChar = 0
 ElseIf iPrevChar = 0 Then 'Line start, current is white space
 RankChar = 1 ' delete the current character.
 ElseIf Not IsWhiteSpace(iPrevChar) Then 'Current is space but not previous
 RankChar = 0 ' ignore the current character.

 REM At this point, both characters are white space
 ElseIf iPrevChar = 13 Then 'Previous is highest ranked space
 RankChar = 1 ' delete the current character.
 ElseIf iCurChar = 13 Then 'Current is highest ranked space
 RankChar = -1 ' delete the previous character.

 REM Neither character is a new paragraph, the highest ranked
 ElseIf iPrevChar = 10 Then 'Previous is new line
 RankChar = 1 ' delete the current character.
 ElseIf iCurChar = 10 Then 'Current is new line
 RankChar = -1 ' delete the previous character.

 REM At this point, the highest ranking possible is a tab
 ElseIf iPrevChar = 9 Then 'Previous char is tab
 RankChar = 1 ' delete the current character.
 ElseIf iCurChar = 9 Then 'Current char is tab
 RankChar = -1 ' delete the previous character.
 ElseIf iPrevChar = 160 Then 'Previous char is a hard space
 RankChar = 1 ' delete the current character.
 ElseIf iCurChar = 160 Then 'Current char is a hard space
 RankChar = -1 ' delete the previous character.
 ElseIf iPrevChar = 32 Then 'Previous char is a regular space
 RankChar = 1 ' delete the current character.

 REM Probably should never get here... both characters are white space
 REM and the previous is not any known white space character.
 ElseIf iCurChar = 32 Then 'Current char is a regular space
 RankChar = -1 ' delete the previous character.
 Else 'Should probably not get here
 RankChar = 0 'so simply ignore it!
 End If

397

End Function

Use the standard framework

The standard framework is used to remove the empty spaces. The primary routine is simple enough that it
barely warrants mentioning.

Listing 362. Remove empty space.
Sub RemoveEmptySpace
 Dim oCursors(), i%
 If Not CreateSelectedTextIterator(ThisComponent, _
 "ALL empty space will be removed from the ENTIRE document?", oCursors()) Then Exit Sub
 For i% = LBOUND(oCursors()) To UBOUND(oCursors())
 RemoveEmptySpaceWorker (oCursors(i%, 0), oCursors(i%, 1), ThisComponent.Text)
 Next i%
End Sub

The worker macro

The macro in Listing 363 represents the interesting part of this problem; it decides what is deleted and what
is left untouched. Some interesting points should be noted:

Because a text cursor is used, the formatting is left unchanged.

A text range (cursor) may contain text content that returns a zero­length string. This includes, for example,
buttons and graphic images contained in the document. Handling exceptional cases adds complexity to the
macro. Many tasks are very simple if you ignore the exceptional cases, such as inserted graphics. If you
know that your macro will run with simple controlled data, you may choose to sacrifice robustness to reduce
complexity. Listing 363 handles the exceptional cases.

If the selected text starts or ends with white space, it will be removed even if it does not start or end the
document.

Listing 363. RemoveEmptySpaceWorker.
Sub RemoveEmptySpaceWorker(oLCursor, oRCursor, oText)
 Dim s As String 'Temporary text string
 Dim i As Integer 'Temporary integer used for comparing text ranges
 Dim iLastChar As Integer 'Unicode of last character
 Dim iThisChar As Integer 'Unicode of the current character
 Dim iRank As Integer 'Integer ranking that decides what to delete

 REM If something is null, then do nothing
 If IsNull(oLCursor) Or IsNull(oRCursor) Or IsNull(oText) Then Exit Sub

 REM Ignore any collapsed ranges
 If oText.compareRegionEnds(oLCursor, oRCursor) <= 0 Then Exit Sub

 REM Default the first and last character to indicate start of new line
 iLastChar = 0
 iThisChar = 0

 REM Start the leftmost cursor moving toward the end of the document
 REM and make certain that no text is currently selected.
 oLCursor.goRight(0, False)

398

 REM At the end of the document, the cursor can no longer move right
 Do While oLCursor.goRight(1, True)

 REM It is possible that the string is zero length.
 REM This can happen when stepping over certain objects anchored into
 REM the text that contain no text. Extra care must be taken because
 REM this routine can delete these items because the cursor steps over
 REM them but they have no text length. I arbitrarily call this a regular
 REM ASCII character without obtaining the string.
 s = oLCursor.getString()
 If Len(s) = 0 Then
 oLCursor.goRight(0, False)
 iThisChar = 65
 Else
 iThisChar = Asc(oLCursor.getString())
 End If

 REM If at the last character Then always remove white space
 i = oText.compareRegionEnds(oLCursor, oRCursor)
 If i = 0 Then
 If IsWhiteSpace(iThisChar) Then oLCursor.setString("")
 Exit Do
 End If

 REM If went past the end then get out
 If i < 0 Then Exit Do

 iRank = RankChar(iLastChar, iThisChar)
 If iRank = 1 Then
 REM Ready to delete the current character.
 REM The iLastChar is not changed.
 REM Deleting the current character by setting the text to the
 REM empty string causes no text to be selected.
 'Print "Deleting Current with " + iLastChar + " and " + iThisChar
 oLCursor.setString("")
 ElseIf iRank = -1 Then
 REM Ready to delete the previous character. One character is already
 REM selected. It was selected by moving right so moving left two
 REM deslects the currently selected character and selects the
 REM character to the left.
 oLCursor.goLeft(2, True)
 'Print "Deleting to the left with " + iLastChar + " and " + iThisChar
 oLCursor.setString("")
 REM Now the cursor is moved over the current character again but
 REM this time it is not selected.
 oLCursor.goRight(1, False)
 REM Set the previous character to the current character.
 iLastChar = iThisChar
 Else
 REM Instructed to ignore the current character so deselect any text
 REM and then set the last character to the current character.
 oLCursor.goRight(0, False)

399

 iLastChar = iThisChar
 End If
 Loop
End Sub

 14.6.5. Selected text, closing thoughts

Anyone who has studied algorithms will tell you that a better algorithm is almost always better than a faster
computer. An early problem that I solved was counting words in selected text. I created three solutions with
varying degrees of success.

My first solution converted the selected text to OOo Basic strings and then manipulated the strings. This
solution was fast, counting 8000 words in 2.7 seconds. This solution failed when text strings exceeded
64KB in size, rendering it useless for large documents.

My second solution used a cursor as it walked through the text one character at a time. This solution,
although able to handle any length of text, required 47 seconds to count the same 8000 words. In other
words, the users found the solution unusably slow.

My final solution used a word cursor, which counted the words in 1.7 seconds. Unfortunately, sometimes
the word cursor is sometimes unreliable.

TIP To count words correctly, visit Andrew Brown’s useful macro Web site:
http://www.darwinwars.com/lunatic/bugs/oo_macros.html.

 14.7. Search and replace

The search process is directed by a search descriptor, which is able to search only the object that created it.
In other words, you cannot use the same search descriptor to search multiple documents. The search
descriptor specifies the search text and how the text is searched (see Table 134). The search descriptor is the
most complicated component of searching.

Table 134. Properties of the com.sun.star.util.SearchDescriptor service.
Property Description

SearchBackwards If True, search the document backwards.

SearchCaseSensitive If True, the case of the letters affects the search.

SearchWords If True, only complete words are found.

SearchRegularExpression If True, the search string is treated as a regular expression.

SearchStyles If True, text is found based on applied style names—not on the text content.

SearchSimilarity If True, a “similarity search” is performed.

SearchSimilarityRelax If True, the properties SearchSimilarityRelax, SearchSimilarityRemove,
SearchSimilarityAdd, and SearchSimilarityExchange are all used.

SearchSimilarityRemove Short Integer specifying how many characters may be ignored in a match.

SearchSimilarityAdd Short Integer specifying how many characters may be added in a match.

SearchSimilarityExchange Short Integer specifying how many characters may be replaced in a match.

400

http://www.darwinwars.com/lunatic/bugs/oo_macros.html

Although not included in Table 134, a search descriptor supports the string property SearchString, which
represents the string to search. The XSearchDescriptor interface defines the methods getSearchString() and
setSearchString() to get and set the property if you prefer to use a method rather than directly setting the
property. The XSearchable interface defines the methods used for searching and creating the search
descriptor (see Table 135).

Table 135. Methods defined by the com.sun.star.util.XSearchable interface.
Method Description

createSearchDescriptor() Create a new SearchDescriptor.

findAll(XSearchDescriptor) Return an XindexAccess containing all occurrences.

findFirst(XSearchDescriptor) Starting from the beginning of the searchable object, return a text
range containing the first found text.

findNext(XTextRange, XSearchDescriptor) Starting from the provided text range, return a text range containing
the first found text.

The macro in Listing 364 is very simple; it sets the CharWeight character property of all occurrences of the
text “hello” to com.sun.start.awt.FontWeight.BOLD—text ranges support character and paragraph
properties.

Listing 364. Set all occurrences of the word “hello” to bold text.
Sub SetHelloToBold
 Dim oDescriptor 'The search descriptor
 Dim oFound 'The found range

 oDescriptor = ThisComponent.createSearchDescriptor()
 With oDescriptor
 .SearchString = "hello"
 .SearchWords = true 'The attributes default to False
 .SearchCaseSensitive = False 'So setting one to False is redundant
 End With

 ' Find the first one
 oFound = ThisComponent.findFirst(oDescriptor)
 Do While Not IsNull(oFound)
 Print oFound.getString()
 oFound.CharWeight = com.sun.star.awt.FontWeight.BOLD
 oFound = ThisComponent.findNext(oFound.End, oDescriptor)
 Loop
End Sub

 14.7.1. Searching selected text or a specified range

The trick to searching a specified range of text is to notice that you can use any text range, including a text
cursor, in the findNext routine. After each call to findNext(), check the end points of the find to see if the
search went too far. You may, therefore, constrain a search to any text range. The primary purpose of the
findFirst method is to obtain the initial text range for the findNext routine. You can use the selected text
framework very easily to search a range of text.

Listing 365. Iterate through all occurrences of text between two cursors.
Sub SearchSelectedWorker(oLCursor, oRCursor, oText, oDescriptor)
 If oText.compareRegionEnds(oLCursor, oRCursor) <= 0 Then Exit Sub

401

 oLCursor.goRight(0, False)
 Dim oFound
 REM There is no reason to perform a findFirst.
 oFound = oDoc.findNext(oLCursor, oDescriptor)
 Do While Not IsNull(oFound)
 REM See if we searched past the end
 If -1 = oText.compareRegionEnds(oFound, oRCursor) Then Exit Do
 Print oFound.getString()
 oFound = ThisComponent.findNext(oFound.End, oDescriptor)
 Loop
End Sub

The text object cannot compare two regions unless they both belong to that text object. Text that resides in a
different frame, section, or even a text table, uses a different text object than the main document text object.
As an exercise, investigate what happens if the found text is in a different text object than the text object that
contains oRCursor in Listing 365. Is the code in Listing 365 robust?

Searching for all occurrences

It is significantly faster to search for all occurrences of the text at one time using the findAll() object method
than to repeatedly call findNext(). Care must be used, however, when using all occurrences of the specified
text. The macro in Listing 366 is an extreme example of code gone bad on purpose.

Listing 366. Find and replace all occurrences of the word “helloxyzzy”.
Sub SimpleSearchHelloXyzzy
 Dim oDescriptor 'The search descriptor
 Dim oFound 'The found range
 Dim oFoundAll 'The found range
 Dim n% 'General index variable
 oDescriptor = ThisComponent.createSearchDescriptor()
 oDescriptor.SearchString = "helloxyzzy"
 oFoundAll = ThisComponent.findAll(oDescriptor)
 For n% = 0 to oFoundAll.getCount()-1
 oFound = oFoundAll.getByIndex(n%)
 'Print oFound.getString()
 oFound.setString("hello" & n%)
 Next
End Sub

The macro in Listing 366 obtains a list of text ranges that encapsulate the text “helloxyzzy”. This text is then
replaced with a shorter piece of text. In a perfect world, the occurrences of “helloxyzzy” would be replaced
with “hello0”, “hello1”, “hello2”, ... When each instance is replaced with the shorter text, the total length of
the document changes. Remember that the text-range objects were all obtained before the first instance of
text is modified. Although the text-range interface is clearly defined, the internal workings are not. I
purposely created this example because I expected it to fail, and with no defined behavior my only option
was to create a test. Experimentally, I observed that if multiple occurrences of “helloxyzzy” are contained in
the same word, poor behavior results. I also observed that if all occurrences of “helloxyzzy” are contained in
separate words, everything works great, and only occurrences of “helloxyzzy” are changed—leaving the
surrounding text intact. I can but nod my head in approval at the brilliance of the programmers that allow
this behavior, while remaining cautiously paranoid, expecting that code relying on this behavior will fail in
the future.

402

Investigating the behavior of the macro in Listing 366 is more than simple academics. I use a similar macro
regularly in my own writing. For various reasons, the numbering used during the creation of this book was
done manually rather than using the built-in numbering capabilities of OOo—in other words, I should have
read Chapter 5 of Taming OpenOffice.org Writer 1.1 by Jean Hollis Weber. Manually inserting numbering is
a problem when a table, figure, or code listing is deleted, inserted, or moved. In other words, if I delete the
first table in my document, all of my tables will be numbered incorrectly. I created a macro that verifies that
the items are sequentially numbered starting with 1. Consider tables, for example. The table captions use the
paragraph style “_table caption.” Tables are numbered using the form “Table 122.” The macro in Listing
390 verifies that the captions are sequentially numbered, and it renumbers them if required. When the text
“Table #” is found in a paragraph using the “_table caption” paragraph style, it is assumed to be identifying a
table. The macro in Listing 390 renumbers these based on their occurrence in the document. Each
occurrence of “Table #” that is not in the “_table caption” paragraph style is assumed to be a reference to a
table.

 14.7.2. Searching and replacing

You can perform simple searching and replacing by searching and manually replacing each found occurrence
with the replacement text. OOo also defines the XReplaceable interface, which adds the ability to replace all
occurrences using one method. You must use an XReplaceDescriptor rather than an XSearchDescriptor,
however. Replacing all occurrences of text is very simple (see Listing 367).

TIP The XReplaceable interface is derived from the XSearchable interface, and the XReplaceDescriptor is
derived from the XSearchDescriptor interface.

Listing 367. Replace “hello you” with “hello me”.
oDescriptor = oDoc.createReplaceDescriptor()
With oDescriptor
 .SearchString = "hello you"
 .ReplaceString = "hello me"
End With
oDoc.ReplaceAll(oDescriptor)

 14.7.3. Advanced search and replace

While using the OOo GUI for searching and replacing, it is possible to search for and replace attributes as
well as text. An inspection of the search-and-replace descriptors reveals the object methods
setSearchAttributes() and setReplaceAttributes(). I discovered how to use these object methods when I
found some code written by Alex Savitsky, whom I do not know, and Laurent Godard, whom I do.

The macro in Listing 368 finds all text that is in bold type, converts the text to regular type, and then
surrounds the text with two sets of curly brackets. The conversion of attributes to text tags is frequently done
while converting formatted text to regular ASCII text with no special formatting capabilities. While reading
Listing 368, look for the following interesting techniques:

To search for all text that is bold regardless of the content, you must use a regular expression. In OOo, the
period matches any single character and the asterisk means “find zero or more occurrences of the previous
character.” Placed together, the regular expression “.*” matches any text. Regular expressions are required
to find “any text” that is bold.

While searching regular expressions, the ampersand character is replaced by the found text. In Listing 368,
the replacement text “{{ & }}” causes the found text “hello” to become “{{ hello }}”.

403

Text that is set to bold using an applied style is found only while searching character attributes if
SearchStyles is set to True. If the SearchStyles attribute is set to False, only text that has been directly set to
bold will be found.

To search for text with specific attributes, create an array of structures of type PropertyValue. There should
be one entry in the array for each attribute you want to search. Set the property name to the name of the
attribute to search, and the property value to the value for which to search. Although this is complicated to
describe using words, it is clearly shown in Listing 368.

You can set attribute values by specifying the replacement attributes in the same way that you set the search
attributes.

Listing 368. Replace bold text.
Sub ReplaceFormatting
 REM original code : Alex Savitsky
 REM modified by : Laurent Godard
 REM modified by : Andrew Pitonyak
 REM The purpose of this macro is to surround all BOLD elements with {{ }}
 REM and change the Bold attribute to NORMAL by using a regular expression.

 Dim oReplace
 Dim SrchAttributes(0) as new com.sun.star.beans.PropertyValue
 Dim ReplAttributes(0) as new com.sun.star.beans.PropertyValue

 oReplace = ThisComponent.createReplaceDescriptor()

 oReplace.SearchString = ".*" 'Regular expression. Match any text
 oReplace.ReplaceString = "{{ & }}" 'Note the & places the found text back
 oReplace.SearchRegularExpression=True 'Use regular expressions
 oReplace.searchStyles=True 'We want to search styles
 oReplace.searchAll=True 'Do the entire document

 REM This is the attribute to find
 SrchAttributes(0).Name = "CharWeight"
 SrchAttributes(0).Value =com.sun.star.awt.FontWeight.BOLD

 REM This is the attribute to replace it with
 ReplAttributes(0).Name = "CharWeight"
 ReplAttributes(0).Value =com.sun.star.awt.FontWeight.NORMAL

 REM Set the attributes in the replace descriptor
 oReplace.SetSearchAttributes(SrchAttributes())
 oReplace.SetReplaceAttributes(ReplAttributes())

 REM Now do the work!
 ThisComponent.replaceAll(oReplace)
End Sub

Table 136 lists the supported regular expression characters.

404

Table 136. Supported regular expression characters.
Character Description

. A period represents any single character. The search term "sh.rt" finds both “shirt” and
“short”.

* An asterisk represents any number of characters. The search term “sh*rt” finds “shrt”,
“shirt”, ”shiirt”, “shioibaldawpclasdfa asdf asdfrt” and “short”—to name a few things
that it can find.

^ A caret represents the beginning of a paragraph. The search term “^Bob” only finds the
word “Bob” if it is at the beginning of a paragraph. The search term “^.” finds the first
character in a paragraph.

$ A dollar sign represents the end of a paragraph. The search term “Bob$” only finds the
word “Bob” if it is at the end of a paragraph.

^$ Search for an empty paragraph. This is listed here only because it is used so frequently.

+ A plus sign indicates that the preceding character must appear at least once. The plus
sign also works with the wildcard character “.”. For example, “t.+s” finds a section of
text that starts with a “t” and ends with an “s”.

The longest possible text within the paragraph is always found. In other words, multiple
words may be found, but the found text will always reside in the same paragraph.

? A question mark marks the previous character as optional. For example, you could find
words that include the characters that come before the character that is in front of the
“\”. For example, “birds?” finds both “bird” and “birds”.

\n The text “\n” has two uses. When searching, this finds a hard row break inserted with
Shift+Enter. In the replace field, this represents a paragraph break. You can, therefore,
replace all hard breaks with a paragraph break.

\t The text “\t” is used to find a tab. In the replace field, this adds a tab.

\> Using the text “\>” indicates that the preceding text must end a word. For example,
“book\>” finds “checkbook” but not “bookmark”.

\< Using the text “\<” indicates that the following text must start a word. For example,
“\<book” finds “bookmark” but not “checkbook”.

\xXXXX A backslash followed by a lowercase x followed by a four-digit hexadecimal number
(XXXX) finds the character whose Unicode (ASCII) value is the same as the four-digit
hexadecimal number.

\ The backslash character followed by anything other than “n”, “t”, “>”, “<”, or “x” is
used to specify the character that follows. For example, “\M” finds “M”. The primary
purpose is to allow special wild characters to be found. For example, assume that I
wanted to find any character preceded by a “+”. Well, the “+” is a special character so I
need to precede it with a “\”. Use “.\+” to find any character preceding a “+” character.

& The ampersand is used in the replace text to add the found characters. In Listing 368,
the ampersand is used to surround all bold text with “{{“ and “}}”.

[abc123] Match any character that is between square brackets. For example, “t[ex]+t” finds
“text”, “teet”, and “txeeet”; to name a few examples of what it finds.

[a-e] The minus sign is used to define a range when used inside of square brackets. For
example, “[a-e]” matches characters between “a” and “e” and “[a-ex-z]” matches
characters between “a” and “e” or
“x” and “z”.

[^a-e] Placing a caret symbol inside square brackets will find anything but the specified
characters.
For example, “[^a-e]” finds any character that is not between “a” and “e”.

405

Character Description

| Placing a vertical bar between two search strings will match what is before and also
match what is after. For example, “bob|jean” matches the string “bob” and also matches
the string “jean”.

{2} Placing a number between curly brackets finds that many occurrences of the previous
character.
For example, “me{2}t” matches “meet”, and “[0-9]{3}” matches any three-digit
number. Note that
“[0-9]{3}” will also find the first three digits of a number with more than three digits,
unless “find whole words” is also specified.

{1,2} Placing two numbers separated by a comma between curly brackets finds the preceding
character a variable number of times. For example, “[0-9]{1,4}” finds any number that
contains between one and four digits.

() Text placed within parentheses is treated as a reference. The text “\1” finds the first
reference, “\2” finds the second reference, and so on. For example, “([0-9]{3})-[0-9]
{2}-\1” finds “123-45-123” but not “123-45-678”.

Parentheses can also be used for grouping. For example, “(he|she|me)$” finds any
paragraph that ends with “he”, “she”, or “me”.

[:digit:] Finds a single-digit number. For example, “[:digit:]?” finds a single-digit number and
“[:digit:]+” finds any number with one or more digits.

[:space:] Finds any white space, such as spaces and tabs.

[:print:] Finds any printable characters.

[:cntrl:] Finds any non-printing characters.

[:alnum:] Finds any alphanumeric characters (numbers and text characters).

[:alpha:] Finds any alphabetic characters, both uppercase and lowercase.

[:lower:] Finds any lowercase characters if “Match case” is selected in the Options area.

[:upper:] Finds any uppercase characters if “Match case” is selected in the Options area.

 14.8. Text content

The primary purpose of a Writer document is to contain simple text. The text is stored and enumerated by
paragraphs. When a paragraph enumerates content, each enumerated section uses the same set of properties.
In general, text content must be created by the document that will contain the content. After creation, the text
content is inserted into the document at a specified location. Paragraphs, however, are not specifically
created and then inserted (see Listing 333 near the beginning of this chapter). Paragraph text is inserted as a
string and new paragraphs are inserted as control characters (see Table 123). More complicated text content
is typically added using the insertTextContent() object method (see Listing 334). There are other, less-used
methods to insert text content—for example, pasting content from the clipboard (see Listing 381 later in this
chapter) and inserting an entire document (see Listing 369).

Listing 369. Insert a document at a text cursor.
oCursor.insertDocumentFromURL(sFileURL, Array())

Most text content is named and accessible in a similar way (see Table 137). The most popular content type
in Table 137 is undoubtedly text tables.

406

Table 137. Content contained in a text document.
Content Type Mechanism Access Method

Footnotes Index Access getFootnotes()

Endnotes Index Access getEndnotes()

Reference marks Named Access getReferenceMarks()

Graphic objects Named Access getGraphicObjects()

Embedded objects Named Access getEmbeddedObjects()

Text tables Named Access getTables()

Bookmarks Named Access getBookmarks()

Style families Named Access getStyleFamilies()

Document indexes Index Access getDocumentIndexes()

Text fields Enumeration Access getTextFields()

Text field masters Named Access getTextFieldMasters()

Text frames Named Access getTextFrames()

Text sections Named Access getTextSections()

TIP Content accessible using named access also provides indexed access.

 14.9. Text tables

Writer documents act as a text-tables supplier, so you can directly retrieve text tables from Writer
documents. Although text tables are enumerated as text content along with paragraphs (see Listing 336),
tables are more typically obtained by name or by index (see Listing 370 and Figure 94).

Listing 370. Demonstrate enumerating text tables.
Sub EnumrateAllTextTables
 Dim oTables 'All of the text tables
 Dim s$ 'Work string
 Dim i% 'Index variable

 oTables = ThisComponent.TextTables REM First, access the tables based on index.
 s = "Tables By Index" & CHR$(10)
 For i = 0 To oTables.getCount() - 1
 s = s & "Table " & (i+1) & " = " & oTables(i).Name & CHR$(10)
 Next

 s = s & CHR$(10) & CHR$(10) & "Text Tables By Name" & CHR$(10)
 s = s & Join(oTables.getElementNames(), CHR$(10))
 MsgBox s, 0, "Tables"
End Sub

407

Figure 94. Tables contained in a document, by index and named access.

TIP Most named text content is retrieved, created, inserted, and disposed of in the same way. Learn to do this
using tables and you’ll be ready to use other named text content—bookmarks, for example.

As with most text content, tables must be created by the document before they are inserted into the
document. The macro in Listing 371 inserts a table named “SampleTable” if it does not exist, and removes it
if it does.

Listing 371. Insert then delete a text table.
Sub InsertDeleteTable
 Dim oTable 'Newly created table to insert
 Dim oTables 'All of the text tables
 Dim oInsertPoint 'Where the table will be inserted
 Dim sTableName as String

 sTableName = "SampleTable"
 oTables = ThisComponent.TextTables

 If oTables.hasByName(sTableName) Then
 oTable = oTables.getByName(sTableName)

 REM Although this seems like the correct way to remove text content,
 REM what if the table is not inserted into the primary document's
 REM text object? oTable.dispose() may be safer to use.
 ThisComponent.Text.removeTextContent(oTable)
 Else

 REM Let the document create the text table.
 oTable = ThisComponent.createInstance("com.sun.star.text.TextTable")
 oTable.initialize(2, 3) 'Two rows, three columns

 REM If there is a bookmark named "InsertTableHere", then insert
 REM the table at that point. If this bookmark does not exist,
 REM then simply choose the very end of the document.
 If ThisComponent.getBookmarks().hasByName("InsertTableHere") Then
 oInsertPoint =_
 ThisComponent.getBookmarks().getByName("InsertTableHere").getAnchor()
 Else
 oInsertPoint = ThisComponent.Text.getEnd()

408

 End If

 REM Now insert the text table at the end of the document.
 REM Note that the text object from the oInsertPoint text
 REM range is used rather than the document text object.
 oInsertPoint.getText().insertTextContent(oInsertPoint , oTable, False)

 REM The setData() object method works ONLY with numerical data.
 REM The setDataArray() object method, however, also allows strings.
 oTable.setDataArray(Array(Array(0, "One", 2), Array(3, "Four", 5)))
 oTable.setName(sTableName)
 End If
End Sub

TIP In general, it is better to set table properties before inserting the table into the document. This prevents
screen flicker as the object is modified and then redrawn on the screen. Due to a bug in OOo 1.1.0, if
Listing 371 is modified to set the data before inserting the table, the table name is modified and it contains
an extra garbage character at the end. Be warned, however, that some text content, such as text field
masters, cannot change their names after they have been inserted into a document.

The macro in Listing 371 demonstrates many useful techniques:

• A named text content is found and obtained. Notice that finding the table and the bookmark are very
similar processes.

• A bookmark is used.

• A text table is created, initialized, and inserted at a location marked by a bookmark.

• Text content is deleted.

• A table is initialized with data.

• The table name is set.

 14.9.1. Using the correct text object

It is very important that you use the correct text object. It is possible that the text object in a text section or
table cell is not the same as the text object returned by the document. Each text range is associated with a
specific text object. Attempting to use object methods from one text object to operate on a text range
associated with a different text object causes an error. In Listing 371, a table is removed, with the single line
shown in Listing 372.

Listing 372. What if the table is not contained in the document’s text object?
ThisComponent.Text.removeTextContent(oTable)

The code in Listing 372 assumes that the table is contained in the document’s text object. If the table is not
contained in the primary document’s text object, the code in Listing 372 will fail. Although Listing 372 will
rarely fail, it will undoubtedly fail at the worst possible time. The macro works because the sample
document was designed so that the table is inserted into the primary document’s text object. Either solution
shown in Listing 373 may be a better solution for deleting the table.

409

Listing 373. Two safe methods to delete the table.
oTable.getAnchor().getText().removeTextContent(oTable)
oTable.dispose()

The second time that a text object is used in Listing 371, it is obtained from the anchor returned from a
bookmark—this is safe.

Listing 374. A safe way to get a text object.
oInsertPoint.getText().insertTextContent(oInsertPoint , oTable, False)

If the text range oInsertPoint is not contained in the document’s text object, attempting to insert the table
using the document’s text object will fail. Only you can decide how careful you need to be when accessing
text objects. Consider the selected text framework. What text object is used to create text cursors and to
compare text cursors? Can you make the code more robust?

 14.9.2. Methods and properties

The methods supported by text tables are very similar to the methods supported by spreadsheets contained in
Calc documents (see Chapter 15, “Calc Documents”). Table 138 summarizes the object methods supported
by text tables.

Table 138. Object methods supported by text tables.
Method Description

autoFormat(name) Apply the specified auto-format name to the table.

createCursorByCellName(name) XTextTableCursor positioned at the specified cell.

createSortDescriptor() Array of PropertyValues that specify the sort criteria.

dispose() Destroy a text object, which also removes it from the document.

getAnchor() Return a text range identifying where the table is anchored. This method
allows text content to be added easily before or after a text table.

getCellByName(name) Return an XCell based on the cell name, such as “B3”.

getCellByPosition(col, row) Numbering starts at zero. This has difficulties with complex tables.

getCellNames() String array of cell names contained in the table.

getCellRangeByName(name) XCellRange based on cell name, such as A1:B4. Fails if the name
identifies a cell that has been split.

getCellRangeByPosition(left, top, right,
bottom)

XCellRange based on numeric range.

getColumnDescriptions() Array of strings describing the columns. Fails for complex tables.

getColumns() XTableColumns object enumerates columns by index. Also supports
insertByIndex(idx, count) and removeByIndex(idx, count).

getData() Get numerical data as a nested sequence of values (arrays in an array).
Fails for complex tables.

getDataArray() Same as getData() but may contain String or Double.

getName() Get the table name as a string.

getRowDescriptions() Array of strings describing the rows. Fails for complex tables.

getRows() XTableRows object enumerates rows by index. Also supports
insertByIndex(idx, count) and removeByIndex(idx, count).

initialize(rows, cols) Set the numbers of rows and columns. Must be done before the table is

410

Method Description

inserted (see Listing 334).

setColumnDescriptions(string()) Set the column descriptions from an array of strings.

setData(Double()) Set numerical data as a nested sequence of values. Fails for complex
tables.

setDataArray(array()) Same as setData() but may contain String or Double.

setName(name) Set the table name.

setRowDescriptions(string()) Set the row descriptions from an array of strings.

sort(array()) Sort the table based on a sort descriptor.

Text table objects also support a variety of properties (see Table 139). Text tables support many of the same
properties that are supported by paragraphs (see Table 126).

Table 139. Properties supported by the com.sun.star.text.TextTable service.
Property Description

BreakType Specify the type of break that is applied at the start of the table (see the BreakType
attribute in Table 126).

LeftMargin Specify the left table margin in 0.01 mm as a Long Integer. Set the HoriOrient property to
something other than FULL.

RightMargin Specify the right table margin in 0.01 mm as a Long Integer. Set the HoriOrient property
to something other than FULL.

HoriOrient Specify the horizontal orientation using the com.sun.star.text.HoriOrientation constants.
The default value is com.sun.star.text.HoriOrientation.FULL.

• NONE = 0 – No alignment is applied.

• RIGHT = 1 – The object is aligned at the right side.

• CENTER = 2 – The object is aligned at the middle.

• LEFT = 3 – The object is aligned at the left side.

• INSIDE = 4 – (Not yet supported)

• OUTSIDE = 5 – (Not yet supported)

• FULL = 6 – The object uses the full space (for text tables only).

• LEFT_AND_WIDTH = 7 – The left offset and the width of the object are defined.

KeepTogether If True, prevents page or column breaks between this table and the following paragraph or
text table.

Split If False, the table will not split across two pages.

PageDescName If this string is set, a page break occurs before the paragraph, and the new page uses the
given page style name (see PageDescName in Table 126).

PageNumberOffset If a page break occurs, specify a new page number (see PageNumberOffset in Table 126).

RelativeWidth Specify the width of the table relative to its environment as a Short Integer.

IsWidthRelative If True, the relative width is valid.

RepeatHeadline If True, the first row of the table is repeated on every new page.

ShadowFormat Specify the type, color, and size of the shadow (see ParaShadowFormat in Table 126).

TopMargin Specify the top table margin in 0.01 mm as a Long Integer.

BottomMargin Specify the bottom table margin in 0.01 mm as a Long Integer.

411

Property Description

BackTransparent If True, the background color is transparent.

Width Specify the absolute table width as a Long Integer—this is a read-only property.

ChartRowAsLabel If True, the first row is treated as axis labels if a chart is created.

ChartColumnAsLabel If True, the first column is treated as axis labels if a chart is created.

TableBorder Specify the table borders in a com.sun.star.table.TableBorder structure. The structure
contains numerous complicated properties:

• The properties TopLine, BottomLine, LeftLine, RightLine, HorizontalLine, and
VerticalLine are all structures of type BorderLine as described by the LeftBorder
property in Table 126.

• The Distance property contains the distance between the lines and other contents.

• You can turn each border property on or off by setting one of the following properties
to True or False: IsTopLineValid, IsBottomLineValid, IsLeftLineValid,
IsRightLineValid, IsHorizontalLineValid, IsVerticalLineValid, and IsDistanceValid.

TableColumnSeparators Specify the width of each column with an array of table column separators. Each separator
is a com.sun.star.text.TableColumnSeparator structure.

• Position is a Short Integer that defines the position of a cell separator.

• IsVisible determines if the separator is visible.

The width of a cell is defined by the position of the separator between adjacent cells.
When two cells are merged, the separator is hidden, not removed.

The Position values are relative to the text table TableColumnRelativeSum property. This
property is valid for a table only if every row has the same structure. If they do not, obtain
the separators from the individual row objects.

TableColumnRelativeSum Specify the sum of the column-width values used in TableColumnSeparators as a Short
Integer.

BackColor Specify the paragraph background color as a Long Integer.

BackGraphicURL Specify the URL of the paragraph background graphic.

BackGraphicFilter Specify the name of the graphic filter for the paragraph background graphic.

BackGraphicLocation Specify the position of a background graphic (see ParaBackGraphicLocation in Table
126).

 14.9.3. Simple and complex tables

Simply speaking, a text table is a set of rows and columns of text. All of the tables in this book are
represented using simple text tables. OOo supports both simple and complex tables. A simple table contains
no merged or split cells; the table cells are laid out in a simple grid (see Table 140). Each column is labeled
alphabetically starting with the letter A, and each row is labeled numerically starting with the number 1. The
object method getCellByName() uses this name to return the specified cell. A similar object method,
getCellByPosition(), returns the cell based on the column and row number. The column and row number are
zero-based numbers, so requesting (1, 2) returns the cell named “B3”.

412

Table 140. Simple table with the cell names labeled.
A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

Use getRows() to obtain the rows from the text table. The returned rows object is useful to determine
how many rows are present, retrieving, inserting, and deleting rows.

Table 141. Main access methods supported by a table rows object.
Method Description

getByIndex Retrieve a specific row.

getCount Number of rows in the table.

hasElements Determine if there are any rows in the table.

insertByIndex Add rows to the table.

removeByIndex Remove rows from the table.

Although it is easy to enumerate individual rows, a row is not useful for obtaining the cells that it contains.
An individual row object is primarily used as follows:

• Set the row height using the Height attribute.

• Set IsAutoHeight to true so that the rows height is automatically adjusted.

• Set IsSplitAllowed to false so that a row can not be split at a page boundary.

• Modify the TableColumnSeparators to change column widths.

Use getColumns() to obtain the columns from the text table. The columns object supports the same
methods as the rows object. It is not possible, however, to obtain a specific column from a column object;
the method getByIndex() exists, but it returns null. Although I expected to set a column width by
obtaining a specific column and setting the width, you need to modify the table column separators available
from the row object.

A complex text table is a text table that is not simple. More accurately, a complex text table contains cells
that have been split, or merged. To demonstrate a complex text table, start with Table 140 and perform the
following tasks:

1) Right click in cell A2 and choose Cell > Split > Horizontal. Cell A2 becomes two cells. From a cell
naming perspective, a new third row is inserted that contains one column. At this point, the API
indicates that there are five rows and four columns.

413

Table 142. Split cell A2 horizontally.
A1 B1 C1 D1

A2 B2 C2 D2

(A3)

A3=>A4 B3=>B4 C3=>C4 D3=>D4

A4=>A5 B4=>B5 C4=>C5 D4=>D5

2) Right click in cell B2 and choose Cell > Split > Vertical. Cell B2 becomes two distinct cells, B2 and
C2; a new column appears to have been inserted at cell B2. The API still indicates that there are five
rows and four columns.

Table 143. Split cell B2 vertically..
A1 B1 C1 D1

A2 B2 (C2) C2=>D2 D2=>E2

A3

A4 B4 C4 D4

A5 B5 C5 D5

3) Select cells A4 and B4, right click and choose Cell > Merge.

Table 144. Complex table after merging cells in the same row.
A1 B1 C1 D1

A2 B2 C2 D2 E2

A3

A4, (B4) => A4 C4=>B4 D4=>C4

A5 B5 C5 D5

4) Select cells B4 and C5, right click and choose Cell > Merge. Cell C5 just goes away.

Table 145. Split cell B2 vertically..
A1 B1 C1 D1

A2 B2 C2 D2 E2

A3

A4 B4, (C5)=>B4 C4

A5 B5 D5

TIP Not all object methods work with complex tables. For example, the object methods getData()
and setData() cause an exception for complex tables, which makes sense.

414

Although the object method getCellByName() works as expected for complex tables, getCellByPosition() is
not able to return all of the cells because it allows only a column and a row number. Use the getCellNames()
object method to return the names of the cells in a table (see Listing 375); you can then use the cell names to
individually obtain each cell in the table.

Listing 375. Join the array of strings to print the cell names in a table.
MsgBox Join(oTable.getCellNames(), "|")

Place the text cursor in a text table and run the following macro to set the text in each cell to the text name;
this modifies the text table and erases all existing text.

Listing 376. Set the text of each cell to contain the cell's name.
Sub SetCellNames
 Dim oTable
 Dim sNames
 Dim i As Integer

 oTable = ThisComponent.currentController.ViewCursor.TextTable
 If IsNull(oTable) Then
 Exit Sub
 End If

 sNames = oTable.getCellNames()
 For i = LBound(sNames) To UBound(sNames)
 oTable.getCellByName(sNames(i)).setString(sNames(i))
 Next
End Sub

 14.9.4. Tables contain cells

The cells in a text table are very versatile objects capable of holding all types of data. The cell objects
implement both the XText interface (see Table 123 near the beginning of this chapter) as well as the XCell
interface (see Table 146).

TIP Tables are able to create a text table cursor with methods and properties specifically designed to traverse
and select cells, and each individual cell is able to produce a text cursor that is local to the cell text object.

Table 146. Methods defined by the com.sun.star.table.XCell interface.
Method Description

getFormula() The original string typed into the cell, even if it is not a formula.

setFormula(String) Set the cell’s formula. Use setString() from the XText interface to set text.

getValue() Floating-point (Double) value of the cell.

setValue(Double) Set the floating-point value of the cell.

getType() Return a com.sun.star.table.CellContentType enumeration with valid values of EMPTY,
VALUE, TEXT, and FORMULA.

getError() Long Integer error value. If the cell is not a formula, the error value is zero.

415

Each cell object posses numerous properties. These properties are generally familiar because they are used in
other objects. For example, the BackColor, BackGraphicFilter, BackGraphicLocation, BackGraphicURL,
BackTransparent, BorderDistance, BottomBorder, BottomBorderDistance, LeftBorder, LeftBorderDistance,
RightBorder, RightBorderDistance, TopBorder, and TopBorderDistance properties are defined for text tables
in Table 139 and/or paragraph properties in Table 126. One of the more useful properties that is available
only in the cell object, however, is CellName. This is useful to determine the location of the current cursor.
The macro in Listing 377 demonstrates a few new manipulations for tables.

The text tables, rows, columns, and cells all support the BackColor property. Listing 377 sets the
background color of the first row to a light gray, which is commonly used to mark headings.

The insertByIndex(index, num) object method is used to insert new rows at the end of a table. Rows can
also be inserted into the middle or at the start of a table.

Individual cells are retrieved by name; both numeric values and strings are set. Notice that strings are set
using setString() rather than setFormula().

TIP Although the Web-based OOo documentation makes no distinction between cells contained in text tables
and cells contained in spreadsheets, the two cell types do not support the same property set. For example,
the CellStyle, CellBackColor, and RotateAngle properties are not supported in a text document.

Listing 377. Simple text table manipulations.
Sub SimpleTableManipulations
 Dim oTable 'Newly created table to insert
 Dim oTables 'All of the text tables
 Dim oInsertPoint 'Where the table will be inserted
 Dim sTableName as String

 sTableName = "SampleTable"
 oTables = ThisComponent.TextTables

 REM Remove the table if it exists!
 If oTables.hasByName(sTableName) Then
 ThisComponent.Text.removeTextContent(oTables.getByName(sTableName))
 End If
 REM Let the document create the text table.
 oTable = ThisComponent.createInstance("com.sun.star.text.TextTable")
 oTable.initialize(4, 3) 'Two rows, three columns

 REM If there is a bookmark named "InsertTableHere", then insert
 REM the table at that point. If this bookmark does not exist,
 REM then simply choose the very end of the document.
 If ThisComponent.getBookmarks().hasByName("InsertTableHere") Then
 oInsertPoint =_
 ThisComponent.getBookmarks().getByName("InsertTableHere").getAnchor()
 Else
 oInsertPoint = ThisComponent.Text.getEnd()
 End If

 oInsertPoint.getText().insertTextContent(oInsertPoint , oTable, False)

416

 oTable.setDataArray(Array(Array("Name", "Score", "Test"),_
 Array("Bob", 80, "CCW"), Array("Andy", 80, "CCW"),_
 Array("Jean", 100, "CCI")))
 oTable.setName(sTableName)
 REM Set the first row to have a gray background.
 oTable.getRows().getByIndex(0).BackColor = RGB(235, 235, 235)

 REM removeByIndex uses the same arguments as insertByIndex, namely
 REM the index at which to insert or remove followed by the number
 REM of rows to insert or remove. The following line inserts
 REM one row at index 4.
 oTable.getRows().insertByIndex(4, 1)

 REM Obtain the individual cells and set the values.
 oTable.getCellByName("A5").setString("Whil")
 oTable.getCellByName("B5").setValue(100)
 oTable.getCellByName("C5").setString("Advanced")
End Sub

 14.9.5. Using a table cursor

Although text table cursors implement methods specific to traversing text tables, they are not significantly
different from their text cursor counterparts in general functionality. You can select and manipulate ranges of
cells, and set cell properties.

TIP You cannot obtain a text table from the document and then simply insert it again at another location. So,
how do you copy a text table? See Listing 381.

Like text cursors, text table cursor movement methods accept a Boolean argument that indicates if the
current selection should be expanded (True) or if the cursor should simply be moved (False). The movement
methods also return a Boolean value indicating if the movement was successful. Table 147 contains the
methods defined by the XTextTableCursor interface.

Table 147. Methods defined by the com.sun.star.text.XTextTableCursor interface.
Method Description

getRangeName() Return the cell range selected by this cursor as a string. For example, “B3:D5”.

gotoCellByName(String,
boolean)

Move the cursor to the cell with the specified name; return Boolean.

goLeft(n, boolean) Move the cursor left n cells; return Boolean.

goRight(n, boolean) Move the cursor right n cells; return Boolean.

goUp(n, boolean) Move the cursor up n cells; return Boolean.

goDown(n, boolean) Move the cursor down n cells; return Boolean.

gotoStart(boolean) Move the cursor to the top left cell.

gotoEnd(boolean) Move the cursor to the bottom right cell.

mergeRange() Merge the selected range of cells; return True for success.

splitRange(n, boolean) Create n (an integer) new cells in each cell selected by the cursor. For the Boolean,
specify True to split horizontally, False for vertically. Returns True on success.

417

Text table cursors are used to split and merge table cells. In general, I consider this to be the primary use of a
text table cursor. You can use text table cursors to move around the table by using the methods in Table 147.
The macro in Listing 378 obtains the table cell names, creates a cell cursor that contains the first table cell,
and then moves the cursor to the last cell in the table. A cell range is created based on the range name, and
then the entire table is selected by the current controller.

Listing 378. Select an entire table using a cursor. This may fail for a complex table.
oCellNames = oTable.getCellNames()
oCursor = oTable.createCursorByCellName(oCellNames(0))
oCursor.gotoCellByName(oCellNames(UBound(oCellNames())), True)
oRange = oTable.getCellRangeByName(oCursor.getRangeName()) 'This may fail!
Thiscomponent.getCurrentController.select(oRange)

Listing 378 demonstrates how to select all cells in a table by using a table cell cursor. You can then
manipulate the entire table using the cursor. It may fail, however, in selecting the entire table in the current
view. Table cell cursors have no problems with complex tables. The object methods supported by tables,
however, do not all support complex tables. A notable example is the object method
getCellRangeByName(), as used in Listing 378. This is very unfortunate because the view cursor is able to
select text based on a cell range, but the table cannot return a cell range that has a split cell as one of the
endpoints. For example, the cell range A1.2.1:C4 fails.

There is no easy method to duplicate an entire text table. The clipboard has always been the solution of
choice to copy general text (see Listing 381), but, if available, use transferable content instead (see Listing
382). First, use the view cursor or current controller to select the object that you want to copy. Then use a
dispatcher to copy the object to the clipboard, move the view cursor where the object should be placed, and
then use a dispatcher to paste the object from the clipboard.

As you may have guessed, the difficult part in this process is selecting the table with the view cursor.
Although numerous people have tried and failed to solve this problem, a brilliant solution was provided by
Paolo Mantovani, a contributor on the OOo mailing lists. Paolo starts by noting that selecting an entire table
with the current controller places the view cursor at the start of the first cell (see Listing 379).

Listing 379. Place the cursor at the start of the first cell in the table.
ThisComponent.CurrentController.select(oTable)

Although Listing 379 does not entirely solve the problem, it does provide a good start, because the view
cursor is in the table at a known position. Paolo then provides a very succinct method to select the entire
table (see Listing 380).

Listing 380. Select the entire table in the current view.
ThisComponent.CurrentController.select(oTable)
oVCursor.gotoEnd(True) 'Move to the end of the current cell
oVCursor.gotoEnd(True) 'Move to the end of the table

TIP Remember to carefully test all code dealing with tables. A different solution proposed by Paolo—which
failed—was to use goRight() and then goDown() based on the number of rows and columns.

The macro in Listing 381 selects a table by name, copies the table to the clipboard, and then pastes it at the
end of the document.

Listing 381. Copy a text table using the clipboard.
Sub CopyNamedTableToEndWithClipboard(sName As String)
 Dim oTable 'Table to copy
 Dim oText 'Document's text object

418

 Dim oFrame 'Current frame to use with the dispatcher
 Dim oVCursor 'Current view cursor
 Dim oDispatcher 'Dispatcher for clipboard commands

 oVCursor = ThisComponent.CurrentController.getViewCursor()
 oText = ThisComponent.getText()
 oFrame = ThisComponent.CurrentController.Frame
 oDispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

 If NOT ThisComponent.getTextTables().hasByName(sName) Then
 MsgBox "Sorry, the document does not contain table " & sName
 Exit Sub
 End If

 oTable = ThisComponent.getTextTables().getByName(sName)

 REM Place the cursor in the start of the first cell.
 REM This is very easy!
 ThisComponent.CurrentController.select(oTable)
 oVCursor.gotoEnd(True) 'Move to the end of the current cell.
 oVCursor.gotoEnd(True) 'Move to the end of the table.

 REM Copy the table to the clipboard.
 oDispatcher.executeDispatch(oFrame, ".uno:Copy", "", 0, Array())

 REM Move the cursor to the end of the document and then paste the table.
 oVCursor.gotoRange(oText.getEnd(), False)
 oDispatcher.executeDispatch(oFrame, ".uno:Paste", "", 0, Array())
End Sub

The clipboard is used by all applications so another application may modify the clipboard while the problem
is running. The current controller provides access to the transferable content without using the clipboard.

Listing 382. Copy a text table using transferable content.
Sub CopyNamedTableToEndUsingTransferable(sName As String)
 Dim oTable 'Table to copy
 Dim oText 'Document's text object
 Dim oVCursor 'Current view cursor
 Dim o 'Transferable content

 oVCursor = ThisComponent.CurrentController.getViewCursor()
 oText = ThisComponent.getText()

 If NOT ThisComponent.getTextTables().hasByName(sName) Then
 MsgBox "Sorry, the document does not contain table " & sName
 Exit Sub
 End If

 oTable = ThisComponent.getTextTables().getByName(sName)

 REM Place the cursor in the start of the first cell.
 REM This is very easy!
 ThisComponent.CurrentController.select(oTable)
 oVCursor.gotoEnd(True) 'Move to the end of the current cell.

419

 oVCursor.gotoEnd(True) 'Move to the end of the table.
 o = ThisComponent.CurrentController.getTransferable()

 REM Move the cursor to the end of the document and then paste the table.
 oVCursor.gotoRange(oText.getEnd(), False)
 ThisComponent.CurrentController.insertTransferable(o)
End Sub

 14.9.6. Formatting a text table

I format text tables using paragraph styles, alternating the background color for each row, and by changing
the cell borders.

Listing 383. Format a text table.
Sub FormatTable(Optional oUseTable)
 Dim oTable
 Dim oCell
 Dim nRow As Long
 Dim nCol As Long

 If IsMissing(oUseTable) Then
 oTable = ThisComponent.CurrentController.getViewCursor().TextTable
 Else
 oTable = oUseTable
 End If
 If IsNull(oTable) OR IsEmpty(oTable) Then
 Print "FormatTable: No table specified"
 Exit Sub
 End If

 Dim v
 Dim x
 v = oTable.TableBorder
 x = v.TopLine : x.OuterLineWidth = 2
 v.TopLine = x

 x = v.LeftLine
 x.OuterLineWidth = 2
 v.LeftLine = x

 x = v.RightLine
 x.OuterLineWidth = 2
 v.RightLine = x

 x = v.TopLine
 x.OuterLineWidth = 2
 v.TopLine = x

 x = v.VerticalLine
 x.OuterLineWidth = 2
 v.VerticalLine = x

 x = v.HorizontalLine

420

 x.OuterLineWidth = 0
 v.HorizontalLine = x

 x = v.BottomLine
 x.OuterLineWidth = 2
 v.BottomLine = x

 oTable.TableBorder = v

 For nRow = 0 To oTable.getRows().getCount() - 1
 For nCol = 0 To oTable.getColumns().getCount() - 1
 oCell = oTable.getCellByPosition(nCol, nRow)
 If nRow = 0 Then
 oCell.BackColor = 128
 SetParStyle(oCell.getText(), "OOoTableHeader")
 Else
 SetParStyle(oCell.getText(), "OOoTableText")
 If nRow MOD 2 = 1 Then
 oCell.BackColor = -1
 Else
 REM color is (230, 230, 230)
 oCell.BackColor = 15132390
 End If
 End If
 Next
 Next
End Sub

Each cell has its own text object. The following macro sets every paragraph in a text object to use the same
paragraph style.

Listing 384. Set the paragraph style for every paragraph in a text object.
Sub SetParStyle(oText, sParStyle As String)
 Dim oEnum
 Dim oPar
 oEnum = oText.createEnumeration()
 Do While oEnum.hasMoreElements()
 oPar = oEnum.nextElement()
 If opar.supportsService("com.sun.star.text.Paragraph") Then
 'oPar.ParaConditionalStyleName = sParStyle
 oPar.ParaStyleName = sParStyle
 End If
 Loop
End Sub

 14.10. Text fields

A text field is text content that is usually seamlessly inserted into the existing text, but the actual content
comes from elsewhere—for example, the total number of pages or a database field. Table 148 lists the
standard field types.

421

Table 148. Text field services starting with com.sun.star.text.TextField.
Field Type Description

Annotation Inserted note with string properties Author and Content. The property Date, of type
com.sun.star.util.Date, contains the date that the note was created.

Author Displays the document’s author. The following optional fields may be present:

• IsFixed – If False, the author is modified every time the document is saved.

• Content – String content of the text field.

• AuthorFormat – Constants from the com.sun.star.text.AuthorDisplayFormat constant
group; these have the values: FULL (0), LAST_NAME (1), FIRST_NAME (2), or
INITIALS (3).

• CurrentPresentation – String containing the current text of the field.

• FullName – If False, the initials are displayed rather than the full name.

Bibliography Contains a property named Fields, which is an array of type PropertyValue. This field is
dependent on a Bibliography text field master.

Chapter Chapter information. The Level property is a Byte integer. The ChapterFormat property is
a constant group of type com.sun.star.text.ChapterFormat with the following valid values:
NAME (0), NUMBER (1), NAME_NUMBER (2), NO_PREFIX_SUFFIX (3), or DIGIT
(4).

CharacterCount Indicates the number of characters in the document. This contains one property,
NumberingType, from the constant group com.sun.star.style.NumberingType; valid values
are shown in Table 149.

CombinedCharacters Displays one to six characters and treats them as one character.

ConditionalText Displays text that changes based on a condition in the text field.

• TrueContent – String to use if the condition is True.

• FalseContent – String to use if the condition is False.

• Condition – String condition to evaluate.

• IsConditionTrue – Boolean result of the evaluation (read-only value).

DDE Displays the result from a DDE connection. Uses a DDE text field master.

Database Database text field used as a mail-merge field. This field depends on a text field master and
contains the following properties:

• Content – Merged database content as a String.

• CurrentPresentation – Displays content as a String.

• DataBaseFormat – If True, the database number display format is used.

• NumberFormat – com.sun.star.util.NumberFormatter that formats the field.

DatabaseName Display the database name when performing database operations (depends on a text field
master) with these properties:

• DataBaseName – String containing the database name.

• DataCommandType – Constant group com.sun.star.sdb.CommandType specifies what
DataTableName supports: TABLE (0), QUERY(1), or COMMAND (2).

• DataTableName – String containing the table name, query, or statement.

DatabaseNextSet Increment a selection (depends on a text field master) with these properties:

• DataBaseName – String name of the database.

• DataCommandType – Constant group com.sun.star.sdb.CommandType specifies what
DataTableName supports: TABLE (0), QUERY(1), or COMMAND (2).

• DataTableName – String containing the table name, query, or statement.

• Condition – String that determines if the selection is advanced to the next position.

422

Field Type Description

DatabaseNumberOfSet Display the current database set number (depends on a text field master) with these
properties:

• DataBaseName – String name of the database.

• DataCommandType – Constant group com.sun.star.sdb.CommandType specifies what
DataTableName supports: TABLE (0), QUERY(1), or COMMAND (2).

• DataTableName – String containing the table name, query, or statement.

• NumberingType – See Table 149 property for valid values.

• SetNumber – Long Integer database set.

DatabaseSetNumber Set the database cursor selection (depends on a text field master) with these properties:

• DataBaseName – String name of the database.

• DataCommandType – Constant group com.sun.star.sdb.CommandType specifies what
DataTableName supports: TABLE (0), QUERY(1), or COMMAND (2).

• DataTableName – String containing the table name, query, or statement.

• Condition – String condition that determines if the SetNumber is applied.

• SetNumber – Long Integer set number to be applied.

DateTime Display a date or time with the following optional properties:

• IsFixed – If False, the current date or time is displayed.

• IsDate – If False, this is only a time. If True, this is a date with an optional time.

• DateTimeValue – com.sun.star.util.DateTime object with the actual content.

• NumberFormat – com.sun.star.util.NumberFormatter that formats the field.

• Adjust – Long Integer offset to the date or time in minutes.

• IsFixedLanguage – If False, setting the adjacent text language may change the field
display.

DropDown Display a drop-down field with the following properties:

• Name – Field name.

• Items – Array of strings with the drop-down value.

• SelectedItem – The selected item or an empty string if nothing is selected.

EmbeddedObjectCount Display the number of objects embedded in the document. Contains the NumberingType
property; see Table 149 property for valid values.

ExtendedUser Display information for the user data (under Tools | Options | OpenOffice.org | User Data)
such as name, address, or phone number.

• Content – String content.

• CurrentPresentation – String containing the current text of the field.

• IsFixed – If False, the content is updated.

• UserDataType – Specify what to display from the com.sun.star.text.UserDataPart
constant group: COMPANY, FIRSTNAME, NAME, SHORTCUT, STREET,
COUNTRY, ZIP, CITY, TITLE, POSITION, PHONE_PRIVATE,
PHONE_COMPANY, FAX, EMAIL, STATE.

FileName Display the document file name (URL). Contains the following properties:

• CurrentPresentation – String containing the current text of the field.

• FileFormat – File name format com.sun.star.text.FilenameDisplayFormat constants
with the following values: FULL, PATH, NAME, and NAME_AND_EXT.

• IsFixed – If False, the content is updated.

423

Field Type Description

GetExpression Display the result from a “SetExpression” text field. (use Insert > Fields > Other, to
open the Fields dialog, then navigate to the Cross-references tab).

• Content – String content.

• CurrentPresentation – String containing the current text of the field.

• NumberFormat – com.sun.star.util.NumberFormatter that formats the field.

• NumberingType – See Table 149 property for valid values.

• IsShowFormula – If True, the formula is displayed rather than the content.

• SubType – Variable type from the com.sun.star.text.SetVariableType constants with the
following values: VAR, SEQUENCE, FORMULA, and STRING.

• Value – Numerical (Double) value of the field.

• IsFixedLanguage – If False, setting the adjacent text language may change the field
display.

A GetExpression field references a SetExpression field. If you delete the corresponding
SetExpression field, the CurrentPresentation says something like “Invalid reference”, but I
know of no other way to determine that the reference is no longer valid.

GetReference Reference field with these properties:

• CurrentPresentation – String containing the current text of the field.

• ReferenceFieldSource – com.sun.star.text.ReferenceFieldSource constant with the
following values: REFERENCE_MARK, SEQUENCE_FIELD, BOOKMARK,
FOOTNOTE, or ENDNOTE.

• SourceName – String reference name such as a bookmark name.

• ReferenceFieldPart – com.sun.star.text.ReferenceFieldPart constant with the following
values: PAGE, CHAPTER, TEXT, UP_DOWN, PAGE_DESC,
CATEGORY_AND_NUMBER, ONLY_CAPTION, and
ONLY_SEQUENCE_NUMBER.

• SequenceNumber – Short integer sequence number used as sequence field or
ReferenceId property of a footnote or endnote.

GraphicObjectCount Display the number of graphic objects embedded in the document. Contains the
NumberingType property; see Table 149 property for valid values.

HiddenParagraph Allow a paragraph to be hidden. Used, for example, to create a test with the questions and
answers all in one document. Setting the answers to hidden allows the test questions to be
printed for the students.

• Condition – String condition to evaluate.

• IsHidden – Boolean result of the last evaluation of the condition.

HiddenText A field with hidden text. Differs from a hidden paragraph in that only the text in the field is
hidden, rather than the entire containing paragraph.

• Content – String text content of the hidden text field.

• Condition – String condition.

• IsHidden – Boolean result of the last evaluation of the condition.

Input Text input field.

• Content – String text content of the field.

• Hint – String hint text.

InputUser User-defined text field that depends on a field master.

• Content – String text content of the field.

• Hint – String hint text.

424

Field Type Description

JumpEdit Placeholder text field.

• Hint – String hint text.

• PlaceHolder – String text of the placeholder.

• PlaceHolderType – com.sun.star.text.PlaceholderType constant with the following valid
values: TEXT, TABLE, TEXTFRAME, GRAPHIC, or OBJECT.

Macro Macro text field.

• Hint – String hint text.

• MacroName – String macro name to run.

• MacroLibrary – String library name that contains the macro.

PageCount Display the number of pages in the document. Contains the NumberingType property; see
Table 149 property for valid values.

PageNumber Display a page number.

• Offset – Short Integer offset to show a different page number.

• SubType – Which page is displayed from the com.sun.star.text.PageNumberType
enumeration. Valid values: PREV, CURRENT, or NEXT.

• UserText – String that is displayed when the NumberingType is CHAR_SPECIAL.

• NumberingType – See Table 149 property for valid values.

ParagraphCount Display the number of paragraphs in the document. Contains the NumberingType property;
see Table 149 property for valid values.

ReferencePageGet Display the page number of a reference point. Contains the NumberingType property; see
Table 149 property for valid values.

ReferencePageSet Insert additional page numbers. Contains these properties:

• Offset – Short Integer that changes the displayed value of a ReferencePageGet field.

• NameOn – If True, the ReferencePageGet text fields are displayed.

Script Display text obtained by running a script. Contains these properties:

• Content – Script text or URL of the script as a string.

• ScriptType – String script type, such as JavaScript.

• URLContent – If True, Content is a URL. If False, Content is the script text.

425

Field Type Description

SetExpression An expression text field (use Insert > Fields > Other, to open the Fields dialog, then
navigate to the Variables tab). Contains these properties:

• Content – String content.

• CurrentPresentation – String containing the current text of the field.

• NumberFormat – com.sun.star.util.NumberFormatter that formats the field.

• NumberingType – See Table 149 property for valid values.

• IsShowFormula – If True, the formula is displayed rather than the content.

• Hint – String hint used if this is an input field.

• IsInput – If True, the field is an input field.

• IsVisible – If True, the field is visible.

• SequenceValue – Sequence value when this field is used as sequence field.

• SubType – Variable type from the com.sun.star.text.SetVariableType constants with the
following values: VAR, SEQUENCE, FORMULA, and STRING.

• Value – Numerical (Double) value of the field.

• VariableName – Name of the associated set expression field master.

• IsFixedLanguage – If False, setting the adjacent text language may change the field
display.

TableCount Display the number of tables in the document. Contains the NumberingType property; see
Table 149 property for valid values.

TemplateName Display the name of the template used to create the document. Supports the FileFormat
property as supported by the Filename property.

URL Display a URL. Contains these properties:

• Format – Short Integer specifying the URL output format.

• URL – String containing the unparsed original URL.

• Representation – Display string shown to the user.

• TargetFrame – String frame name where the URL will be opened.

User Display a user-defined field with a field master. Contains these properties:

• IsShowFormula – If True, the formula is displayed rather than the content.

• IsVisible – If True, the field is visible.

• NumberFormat – com.sun.star.util.NumberFormatter that formats the field.

• IsFixedLanguage – If False, setting the adjacent text language may change the field
display.

WordCount Display the number of words in the document. Contains the NumberingType property; see
Table 149 property for valid values.

docinfo.ChangeAuthor Display the name of the last author to modify the document.

• Author – String containing the name of the author.

• CurrentPresentation – Current content of the text field as a String.

• IsFixed – If False, the content is updated when the document is saved.

426

Field Type Description

docinfo.ChangeDateTime Display the date and time the document was last changed. Contains these properties:

• CurrentPresentation – Current content of the text field as a String.

• IsFixed – If False, the current date or time is displayed.

• IsDate – If False, this is only a time. If True, this is a date with an optional time.

• DateTimeValue – com.sun.star.util.DateTime object with the actual content.

• NumberFormat – com.sun.star.util.NumberFormatter that formats the field.

• IsFixedLanguage – If False, setting the adjacent text language may change the field
display.

docinfo.CreateAuthor Display the name of the author who created the document (see docinfo.ChangeAuthor for
supported properties).

docinfo.CreateDateTime Display the date and time the document was created (see docinfo.ChangeDateTime for
supported properties).

docinfo.Custom Display the user-defined field in the document information; used to be docinfo.Info0.

docinfo.Description Display the document description as contained in the document properties (File |
Properties).

• Content – String content.

• CurrentPresentation – String containing the current text of the field.

• IsFixed – If False, the content is updated when the document information is changed.

docinfo.EditTime Display the duration the document has been edited. In other words, how long did it take to
write?

• CurrentPresentation – String containing the current text of the field.

• IsFixed – If False, the date or time is always displayed as the current date or time.

• DateTimeValue – Date and time as a Double.

• NumberFormat – com.sun.star.util.NumberFormatter that formats the field.

• IsFixedLanguage – If False, setting the adjacent text language may change the field
display.

docinfo.Info0 Deprecated, use docinfo.Custom instead.

docinfo.Info1 Deprecated, use docinfo.Custom instead.

docinfo.Info2 Deprecated, use docinfo.Custom instead.

docinfo.Info3 Deprecated, use docinfo.Custom instead.

docinfo.Keywords Display the document info keywords (see docinfo.Description).

docinfo.PrintAuthor Display the name of the author who printed the document (see docinfo.ChangeAuthor for
supported properties).

docinfo.PrintDateTime Display the time the document was last printed (see docinfo.ChangeDateTime for
supported properties).

docinfo.Revision Display the current document revision (see docinfo.Description).

docinfo.Subject Display the document subject specified in the document information (see
docinfo.Description).

docinfo.Title Display the document title specified in the document information (see
docinfo.Description).

427

TIP The Annotation field is a service of type com.sun.star.text.TextField.Annotation. Some sources of
documentation show the text “textfield” in all lowercase letters; this is incorrect. The code in Listing 385
shows this correctly.

Table 149 contains the valid values for the CharacterCount property from Table 148. Most API listings stop
at CIRCLE_NUMBER=14, I do not know why.

Table 149. Constants defined by com.sun.star.style.NumberingType.
Constant Description

CHARS_UPPER_LETTER Numbering is in uppercase letters as “A, B, C, D, ...”.

CHARS_LOWER_LETTER Numbering is in lowercase letters as “a, b, c, d,...”.

ROMAN_UPPER Numbering is in Roman numbers with uppercase letters as “I, II, III,
IV, ...”.

ROMAN_LOWER Numbering is in Roman numbers with lowercase letters as “i, ii, iii, iv, ...”.

ARABIC Numbering is in Arabic numbers as “1, 2, 3, 4, ...”.

NUMBER_NONE Numbering is invisible.

CHAR_SPECIAL Use a character from a specified font.

PAGE_DESCRIPTOR Numbering is specified in the page style.

BITMAP Numbering is displayed as a bitmap graphic.

CHARS_UPPER_LETTER_N Numbering is in uppercase letters as “A, B, ..., Y, Z, AA, BB, CC, ...
AAA, ...”.

CHARS_LOWER_LETTER_N Numbering is in lowercase letters as “a, b, ..., y, z, aa, bb, cc, ... aaa, ...”.

TRANSLITERATION A transliteration module is used to produce numbers in Chinese, Japanese,
etc.

NATIVE_NUMBERING The native-number-supplier service is called to produce numbers in native
languages.

FULLWIDTH_ARABIC Numbering for full-width Arabic number.

CIRCLE_NUMBER Bullet for Circle Number.

NUMBER_LOWER_ZH Numbering for Chinese lowercase numbers.

NUMBER_UPPER_ZH Numbering for Chinese uppercase numbers.

NUMBER_UPPER_ZH_TW Numbering for Traditional Chinese uppercase numbers.

TIAN_GAN_ZH Bullet for Chinese Tian Gan.

DI_ZI_ZH Bullet for Chinese Di Zi.

NUMBER_TRADITIONAL_JA Numbering for Japanese traditional numbers.

AIU_FULLWIDTH_JA Bullet for Japanese AIU full width.

AIU_HALFWIDTH_JA Bullet for Japanese AIU half width.

IROHA_FULLWIDTH_JA Bullet for Japanese IROHA full width.

IROHA_HALFWIDTH_JA Bullet for Japanese IROHA half width.

NUMBER_UPPER_KO Numbering for Korean uppercase numbers.

NUMBER_HANGUL_KO Numbering for Korean hangul numbers.

HANGUL_JAMO_KO Bullet for Korean Hangul Jamo.

428

Constant Description

HANGUL_SYLLABLE_KO Bullet for Korean Hangul Syllable.

HANGUL_CIRCLED_JAMO_KO Bullet for Korean Hangul Circled Jamo.

HANGUL_CIRCLED_SYLLABLE_KO Bullet for Korean Hangul Circled Syllable.

CHARS_ARABIC Numbering in Arabic alphabet letters.

CHARS_THAI Numbering in Thai alphabet letters.

The text fields contained in the document are available using the getTextFields() object method (see Table
137). Every text field object supports the object method getPresentation(boolean), which returns a string
representing either the field type (True) or the displayed text (False). See Listing 385 and Figure 95.

Listing 385. Display Fields.
Sub DisplayFields
 oEnum = ThisComponent.getTextFields().createEnumeration()
 Do While oEnum.hasMoreElements()
 oField = oEnum.nextElement()
 s = s & oField.getPresentation(True) & " = " 'Field type
 If oField.supportsService("com.sun.star.text.TextField.Annotation") Then
 REM More cryptic, I could use If oField.getPresentation(True) = "Note"...
 REM A "Note" has no displayed content so calling getPresentation(False)
 REM returns an empty string. Instead, obtain the author and the content.
 s = s & oField.Author & " says " & oField.Content
 Else
 s = s & oField.getPresentation(False) 'String content
 End If
 s = s & CHR$(13)
 Loop
 MsgBox s, 0, "Text Fields"
End Sub

Figure 95. Text fields in the current document.
The source document used to create Figure 95 contains a DateTime field, PageNumber fields, Annotation
field, and a User field. The code in Listing 385 provides special treatment for note fields to display both the
author and the note. The field is checked to see if it supports the Annotation service by using the
supportsServiceObject() method.

The primary method of finding a specific text field is by enumerating the text fields as shown in Listing 385.
If the document is large and contains many text fields, it may take a long time to find a specific text field. If
you know where the text field is located in the document, Listing 354 demonstrates how to find a text field
by enumerating text content in a paragraph.

429

TIP Text fields implement the object method update(). The update() method causes a text field to update itself
with the most current information if it is applicable. For example, date/time, file name, and the document
information text fields all update to the most current information.

 14.10.1. Text master fields

Some text fields contain their own content, and others rely on an external source to obtain the displayed
information. The external source is called a master field. Table 150 lists the text field types that require a
master field. Besides the properties shown in Table 150, every text field master also supports the properties
shown in Table 151.

TIP The object method getTextFieldMaster() returns a text field’s master field. Unfortunately, every field, even
fields that do not have master fields, implements this method and returns a non-null master field. OOo may
crash if you obtain and manipulate a master field from a field that does not contain one.

Although text fields are accessible only by enumeration, master fields are accessible by name and
enumeration (see Table 137). The name used for a master field is obtained by appending the field name to
the field master type. For example, the User field “AndyField”, as shown in Figure 95, has a master field
named com.sun.star.text.FieldMaster.User.AndyField. Database master fields are named differently than all
of the other master fields; they append the DatabaseName, DatatableName, and DataColumnName to the
service name. Listing 386 demonstrates how to obtain the text field masters in a document. Figure 96 shows
the results.

Table 150. Text field services starting with com.sun.star.text.FieldMaster.
Field
Type

Description

Bibliography Field master to a Bibliography text field. Contains these properties:

• IsNumberEntries – If True, the fields are numbered; otherwise, the short entry name is
used.

• IsSortByPosition – If True, the bibliography index is sorted by the document position
(see SortKeys).

• BracketBefore – The opening bracket displayed in the Bibliography text field.

• BracketAfter – The closing bracket displayed in the Bibliography text field.

• SortKeys – This array of PropertyValues is used if IsSortByPosition is False. The
properties are a sequence of the property SortKey
(com.sun.star.text.BibliographyDataField constant identifying the field to sort) and
IsSortAscending (Boolean).

• Locale – com.sun.star.lang.Locale of the field master.

• SortAlgorithm – String containing the name of the sort algorithm used to sort the text
fields.

DDE Field master to a DDE text field. Contains these properties:

• DDECommandElement – DDE command as a string.

• DDECommandFile – File string of the DDE command.

• DDECommandType – DDE command type as a string.

• IsAutomaticUpdate – If True, the DDE link is automatically updated.

430

Field
Type

Description

Database Field master to a Database text field. Contains these properties:

• DataBaseName – String name of the data source.

• CommandType – Long Integer CommandType (0 = table, 1 = query, 2 = statement).

• DataTableName – Command string type is determined by the CommandType property.

• DataColumnName – Database column name as a String.

SetExpression Field master to a “set expression” text field. Contains these properties:

• ChapterNumberingLevel – Chapter number as a byte, if this is a number sequence.

• NumberingSeparator – Numbering separator string, used if this is a number sequence.

• SubType – Variable type from the com.sun.star.text.SetVariableType constants with the
following values: VAR, SEQUENCE, FORMULA, and STRING.

User Field master to a user text field. Contains the properties:

• IsExpression – If True, the field contains an expression.

• Value – Double value.

• Content – Field content as a string.

Table 151. Properties defined by the service com.sun.star.text.FieldMaster.
Property Description

Name Optional string with the field name; this must be set before the field is added to the document.

DependentTextFields Array of text fields that use this master field.

InstanceName String instance name as it is used in the XTextFieldsSupplier.

Listing 386. Show text field masters.
Sub ShowFieldMasters
 Dim oMasters 'All of the text field masters
 Dim oMasterNames 'Array of the text field master names
 Dim i%, j% 'Index variables
 Dim sMasterName$ 'Full name of the master field
 Dim s$ 'Utility string
 Dim oMaster 'Master field

 REM Obtain the text field masters object.
 oMasters = ThisComponent.getTextFieldMasters()

 REM Obtain ALL of the text master field names.
 REM This is an array of strings.
 oMasterNames = oMasters.getElementNames()
 For i = LBound(oMasterNames) to UBound(oMasterNames)

 REM For a given name, obtain the master field,
 REM then look at the DependentTextFields property,
 REM which is an array of text fields that depend
 REM on this master field.
 sMasterName = oMasterNames(i)
 oMaster = oMasters.getByName(sMasterName)

431

 s = s & "***" & sMasterName & "***" & CHR$(10)
 s = s & oMaster.Name & " Contains " &_
 CStr(UBound(oMaster.DependentTextFields) + 1) &_
 " dependent fields" & CHR$(10)
 s = s & CHR$(13)
 Next I
 REM Directly obtain a master field based on the name.
 REM This is a user field that I added to the source code file.
 If oMasters.hasByName("com.sun.star.text.FieldMaster.User.AndyField") Then
 oMaster=oMasters.getByName("com.sun.star.text.FieldMaster.User.AndyField")
 s = s & "Directly obtained the field master " & oMaster.Name & CHR$(10) &_
 "The field contains the text " & oMaster.Content
 End If
 MsgBox s, 0, "Text Field Masters"
End Sub

Figure 96. Text master fields in the current document.

 14.10.2. Creating and adding text fields

Text fields must be created by the document that will contain them. It is also the document that will destroy
them if you choose to remove them from the document. Listing 387 demonstrates the creation,
configuration, and insertion of both a DateTime text field and an Annotation text field. The text fields are
appended to the end of the document. The DateTime text field is formatted in an unusual manner, so a new
number format style is created if it does not yet exist.

TIP The very popular routine FindCreateNumberFormatStyle (see Listing 391) is used by Listing 387.

What is required to properly insert an annotation field has changed over time and may differ between AOO
and LO. When OOo, inserting an annotation set the insertion date to the current time. My latest testing with
LO 4.0.1.2 does not set a date. In LO, there is a Date property, which seems to be ignored. To set the date, ou
must set the DateTimeValue property instead. The insertion date/time must be set before the text field is
inserted, the date/time cannot be changed after. I have not tested this particular macro with AOO.

432

Listing 387. Insert text fields.
Sub InsertFields
 Dim oText 'Text object for the current document
 Dim oField 'Field to insert
 Dim oDoc 'oDoc is fewer characters than ThisComponent

 oDoc = ThisComponent
 oText = oDoc.Text

 REM Start by inserting a date time text field at the end of the
 REM document. Format the date time as "DD. MMM YYYY"
 REM Insert some explanatory text before the newly inserted field.
 oText.insertString(oText.getEnd(), "Today is ", FALSE)

 REM Create a date time field.
 oField = oDoc.createInstance("com.sun.star.text.TextField.DateTime")
 oField.IsFixed = TRUE
 oField.NumberFormat = FindCreateNumberFormatStyle("DD. MMMM YYYY", oDoc)
 oText.insertTextContent(oText.getEnd(), oField, False)

 REM Now, insert an Annotation after the inserted text field.
 REM Lie about the date and say that I did it a little while ago!
 Dim oDate As New com.sun.star.util.Date
 Dim oRightNow
 oRightNow = Now
 With oDate
 .Day = Day(oRightNow - 10)
 .Month = Month(oRightNow - 10)
 .Year = Year(oRightNow - 10)
 End With

 Dim oDT As New com.sun.star.util.DateTime
 With oDT
 .Day = Day(oRightNow - 10)
 .Month = Month(oRightNow - 10)
 .Year = Year(oRightNow - 10)
 .Hours = 4
 .Minutes = 5
 .Seconds = 6
 .HundredthSeconds = 0
 End With

 REM Like most text content, the field must be created by the document
 REM that will contain it.
 REM In LO, setting the Date field does nothing.
 oField = oDoc.createInstance("com.sun.star.text.TextField.Annotation")
 With oField
 .Author = "AP"
 .Content = "This note is next to a date field that I just added"
 .Date = oDate
 .DateTimeValue = oDT
 End With
 oText.insertTextContent(oText.getEnd(), oField, False)

433

 MsgBox "Two fields inserted at the end of the document"
End Sub

Inserting a field that requires a text field master is slightly more difficult than inserting a regular text field.
Both the master field and the dependent text field must be created by the document using the object method
createInstance(). The master field must be named before it is used; after inserting a field into a document,
you cannot change the name. The dependent field is attached to the master field, which provides the content
to the dependent field. The dependent field, not the master field, is inserted as text content into the
document. The dependent field can be removed from the document by using the removeTextContent() object
method. To remove the master field, use the dispose() method of the master field.

Listing 388 demonstrates the use of master fields by performing various operations on a master field named
“TestField”. Three specific states are checked and appropriate behavior is taken as follows:

If the master field does not exist, the master field and a dependent field are created and inserted into the
document. The field is now visible by opening the Field dialog using Insert | Fields | Other and choosing the
Variables tab.

If the master field exists with a corresponding dependent field, the dependent field is removed from the
document. The master field still exists, but no dependent field is inserted in the document. You can view the
master field by using the Field dialog.

If the master field exists and has no corresponding dependent field, the master field is removed by using the
dispose() object method. The Field dialog no longer shows the master field.

Listing 388. Insert field master.
Sub InsertFieldMaster
 Dim oMasters 'All of the text field masters
 Dim oText 'Text object for the current document
 Dim oUField 'User field to insert
 Dim oMField 'The master field for the user field
 Dim oDoc 'oDoc is fewer characters than ThisComponent
 Dim sLead$ 'Leading field name
 Dim sName$ 'Name of the field to remove or insert
 Dim sTotName$ 'The entire name

 REM Set the names.
 sName = "TestField"
 sLead = "com.sun.star.text.FieldMaster.User"
 sTotName = sLead & "." & sName

 REM Initialize some values.
 oDoc = ThisComponent
 oText = oDoc.Text
 oMasters = ThisComponent.getTextFieldMasters()

 REM If the master field already exists, then perform special handling.
 REM Special handling is for illustrative purposes only, not that it
 REM solves any particularly fun and exciting problem.
 If oMasters.hasByName(sTotName) Then
 REM Obtain the master field and the fields dependent on this field.
 oMField = oMasters.getByName(sTotName)

434

 REM If there are fields dependent on this field then
 REM the array of dependent fields has values!
 If UBound(oMField.DependentTextFields) >= 0 Then
 REM Remove the text content and it disappears from the
 REM document. The master field still exists, however!
 oUField = oMField.DependentTextFields(0)
 oText.removeTextContent(oUField)
 MsgBox "Removed one instance from the document"
 Else
 REM I arbitrarily decided that I would destroy the master field
 REM but I could just as easily create a new user field and
 REM attach it to the existing master field and then insert
 REM the new field into the document.
 MsgBox "No instances in the document, disposing master field"
 oMField.content=""
 oMField.dispose()
 End If
 Else
 REM Create a User text field that requires a master field.
 oUField = oDoc.createInstance("com.sun.star.text.TextField.User")

 REM Now create the master field.
 Dim oMasterField
 oMasterField = oDoc.createInstance(sLead)

 REM You CANNOT change the name of a master field AFTER it is inserted
 REM into a document so you must set it now.
 oMasterField.Name = sName

 REM This is the data that will be displayed. Remember that the
 REM user field displays what the master tells it to display.
 oMasterField.Content = "Hello"

 REM A user field must be attached to a master field.
 REM The user field is now a "DependentTextField".
 oUField.attachTextFieldMaster(oMasterField)

 REM Insert the user field into the document.
 oText.insertTextContent(oText.getEnd(), oUField, False)
 MsgBox "One field inserted at the end of the document"
 End If
End Sub

 14.11. Bookmarks

A bookmark is text content that is accessible based on its name. A bookmark may encompass a text range or
a single point. Listing 371 inserts text content at the point where a bookmark is anchored. Use the
getString() object method to obtain the string contained in the bookmark. Use setString() to set the string
contained in the bookmark. If the bookmark is merely a point, the text is merely inserted before the
bookmark. When a created bookmark is inserted into the text, the insertion point determines the bookmark’s
anchor position.

435

Listing 389. Demonstrate how to add a bookmark.
Sub AddBookmark
 Dim oBookmark 'Created bookmark to add
 Dim oCurs 'Text cursor

 REM Create a text cursor that contains the last four characters
 REM in the document.
 oCurs = ThisComponent.Text.createTextCursor()
 oCurs.gotoEnd(False)
 oCurs.goLeft(4, True)

 REM Create the bookmark.
 oBookmark = ThisComponent.createInstance("com.sun.star.text.Bookmark")

 REM If the bookmark is not given a name, OOo will create a name.
 REM If the name already exists, a number is appended to the name.
 oBookmark.setName("Bobert")

 REM Because True is used, the bookmark contains the last four characters
 REM in the document. If False is used instead, then the bookmark
 REM contains no characters and it is positioned before the fourth character
 REM from the end of the document.
 ThisComponent.Text.insertTextContent(oCurs, oBookmark, False)
End Sub

 14.12. Sequence fields, references, and formatting

Consider the caption for Listing 389. Ignoring formatting, enter the caption as follows:

1. Enter the text “Listing ”.

2. Use Insert > Fields > Other to open the Fields dialog.

3. Select the Variables tab.

4. Select the Number Range type .

5. Enter Listing for name and Listing + 1 for the value.

6. Click Insert.

7. Enter the rest of the caption.

Sequence fields (number ranges) work well because they automatically renumber as captions are added and
removed. A reference to a sequence field renumbers if the field itself changes value because a field is added
or removed.

I had a collection of documents containing hundreds of captions and references. Unfortunately, all captions
and references were text as opposed to fields. I needed a macro to convert the text captions and references to
use sequence fields and linked cross references.

 14.12.1. Formatting numbers and dates

Sequence fields can be formatted in many ways. Ultimately, the formatting is associated to a defined format
string. OOo is configured to know many common number and date formats, and you can create new formats

436

as you desire. Each number format is assigned a numeric ID. Things that format numbers and dates – such as
fields and table cells – contain the numeric key for the formatting string used to display the contained value.

List formats known to the current document

When you create a new number format, the format is stored in the current document. The supported numeric
formats and the ID for a specific format will differ from document to document.

Listing 390. List the formats in the current document.
Sub ListFormatsInCurrentDocument()
 Dim oDoc ' Document created to hold the format strings.
 Dim oFormats ' Formats in the current document.
 Dim oFormat ' Current format object.
 Dim oData ' Keys queried from the formats.
 Dim i% ' General index variable.
 Dim sFormat$ ' Current format string.
 Dim sPrevFormat$ ' Previous format string.
 Dim aLocale as new com.sun.star.lang.Locale

 oFormats = ThisComponent.getNumberFormats()

 ' Create an output document.
 oDoc = StarDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, Array())
 oData = oFormats.queryKeys(com.sun.star.util.NumberFormat.ALL, aLocale, False)
 For i = LBound(oData) To UBound(oData)
 oFormat=oFormats.getbykey(oData(i))
 sFormat=oFormat.FormatString
 If sFormat<>sPrevFormat Then
 sPrevFormat=sFormat
 oDoc.getText().insertString(oDoc.getText().End, _
 CStr(oData(i)) & CHR$(9) & sFormat & CHR$(10), False)
 End If
 Next
End Sub

Find or create a numeric format.

When a number format is added, it may be modified and stored in a slightly different format. QueryKey
searches the internal modified query strings without first modifying the input string. The end result is that
after storing a key queryKey will claim that the format string is not present. If you then dutifully, add the
format string, an exception will be thrown because it already exists.

1. Adding "#,##0.00_);[Red](#,##0.000)" stores "#,##0.00_);[RED](#,##0.000)"; red is converted to
upper case (see https://issues.apache.org/ooo/show_bug.cgi?id=72380).

2. While storing, "##0,0#\h" is changed to "##,00#\h".

The usual advice is to use a number format that does not change.

Listing 391 returns the ID that identifies the specified format. The returned ID can be used to format a value.
If you add a format and then the format is not available, make note of the format ID and use Listing 390 to
display the formats in the modified form.

Listing 391. Find or create a numeric format.
'sFormat – Format to find / create.

437

https://issues.apache.org/ooo/show_bug.cgi?id=72380

'oDoc - Document to use. If omitted, the current document is used.
'locale - Locale to use. If omitted, the default locale is used.
Function FindCreateNumberFormatStyle (sFormat$, Optional oDoc, Optional locale)
 Dim oDocument As Object
 Dim aLocale as new com.sun.star.lang.Locale
 Dim oFormats As Object
 Dim formatNum As Long
 oDocument = IIf(IsMissing(oDoc), ThisComponent, oDoc)
 oFormats = oDocument.getNumberFormats()
 'I could set the locale from values stored at
 'http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
 'http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
 'I use a NULL locale and let it use what ever it likes.
 'First, see if the number format exists
 If (Not IsMissing(locale)) Then
 aLocale = locale
 End If
 formatNum = oFormats.queryKey (sFormat, aLocale, TRUE)
 'MsgBox "Current Format number is" & formatNum
 'If the number format does not exist then add it
 If (formatNum = -1) Then
 formatNum = oFormats.addNew(sFormat, aLocale)
 If (formatNum = -1) Then formatNum = 0
 'MsgBox "new Format number is " & formatNum
 End If
 FindCreateNumberFormatStyle = formatNum
End Function

Default formats

It is possible to get formats of a specific type without manually specifying the format using the
getStandardFormat method on the Formats object. Specify the desired format using the NumberFormat
constant group. Consider this snippet to set cells in Calc to the local currency format:

 oFormats = oDoc.NumberFormats
 Dim aLocale As New com.sun.star.lang.Locale
 oRange = oSheet.getCellRangeByName("D2:F19")
 oRange.NumberFormat = oFormats.getStandardFormat(_
 com.sun.star.util.NumberFormat.CURRENCY, aLocale)

Table 152. Constants for the com.sun.star.util.NumberFormat constant group.
Value Name Description

0 ALL selects all number formats.

1 DEFINED selects only user-defined number formats.

2 DATE selects date formats.

4 TIME selects time formats.

8 CURRENCY selects currency formats.

16 NUMBER selects decimal number formats.

32 SCIENTIFIC selects scientific number formats.

64 FRACTION selects number formats for fractions.

438

128 PERCENT selects percentage number formats.

256 TEXT selects text number formats.

6 DATETIME selects number formats which contain date and time.

1024 LOGICAL selects boolean number formats.

2048 UNDEFINED is used as a return value if no format exists.

 14.12.2. Create a field master

A Listing sequence field is associated to the com.sun.star.text.FieldMaster.SetExpression.Listing master
field, which must exist before the sequence field can be used. Listing 392 Demonstrates how to create a
master field if it does not exist, and how to get the master field if it does.

Listing 392. Creating a master field.
 oMasters = oDoc.getTextFieldMasters
 If NOT oMasters.hasByName("com.sun.star.text.FieldMaster.SetExpression.Listing") Then
 oMasterField = oDoc.createInstance("com.sun.star.text.FieldMaster.SetExpression")
 oMasterField.Name = "Listing"
 oMasterField.SubType = com.sun.star.text.SetVariableType.SEQUENCE
 Else
 oMasterField = oMasters.getByName("com.sun.star.text.FieldMaster.SetExpression.Listing")
 End If

The master field sub-type determines the field type (see Table 153).

Table 153. Constants for com.sun.star.text.SetVariableType.
Value Constant Description

0 com.sun.star.text.SetVariableType.VAR Simple variable.

1 com.sun.star.text.SetVariableType.SEQUENCE Number sequence field.

2 com.sun.star.text.SetVariableType.FORMULA Formula field.

3 com.sun.star.text.SetVariableType.STRING String field.

 14.12.3. Insert a sequence field

The sequence field is created by the document, then the numbering type is set to arabic. The number format
is set, the master field is associated to the field (the master field is a sequence field), and then the field
content is set to increment the value (Listing + 1). Note that when the field is inserted, the field may not be
immediately updated. Either wait for the field to update, or force an update using Tools > Update > Fields.

Listing 393. Creating a set expression sequence field.
 oField = oDoc.createInstance("com.sun.star.text.TextField.SetExpression")
 oField.NumberingType = com.sun.star.style.NumberingType.ARABIC
 oField.NumberFormat = FindCreateNumberFormatStyle("###0", oDoc)
 oField.attachTextFieldMaster(oMasterField)
 oField.Content = name & " + 1"

Constants used to set the numbering type are set as shown in the Table 149.

439

 14.12.4. Replace text with a sequence field

Finally, the main working macro to find the text and replace it with a sequence field. The location to insert
the sequence field is found by searching for a regular expression. The regular expression "^Listing [:digit:]
+\.[:space:]+" searches for a line that begins with the text “Listing”, followed by a space, one or more
numeric digits, a period, and one or more spaces; for example, “Listing 12. ”.

Listing 394. Replace text with sequence fields.
Function FindReplaceTextFields(oDoc, name$) As Integer
 Dim oDescriptor ' Search descriptor used to find the captions.
 Dim oFound ' Text matching the search descriptor.
 Dim oMasters ' Master fields in this document.
 Dim oMasterField ' The associated master field.
 Dim oFrame ' Documents main frame, used for dispatches.
 Dim oDispatcher ' Dispatcher object.
 Dim oCurs ' Text cursor used to insert text content.
 Dim oField ' Sequence field to insert.
 Dim formatNum& ' ID (Key) for the format for the field.
 Dim i As Integer ' General index variable.

 'Assume that no text fields are inserted.
 FindReplaceTextFields = 0

 'What number format to use for the field.
 formatNum = FindCreateNumberFormatStyle("###0", oDoc)

 ' Create the master field if needed.
 oMasters = oDoc.getTextFieldMasters
 If NOT oMasters.hasByName("com.sun.star.text.FieldMaster.SetExpression." & name) Then
 oMasterField = oDoc.createInstance("com.sun.star.text.FieldMaster.SetExpression")
 oMasterField.Name = name
 oMasterField.SubType = com.sun.star.text.SetVariableType.SEQUENCE
 Else
 oMasterField = oMasters.getByName("com.sun.star.text.FieldMaster.SetExpression." & name)
 End If

 'Search for a line beginning with the name, a space, a number, a period, and a space.
 oDescriptor = oDoc.createSearchDescriptor()
 With oDescriptor
 .SearchString = "^" & name & " [:digit:]+\.[:space:]+"
 .SearchRegularExpression = True
 End With

 'Prepare to issue a dispatch to clear formatting.
 oFrame = oDoc.CurrentController.Frame
 oDispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

 'Begin the find process.
 oFound = oDoc.findFirst(oDescriptor)
 Do While Not IsNull(oFound)
 ' Use the strong emphasis character style for "Listing 7."
 oFound.CharStyleName = "OOoStrongEmphasis"

440

 ' Create and configure the sequence field.
 oField = oDoc.createInstance("com.sun.star.text.TextField.SetExpression")
 oField.NumberingType = com.sun.star.style.NumberingType.ARABIC
 oField.NumberFormat = formatNum
 oField.attachTextFieldMaster(oMasterField)
 oField.Content = name & " + 1"

 ' Create a text cursor with the found text.
 oCurs = oFound.getText().createTextCursorByRange(oFound)

 ' Insert the text such as "Listing <sequence variable>. "
 ' This inserted text replaces the found text.
 oFound.getText().insertString(oCurs, name & " ", True)
 oCurs.collapseToEnd()
 oFound.getText().insertTextContent(oCurs, oField, True)
 oCurs.collapseToEnd()
 oFound.getText().insertString(oCurs, ".", True)
 oCurs.collapseToEnd()
 oFound.getText().insertString(oCurs, " ", True)
 oCurs.collapseToEnd()

 ' The inserted text uses strong emphasis.
 ' Move the cursor back one so that it is before the space.
 ' Jump to the end of the paragraph and reset the attributes.
 oCurs.goLeft(1, False)
 oCurs.gotoEndofParagraph(True)
 oDoc.CurrentController.Select(oCurs)
 oDispatcher.executeDispatch(oFrame, ".uno:ResetAttributes", "", 0, Array())

 ' Find the next occurrence.
 oFound = oDoc.findNext(oFound.End, oDescriptor)
 i = i + 1
 Loop
 FindReplaceTextFields = i
End Function

The above method contains extra code that clears formatting after the main sequence variables.

 14.12.5. Create a GetReference field

An inserted sequence field is directly associated to a field master, which may be referenced by many
different fields; every listing in this book references a single field master. A GetReference field, however,
does not reference a field as easily. When a field is inserted, OOo automatically assigns a sequence value.
The GetReference field has a SequenceNumber attribute that takes the numeric SequenceValue from the
referenced field (see Listing 395).

The reference field source indicates the type of field that is referenced. The supported types are shown in
Table 155. Much of this is poorly documented, and I speculate that the sequence value may be unique
relative to field source.

The ReferenceFieldPart indicates how the reference is displayed. Valid values are shown in Table 154. The
example in Listing 395 uses the category and the number. In a caption, all text before the number is the
category.

441

Listing 395. Inserting a GetReference field.
oField = oDoc.createInstance("com.sun.star.text.textfield.GetReference")
oField.ReferenceFieldPart = com.sun.star.text.ReferenceFieldPart.CATEGORY_AND_NUMBER
oField.ReferenceFieldSource = com.sun.star.text.ReferenceFieldSource.SEQUENCE_FIELD
oField.SequenceNumber = oReferencedField.SequenceValue
oField.SourceName = sSeqName
oText.insertTextContent(oCurs, oField, True)

Table 154. Constants for com.sun.star.text.ReferenceFieldPart.
Value Constant Description

0 PAGE The page number is displayed using Arabic numbers.

1 CHAPTER The chapter number is displayed.

2 TEXT The reference text is displayed.

3 UP_DOWN Use localized words for "above" or "below".

4 PAGE_DESC The page number is displayed using the numbering type defined in the
page style of the reference position.

5 CATEGORY_AND_NUMBER The category and the number of a caption is displayed; for example,
Listing 7.

6 ONLY_CAPTION The caption text of a caption is displayed.

7 ONLY_SEQUENCE_NUMBER The number of a sequence field is displayed.

8 NUMBER The numbering label and depending of the reference field context
numbering labels of superior list levels of the reference are displayed.

9 NUMBER_NO_CONTEXT The numbering label of the reference is displayed.

10 NUMBER_FULL_CONTEXT The numbering label and numbering labels of superior list levels of the
reference are displayed.

Table 155. Constants for com.sun.star.text.ReferenceFieldSource.
Value Constant Description

0 REFERENCE_MARK The source is a reference mark.

1 SEQUENCE_FIELD The source is a number sequence field.

2 BOOKMARK The source is a bookmark.

3 FOOTNOTE The source is a footnote.

4 ENDNOTE The source is an endnote.

 14.12.6. Replace text with a GetReference field

Listing 396 accepts an array of strings and a string to find in the array. The function returns the index of the
string in the array. The need for this macro is explained below.

Listing 396. Find a string in an array.
Function FindStringInArray(oData, s) As Integer
 Dim i As Integer
 FindStringInArray = -1
 For i = LBound(oData) To UBound(oData)
 If oData(i) = s Then

442

 FindStringInArray = i
 Exit Function
 End If
 Next
End Function

The inner workings of the main macro are described in the comments of the macro itself (see Listing 397).

Listing 397. Replace text with a GetReference field.
Function referenceSequenceVariables(oDoc, sSeqName) As Integer
 Dim oEnum ' Enumeration of text sections.
 Dim oField ' Enumerated text field.
 Dim s$ ' Generic string variable.
 Dim oFrame ' Documents main frame, used for dispatches.
 Dim oDispatcher ' Dispatcher object.
 Dim oFields() ' Set expressions that may be referenced.
 Dim sPresentations() ' Text of what is displayed; for example, "Listing 7"
 Dim i As Integer ' Location of a reference (such as "Listing 7") in sPresentations.
 Dim n As Integer ' Count the fields.
 Dim oCurs ' Cursor used to clear formatting.
 Dim oDescriptor ' The search descriptor.
 Dim oFound ' The found range.

 ' Default to no references created.
 referenceSequenceVariables = 0

 ' Setup to perform a dispatch.
 oFrame = oDoc.CurrentController.Frame
 oDispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

 ' Enumerate the text fields and identify the appropriate set field expressions.
 ' The field presentation is the number as it is displayed.
 ' When this section is finished:
 ' oFields() - All the set expression fields for the specified name.
 ' sPresentations() - Contains the full reference such as "Listing 7" for the listing
 ' sequence with the value 7.
 oEnum = oDoc.getTextFields().createEnumeration()
 If Not IsNull(oEnum) Then
 Do While oEnum.hasMoreElements()
 oField = oEnum.nextElement()
 If oField.supportsService("com.sun.star.text.TextField.SetExpression") Then
 If oField.VariableName = sSeqName Then
 ReDim Preserve oFields(0 To n)
 ReDim Preserve sPresentations(0 To n)
 oFields(n) = oField
 sPresentations(n) = sSeqName & " " & oField.CurrentPresentation
 n = n + 1
 End If
 End If
 Loop
 End If

 ' Create the search descriptor to find all instances of things such as "Listing 23".
 ' Values in fields are not found, because search does NOT search fields.

443

 oDescriptor = oDoc.createSearchDescriptor()
 With oDescriptor
 .SearchString = sSeqName & " [:digit:]+"
 .SearchRegularExpression = True
 End With

 n = 0
 oFound = oDoc.findFirst(oDescriptor)
 Do While Not IsNull(oFound)

 ' Look for a field with the text such as "Listing 7"
 i = FindStringInArray(sPresentations, oFound.getString())
 If i >= 0 Then
 ' Create and configure the GetReference field
 oField = oDoc.createInstance("com.sun.star.text.textfield.GetReference")
 oField.ReferenceFieldPart = com.sun.star.text.ReferenceFieldPart.CATEGORY_AND_NUMBER
 oField.ReferenceFieldSource = com.sun.star.text.ReferenceFieldSource.SEQUENCE_FIELD
 oField.SequenceNumber = oFields(i).SequenceValue
 oField.SourceName = sSeqName

 ' Create a text cursor where the text was found.
 ' Clear the text, then insert the GetReference field at that location.
 oCurs = oFound.getText().createTextCursorByRange(oFound)
 oCurs.setString("")
 oFound.getText().insertTextContent(oCurs, oField, True)

 ' Sometimes, special formatting was used for the reference text.
 ' A cursor cannot move into a field, so collapsing the cursor then selecting
 ' one character to the left will select the GetReference field.
 oCurs.collapseToEnd()
 oCurs.goLeft(1, True)

 ' Select the GetReference field on the display, then use a
 ' dispatch to clear all attributes.
 oDoc.CurrentController.select(oCurs)
 oDispatcher.executeDispatch(oFrame, ".uno:ResetAttributes", "", 0, Array())
 n = n + 1
 Else
 s = s & "Failed to find (" & oFound.getString() & ")" & CHR$(10)
 End If
 oFound = oDoc.findNext(oFound.End, oDescriptor)
 Loop
 referenceSequenceVariables = n
 If s <> "" Then
 Msgbox s
 End If
End Function

 14.12.7. The worker that ties it all together

The main worker macro starts by replacing captions for Figure, Listing, and Table with sequence variables.
It is assumed, but never verified, that the captions are sequentially numbered as they appear in the document

444

with no gaps in numbering. In other words, the routines are a bit fragile, but they worked great for the
documents that I desired to use.

My first test set about 100 captions. All cross-references failed because the fields had not yet updated. After
creating all sequence fields, a dispatch causes the fields to update so that the next phase can begin. Note that
if this is not done, then the CurrentPresentation attribute on the sequence fields will be incorrect.

Listing 398. Set captions and references for a document.
sub replaceCaptions()
 Dim oDoc ' Document on which to operate.
 Dim oFrame ' Documents main frame, used for dispatches.
 Dim oDispatcher ' Dispatcher object.
 Dim i As Integer ' General index variable.
 Dim n As Integer ' Number of fields created.
 Dim s$ ' Summary of work performed.
 Dim fields() ' Field names on which to operate.

 fields = Array("Listing", "Table", "Figure")
 oDoc = ThisComponent
 oFrame = oDoc.CurrentController.Frame
 oDispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

 For i = LBound(fields()) To UBound(fields())
 n = FindReplaceTextFields(ThisComponent, fields(i))
 s = s & "Fixed " & n & " captions for " & fields(i) & CHR$(10)
 Next

 ' This next part will NOT work until after all of the fields have updated.
 ' So, force an update.
 oDispatcher.executeDispatch(oFrame, ".uno:UpdateFields", "", 0, Array())

 For i = LBound(fields()) To UBound(fields())
 n = referenceSequenceVariables(ThisComponent, fields(i))
 s = s & "set " & n & " references to " & fields(i) & CHR$(10)
 Next
 MsgBox s
End Sub

 14.13. Table of contents

Finding and inserting a table of contents (TOC) is easy unless you want to change the defaults. The
following macro checks ThisComponent to see if the document contains a content index.

 REM Find TOC if it exists.
 oIndexes = ThisComponent.getDocumentIndexes()
 bIndexFound = False
 For i = 0 To oIndexes.getCount() - 1
 oIndex = oIndexes.getByIndex(i)
 If oIndex.supportsService("com.sun.star.text.ContentIndex") Then
 bIndexFound = True
 Exit For
 End If
 Next

445

Use dispose to remove an existing index from the document.

When I create a TOC, I usually set CreateFromOutline to true to create the index based on the document
outline styles (see Listing 399).

Listing 399. Insert a standard TOC into a document.
Sub InsertATOC
 REM Author: Andrew Pitonyak
 Dim oCurs 'Used to insert the text content.
 Dim oIndexes 'All of the existing indexes
 Dim oIndex 'TOC if it exists and a new one if not
 Dim i% 'Find an existing TOC
 Dim bIndexFound As Boolean 'Flag to track if the TOC was found

 REM Find TOC if it exists.
 oIndexes = ThisComponent.getDocumentIndexes()
 bIndexFound = False
 For i = 0 To oIndexes.getCount() - 1
 oIndex = oIndexes.getByIndex(i)
 If oIndex.supportsService("com.sun.star.text.ContentIndex") Then
 bIndexFound = True
 Exit For
 End If
 Next
 If Not bIndexFound Then
 Print "I did not find an existing content index"
 REM Create and insert a new TOC.
 REM The new TOC must be created by the document that will contain the TOC.
 oIndex = ThisComponent.createInstance("com.sun.star.text.ContentIndex")

 oIndex.CreateFromOutline = True
 oCurs = ThisComponent.getText().createTextCursor()
 oCurs.gotoStart(False)
 ThisComponent.getText().insertTextContent(oCurs, oIndex, False)
 End If
 REM Even the newly inserted index is not updated until right HERE!
 oIndex.update()
End Sub

The same code can be used to create a DocumentIndex, ContentIndex, UserDefinedIndex, IllustrationIndex,
TableIndex, or ObjectIndex. Properties common to all index types are shown in Table 156.

446

Table 156. Common index properties.
Property Description

BackColor Background color. Set to -1 for none.

BackGraphicFilter Filter for the graphic displayed as background graphic.

BackGraphicLocation Location of the back graphic. Set using the com.sun.star.style.GraphicLocation constants.
This includes NONE, LEFT_TOP, MIDDLE_TOP, RIGHT_TOP, LEFT_MIDDLE,
MIDDLE_MIDDLE, RIGHT_MIDDLE, LEFT_BOTTOM, MIDDLE_BOTTOM,
RIGHT_BOTTOM, AREA, and TILED

BackGraphicURL URL to the graphic displayed as a background graphic. I did not experiment with this, it
may require an internal URL??

CreateFromChapter Set to True to create an index based on the current chapter rather than the entire
document.

IsProtected If true, the index is protected and cannot be edited as part of the text.

ParaStyleHeading Paragraph style name used for the heading.

ParaStyleLevel1 Paragraph style named used for level 1. Note that there is an attribute for levels 1 through
10.

Title Index title that is inserted as part of the TOC. I usually leave this blank and place the title
before the TOC using the “Heading 1” paragraph style so that it is included as part of the
TOC; silly, I know.

A TOC contains columns of data; for example, section numbering, section title, and page number. Each
column is represented by an array of named properties. The supported properties are shown Table 157.

Table 157. Supported column tokens.
Token Description

TokenType Identifies the contents of the column. Every column has a token type as the first property.
TokenType property values are strings shown in Table 158.

CharacterStyleName Name of the character style applied to the element. Do not include for tab stops. An empty
value causes the Default style to be used.

TabStopRightAligned Tab stop is right aligned. Only valid for tab stops.

TabStopPosition Position of the tab stop. Only valid for tab stops.

TabStopFillCharacter Fill character in tab stops. Only valid for tab stops.

WithTab If true insert tab character.

Text Only valid in user defined text.

ChapterFormat Valid in chapter info and entry number only. The chapter format is also mentioned in Table
148. For chapter info NUMBER and NAME_NUMBER are allowed and for an entry
NUMBER and DIGIT are allowed.

ChapterLevel Valid in chapter info and entry number only. Denotes the level up to which the chapter
information is given. Values permitted 1 to 10 inclusive.

Some token types are not supported by all index types. The Value is the string name used to identify the
token type. The Entry column contains the text used in the GUI while specifying the columns. If an entry is
empty, it is because I did not verify every type to see what values are used and I do not know the value.

447

Table 158. Supported TokenType values.
Value Entry Comment Supported Index Types

TokenEntryNumber E# Chapter number Content

TokenEntryText E Entry text All

TokenTabStop T Tab stop All

TokenText User defined text

TokenPageNumber # page number All

TokenChapterInfo Chapter information Illustration, Table, User, Table of
Objects, and Alphabetical

TokenHyperlinkStart LS Begin a hyperlink

TokenHyperlinkEnd LE End a hyperlink

TokenBibliographyDataField Bibliographic data field

The macro in Listing 400 inspects the level formatting for the TOC in the current document and then inserts
text at the end of the current document.

Listing 400. Inspect the TOC in the current document.
Sub InspectCurrentTOCColumns
 'Inspect ThisComponent
 Dim oCurs 'Used to insert the text content.
 Dim oIndexes 'All of the existing indexes
 Dim oIndex 'TOC if it exists and a new one if not
 Dim i% 'Find an existing TOC
 Dim bIndexFound As Boolean 'Flag to track if the TOC was found
 Dim iLevel% ' Iterate over the levels in the LevelFormat property.
 Dim iCol% ' Iterate over the columns in each level.
 Dim iProp% ' Iterate over the properties for a single column.
 Dim oLevel ' Level object.
 Dim oCol ' Column object.
 Dim s$

 REM Find TOC if it exists.
 oIndexes = ThisComponent.getDocumentIndexes()
 bIndexFound = False
 For i = 0 To oIndexes.getCount() - 1
 oIndex = oIndexes.getByIndex(i)
 If oIndex.supportsService("com.sun.star.text.ContentIndex") Then
 bIndexFound = True
 Exit For
 End If
 Next
 If Not bIndexFound Then
 Exit Sub
 End If

 s = "Level" & CHR$(9) & "Column" & CHR$(9) & "Property" & CHR$(9) & "Name" & _
 CHR$(9) & "Value" & CHR$(13)
 For iLevel = 0 To oIndex.LevelFormat.getCount() - 1
 oLevel = oIndex.LevelFormat.getByIndex(iLevel)

448

 For iCol = LBound(oLevel) To UBound(oLevel)
 oCol = oLevel(iCol)
 For iProp = LBound(oCol) To UBound(oCol)
 s = s & iLevel & CHR$(9) & iCol & CHR$(9) & iProp & CHR$(9) & _
 oCol(iProp).Name & CHR$(9) & oCol(iProp).Value & CHR$(13)
 Next
 Next
 Next
 ThisComponent.getText().insertString(ThisComponent.getText().End, s, False)
End Sub

I ran the macro in Listing 400 with OOo version 3.3.0 and noticed that level 0 contains no entries, and levels
1 – 10 are identical. The output for level 1 is shown in Table 159.

• Column 0 is the TokenEntryNumber formatted with the Default character style. In the TOC, this is
the chapter numbering.

• A hyperlink begins in column 1, and it is formatted using the “Internet Link” character style.

• Column 2 contains the heading text. No character style is provided, but it is formatted using the
“Internet Link” style because it is included in the hyperlink.

• Column 3 specifies the end of the hyperlink, so the hyperlink includes only the heading text.

• Column 4 specifies a right aligned tab stop that fills the empty space between the heading text and
the page number with periods.

• Column 5 contains the page number.

Table 159. Level format for level 1.
Level Column Property Name Value

1 0 0 TokenType TokenEntryNumber

1 0 1 CharacterStyleName

1 1 0 TokenType TokenHyperlinkStart

1 1 1 CharacterStyleName Internet link

1 2 0 TokenType TokenEntryText

1 2 1 CharacterStyleName

1 3 0 TokenType TokenHyperlinkEnd

1 4 0 TokenType TokenTabStop

1 4 1 TabStopRightAligned TRUE

1 4 2 TabStopFillCharacter .

1 4 3 CharacterStyleName

1 4 4 WithTab TRUE

1 5 0 TokenType TokenPageNumber

1 5 1 CharacterStyleName

449

While creating a TOC manually, the columns are edited to include things such as chapter numbers, chapter
text, hyperlink start, hyperlink end, page number, and other things. These values are stored in the
LevelFormat property.

Listing 401. Insert a TOC with hyperlinks.
Sub InsertATOCWithHyperlinks
 REM Author: Andrew Pitonyak
 Dim oCurs 'Used to insert the text content.
 Dim oIndexes 'All of the existing indexes.
 Dim oIndex 'TOC if it exists and a new one if not.
 Dim i% 'Find an existing TOC.
 Dim bIndexFound As Boolean 'Flag to track if the TOC was found.
 Dim iLevel

 REM Find TOC if it exists.
 oIndexes = ThisComponent.getDocumentIndexes()
 bIndexFound = False
 For i = 0 To oIndexes.getCount() - 1
 oIndex = oIndexes.getByIndex(i)
 If oIndex.supportsService("com.sun.star.text.ContentIndex") Then
 bIndexFound = True
 Exit For
 End If
 Next
 If Not bIndexFound Then
 REM Create and insert a new TOC.
 REM The new TOC must be created by the document that will contain the TOC.
 oIndex = ThisComponent.createInstance("com.sun.star.text.ContentIndex")

 oIndex.CreateFromOutline = True

 ' Ignore level 0
 For iLevel = 1 To oIndex.LevelFormat.getCount() - 1
 oIndex.LevelFormat.replaceByIndex(iLevel, CreateTOCColumnEntries())
 Next

 oCurs = ThisComponent.getText().createTextCursor()
 oCurs.gotoRange(ThisComponent.CurrentController.ViewCursor, False)
 ThisComponent.getText().insertTextContent(oCurs, oIndex, False)
 End If
 REM Even the newly inserted index is not updated until right HERE!
 oIndex.update()
End Sub

Function CreateTOCColumnEntries()
 Dim o
 o = Array(Array(MakeProperty("TokenType", "TokenEntryNumber"), _
 MakeProperty("CharacterStyleName", "")), _
 Array(MakeProperty("TokenType", "TokenHyperlinkStart"), _
 MakeProperty("CharacterStyleName", "Internet link")), _
 Array(MakeProperty("TokenType", "TokenEntryText"), _
 MakeProperty("CharacterStyleName", "")), _
 Array(MakeProperty("TokenType", "TokenHyperlinkEnd")), _

450

 Array(MakeProperty("TokenType", "TokenTabStop"), _
 MakeProperty("TabStopRightAligned", TRUE), _
 MakeProperty("TabStopFillCharacter", "."), _
 MakeProperty("CharacterStyleName", ""), _
 MakeProperty("WithTab", TRUE)), _
 Array(MakeProperty("TokenType", "TokenPageNumber"), _
 MakeProperty("CharacterStyleName", "")))
 CreateTOCColumnEntries() = o
End Function

Function MakeProperty(sName$, value)
 Dim oProp
 oProp = CreateObject("com.sun.star.beans.PropertyValue")
 oProp.Name = sName
 oProp.Value = value
 MakeProperty = oProp
End Function

 14.14. Conclusion

Although this chapter didn’t cover every object and capability supported by Writer, it did discuss the
capabilities most frequently questioned on the mailing lists. Many of the techniques demonstrated in this
chapter are representative of the techniques that are required for objects not discussed. For example, all
objects supporting named access are retrieved in the same manner. Use the material covered here as a
starting point in your exploration of Writer documents in OpenOffice.org.

451

 15. Calc Documents
The primary purpose of a Calc document is to contain multiple spreadsheets, which in turn contain rows and
columns of data — in other words, tables. This chapter introduces appropriate methods to manipulate,
traverse, format, and modify the content contained in a Calc document.

OpenOffice.org supports three primary table types: text tables in Writer documents, database tables, and
spreadsheets in Calc documents. Each of the different table types is tailored for a specific purpose. Text
tables in Writer documents support complex text formatting but only simple table calculations. Spreadsheet
documents, on the other hand, support complex calculations and only simple text formatting.

Conceptually, all document types have two components: the data they contain and the controller that
determines how the data is displayed. In OpenOffice.org, the collection of data contained in a document is
called the model. Each model has a controller that is responsible for the visual presentation of the data. The
controller knows the location of the visible text cursor and the current page, and knows what is currently
selected.

Every Calc document supports the com.sun.star.sheet.SpreadsheetDocument service. When I write a macro
that must be user-friendly and requires a spreadsheet document, I verify that the document is the correct type
by using the object method supportsService(). See Listing 402.

Listing 402. Calc documents support the com.sun.star.sheet.SpreadsheetDocument service.
REM A trick is used to avoid a bug in OOo.
REM This function tests the argument to see if it supports a service.
REM If the object does not support a service, a runtime error
REM occurs that complains that the variable is not set.
REM Assigning the argument to a temporary variable and
REM using that to call SupportsService avoids the error.
Function isCalcDocument(oDoc) As Boolean
 On Error Goto ErrorJumpPoint
 Dim s$: s$ = "com.sun.star.sheet.SpreadsheetDocument"

 isCalcDocument = False
 If oDoc.SupportsService(s$) Then
 isCalcDocument = True
 End If
 ErrorJumpPoint:
End Function

An interface defines a series of methods. If an object implements an interface, it implements every method
defined by that interface. A service defines an object by specifying the interfaces that it implements, the
properties that it contains, and the other services that it exports. A service indirectly specifies the
implemented methods by specifying interfaces. The interfaces supported by Calc documents provide a good
overview of the provided functionality (see Table 160).

452

Table 160. Some interfaces supported by Calc documents.
Service Description

com.sun.star.document.XActionLockable Temporarily lock the document from user interaction and automatic cell
updates. Locking an object makes it possible to prevent internal object
updates while you quickly change multiple parts of the objects that
might temporarily invalidate each other.

com.sun.star.drawing.XDrawPagesSupplier Access all draw pages in this document; there is one draw page for each
contained sheet.

com.sun.star.sheet.XCalculatable Control automatic calculation of cells.

com.sun.star.sheet.XConsolidatable Perform data consolidation.

com.sun.star.sheet.XGoalSeek Perform a “Goal Seek” for a cell.

com.sun.star.sheet.XSpreadsheetDocument Access the contained spreadsheets.

com.sun.star.style.XStyleFamiliesSupplier Access the contained styles by type.

com.sun.star.util.XNumberFormatsSupplier Access the number formats.

com.sun.star.util.XProtectable Protect and unprotect the document.

The createNewCalcDoc function is used to create a new empty Calc document. This method is used by other
methods in this chapter.

Listing 403. Create a new Calc document.
Function createNewCalcDoc
 Dim noArgs() 'An empty array for the arguments
 Dim sURL As String 'URL of the document to load
 Dim oDoc

 sURL = "private:factory/scalc"
 oDoc = StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, noArgs())
 createNewCalcDoc = oDoc
End Function

 15.1. Accessing sheets

The primary purpose of a spreadsheet document is to act as a container for individual sheets through the
XSpreadsheetDocument interface. The XSpreadsheetDocument interface defines the single method
getSheets() that returns a Spreadsheets object used to manipulate the individual sheets (see Listing 404).

Listing 404. Obtain a com.sun.star.sheet.Spreadsheets service using a method or a property.
ThisComponent.getSheets() 'Method defined by XSpreadsheetDocument interface.
ThisComponent.Sheets 'Property of the spreadsheet document.

The Spreadsheet service allows the individual sheets to be returned by index, by enumeration, and by name
(see Table 161). The Spreadsheets service also allows sheets to be created, moved, and deleted. Many of the
methods shown in Table 161 are demonstrated in Listing 405.

453

Table 161. Methods implemented by the com.sun.star.sheet.Spreadsheets service.
Method Description

copyByName(srcName, destName, index) Copy the sheet named srcName to the specified index and name it
destName.

createEnumeration() Create an object that enumerates the spreadsheets.

getByIndex(index) Obtain a spreadsheet based on the sheet’s index.

getByName(name) Obtain a spreadsheet based on the sheet’s name.

getCount() Return the number of sheets as a Long Integer.

hasByName(name) Return True if the named spreadsheet exits.

hasElements() Return True if the document contains at least one spreadsheet.

insertNewByName(name, index) Create a new spreadsheet and insert it at the specified location with the
supplied name.

moveByName(name, index) Move the named spreadsheet to the specified index.

removeByName(name) Remove the named spreadsheet.

Listing 405. Manipulate sheets in a Calc document.
Sub AccessSheets
 Dim oSheets 'The sheets object that contains all of the sheets
 Dim oSheet 'Individual sheet
 Dim oSheetEnum 'For accessing by enumeration
 Dim s As String 'String variable to hold temporary data
 Dim i As Integer 'Index variable
 Dim oDoc

 oDoc = createNewCalcDoc()
 oSheets = oDoc.Sheets

 REM Insert new sheet as the second sheet.
 oSheets.insertNewByName("CreatedSheet", 1)

 REM Create a new sheet named "First" at the start.
 oSheets.insertNewByName("First", 0)

 REM Verify that the sheet named "Sheet3" exists
 If oSheets.hasbyName("Sheet3") Then
 oSheet = oSheets.getByName("Sheet3")
 oSheet.getCellByPosition(0, 0).setString("Test")

 REM Copy "Sheet3" to the end. That is copy, not move!
 oSheets.copyByName("Sheet3", "Copy1", oSheets.getCount())
 End If

 If oSheets.hasbyName("Sheet1") Then
 oSheets.removeByName("Sheet1")
 End If

454

 REM The sheets are indexed starting at zero, but getCount() indicates
 REM exactly how many sheets there are.
 For i = 0 To oSheets.getCount()-1
 s = s & "Sheet " & i & " = " & oSheets.getByIndex(i).Name & CHR$(10)
 Next
 Msgbox s, 0, "After Inserting New Sheets"

 REM Now remove the new sheets that I inserted
 oSheets.removeByName("First")
 oSheets.removeByName("Copy1")

 s = "" : i = 0
 oSheetEnum = oSheets.createEnumeration()
 Do While oSheetEnum.hasMoreElements()
 oSheet = oSheetEnum.nextElement()
 s = s & "Sheet " & i & " = " & oSheet.Name & CHR$(10)
 i = i + 1
 Loop
 Msgbox s, 0, "After Deleting Sheets"
End Sub

 15.2. Sheet cells contain the data

A spreadsheet document contains individual sheets that are composed of rows and columns of cells. Each
column is labeled alphabetically starting with the letter A, and each row is labeled numerically starting with
the number 1. A cell can be identified by its name, which uses the column letter and the row number, or by
its position. The upper-left cell is “A1” at position (0, 0) and cell “B3” is at location (1, 2).

The Calc user interface identifies cells with names such as “Sheet2.D5”. A cell, on the other hand, identifies
itself by the row and column offset, which requires a bit of work to turn into human-readable form. The
CellAddressConversion service converts a cell address into human readable form. The
CellAddressConversion service is not yet documented, so I performed some tests. When a cell address is
assigned to the Address property (See Listing 406), the PersistentRepresentation property is set to the full
cell name including the sheet name. The UserInterfaceRepresentation property, however, contains the sheet
name only if the cell is not contained in the active sheet.

Listing 406. Obtain the cell name using the CellAddressConversion service.
 Dim oConv
 Dim oCell
 oConv = oDoc.createInstance("com.sun.star.table.CellAddressConversion")
 oCell = ThisComponent.Sheets(2).getCellByPosition(0, 0) 'Cell A1
 oConv.Address = oCell.getCellAddress()
 Print oConv.UserInterfaceRepresentation 'A1
 print oConv.PersistentRepresentation 'Sheet1.A1

I had difficulty with the CellAddressConversion service, so I opted to write my own. The following method
accepts the sheet number, column, and row, and returns an address. The “cheat” that I used, is to assume that
the sheet name is formatted as Sheet1, Sheet2, etc. This is trivial to change, but I opted to not do it. The only
tricky part is to understand that columns are labeled using Base 26 where the digits are A-Z and not 0-9; and
being enough of a technical person to understand what that means.

Listing 407. Format a single cell address assuming all sheets are named Sheet.
Function AddressString(iSheet As Long, iCol As Long, iRow As Long, bWwithSheet As Boolean)
 Dim s$

455

 iCol = iCol + 1
 Do
 iCol = iCol - 1
 s = CHR$((iCol MOD 26) + 65) & s
 iCol = iCol \ 26 - 1
 Loop Until iCol < 0
 If bWwithSheet Then
 AddressString = "Sheet" & CStr(iSheet + 1) & "." & s & CStr(iRow + 1)
 Else
 AddressString = s & CStr(iRow + 1)
 End If
End Function

This next function accepts a range address.

Listing 408. Format a single range address assuming all sheets are named Sheet.
Function prettyRangeAddressName(oRangeAddr)
 Dim s1$, s2$
 Dim oConv
 Dim oCellAddr As New com.sun.star.table.CellAddress

 s1 = AddressString(oRangeAddr.Sheet, oRangeAddr.StartColumn, oRangeAddr.StartRow, True)
 s2 = AddressString(oRangeAddr.Sheet, oRangeAddr.EndColumn, oRangeAddr.EndRow, False)
 prettyRangeAddressName = s1 & ":" & s2
End Function

 15.2.1. Cell address

In OOo, a cell’s address is specified by the sheet that contains the cell, and the row and column in which the
cell is located. OOo encapsulates a cell’s address in a CellAddress structure (see Table 162). The
CellAddress structure is available directly from a cell and it is also used as an argument to numerous object
methods.

Table 162. Properties of the com.sun.star.table.CellAddress structure.
Property Description

Sheet Short Integer index of the sheet that contains the cell.

Column Long Integer index of the column where the cell is located.

Row Long Integer index of the row where the cell is located.

 15.2.2. Cell data

A cell can contain four types of data. Use the method getType() to find out the type of data that it contains. A
cell that contains no data is considered empty. A cell can contain a floating-point Double value. Use the
object methods getValue() and setValue(Double) to get and set a cell’s value.

Tip If the cell contains a formula, you can still determine the type of data that is stored in the cell from the
FormulaResultType property shown in Table 166.

A cell can contain textual data. The standard method of getting and setting textual data is to use the methods
getString() and setString(String). The real story, however, is that the com.sun.star.table.Cell service

456

implements the com.sun.star.text.XText interface. The XText interface is the primary text interface used in
Writer documents, and it allows individual cells to contain very complex data.

Tip Sheet cells support the com.sun.star.text.XText interface. It should come as no surprise, therefore, that cells
also support the com.sun.star.text.XTextFieldsSupplier interface — in case you want to insert special text
fields into a cell.

A cell can contain a formula. The methods getFormula() and setFormula(String) get and set a cell’s formula.
To determine if a formula contains an error, use the getError() method — the Long Integer return value is
zero if there is no error. The macro in Listing 409 demonstrates how to inspect a cell’s type.

Tip When setting a cell’s formula, you must include the leading equals sign (=) and the formula must be in
English. To set a formula using your own local language, use the FormulaLocal property shown in Table
166.

Listing 409. Get a string representation of the cell type.
Function GetCellType(oCell) As String
 Select Case oCell.getType()
 Case com.sun.star.table.CellContentType.EMPTY
 GetCellType = "Empty"
 Case com.sun.star.table.CellContentType.VALUE
 GetCellType = "Value"
 Case com.sun.star.table.CellContentType.TEXT
 GetCellType = "Text"
 Case com.sun.star.table.CellContentType.FORMULA
 GetCellType = "Formula"
 Case Else
 GetCellType = "Unknown"
 End Select
End Function

Listing 410 demonstrates how to get and set information in a cell. A numeric value, a string, and a formula
are set in a cell. After setting each type, information is printed about the cell (see Figure 97). The macro in
Listing 410 is very simple but it demonstrates some very important behavior. Inspect the output in Figure 97
to see what is returned by getString(), getValue(), and getFormula() for each different cell content type.

Listing 410. Get cell information.
Function SimpleCellInfo(oCell) As String
 SimpleCellInfo = oCell.AbsoluteName & " has type " &_
 GetCellType(oCell) & " String(" & oCell.getString() & ") Value(" &_
 oCell.getValue() & ") Formula(" & oCell.getFormula() & ")"
End Function

Sub GetSetCells
 Dim oCell
 Dim s As String
 Dim oDoc

 oDoc = createNewCalcDoc()

 oCell = oDoc.Sheets(0).getCellByPosition(0, 0) 'Cell A1

457

 oCell.setString("Andy")
 oCell = oDoc.Sheets(0).getCellByPosition(104, 0) 'Cell DA1
 s = SimpleCellInfo(oCell) & CHR$(10)
 oCell.setValue(23.2)
 s = s & SimpleCellInfo(oCell) & CHR$(10)
 oCell.setString("4")
 s = s & SimpleCellInfo(oCell) & CHR$(10)
 oCell.setFormula("=A1")
 s = s & SimpleCellInfo(oCell) & CHR$(10)
 oCell.setFormula("")
 s = s & SimpleCellInfo(oCell) & CHR$(10)
 MsgBox s, 0, "Cell Values And Types"
End Sub

Figure 97. Values returned by getType(), getString(), getValue(), and getFormula() for different
types of content.

Tip The methods getString() and getFormula() return relevant values even when the cell type is not String or
Formula (see Figure 97). Notice also that setting a string value of 4 does not set a numeric value, and the
formula even shows a single quotation mark in front of the “4”. This provides a pretty good clue that you
can also do things such as setFormula("'I am text") to set text.

 15.2.3. Cell properties

Cells contained in a sheet are defined by the com.sun.star.sheet.SheetCell service, which supports numerous
properties for formatting the cell contents. Given that a cell also supports the Text service, it is of no surprise
that it also supports properties related to text content: CharacterProperties, CharacterPropertiesAsian,
CharacterPropertiesComplex, and ParagraphProperties. There are also cell-specific properties such as setting
border lines. You specify the border lines for cells by using a BorderLine structure as shown in Table 163.
The BorderLine structure defines how a single border line is displayed, and the TableBorder structure
defines how the lines in a given range are displayed (see Table 164).

Table 163. Properties of the com.sun.star.table.BorderLine structure.
Property Description

Color Line color as a Long Integer.

InnerLineWidth Width of the inner part of a double line (in 0.01 mm) as a Short Integer — zero for a single line.

OuterLineWidth Width of a single line, or width of the outer part of a double line (in 0.01 mm) as a Short Integer.

LineDistance Distance between the inner and outer parts of a double line (in 0.01 mm) as a Short Integer.

458

Table 164. Properties of the com.sun.star.table.TableBorder structure.
Property Description

TopLine Line style at the top edge (see Table 163).

IsTopLineValid If True, the TopLine is used when setting values.

BottomLine Line style at the bottom edge (see Table 163).

IsBottomLineValid If True, the BottomLine is used when setting values.

LeftLine Line style at the left edge (see Table 163).

IsLeftLineValid If True, the LeftLine is used when setting values.

RightLine Line style at the right edge (see Table 163).

IsRightLineValid If True, the RightLine is used when setting values.

HorizontalLine Line style for horizontal lines between cells (see Table 163).

IsHorizontalLineValid If True, the HorizontalLine is used when setting values.

VerticalLine Line style for vertical lines between cells (see Table 163).

IsVerticalLineValid If True, the VerticalLine is used when setting values.

Distance Distance between the lines and other contents as a Short Integer.

IsDistanceValid If True, the Distance is used when setting values.

When setting values in a TableBorder structure, not all values are always required. For example, when using
a TableBorder structure to configure a cell’s border, the individual values are used only if the corresponding
“Is...Valid” property is set. This provides the ability to set a single value and leave the other values
unchanged. If, on the other hand, a TableBorder structure is obtained by using a query (meaning you get the
value), the flags indicate that not all lines use the same value.

Consider the following macro that sets all four borders on a single range.

Listing 411. Add cell borders.
Sub SetCalcBorder
 Dim oDoc
 Dim oSheet
 Dim oCells
 Dim oBorder

 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())
 oSheet = oDoc.Sheets(0)
 oCells = oSheet.getCellRangeByName("B2:C6")

 ' Create the structure so that I know the values
 ' are all zero.
 oBorder = CreateUnoStruct("com.sun.star.table.BorderLine")
 ' If you want to modify an existing border, copy it.
 'oBorder = oCells.LeftBorder

 ' Set color to red.
 oBorder.Color = RGB(199, 50, 0)
 oBorder.OuterLineWidth = 35
 oCells.LeftBorder = oBorder

459

 ' Set color to blue.
 oBorder.Color = RGB(0, 102, 199)
 oBorder.InnerLineWidth = 35

 oCells.TopBorder = oBorder
 oBorder.LineDistance = 35
 oCells.RightBorder = oBorder
 oCells.BottomBorder = oBorder

 oBorder = oSheet.getCellRangeByName("C2").LeftBorder
 Print "Red portion of border = " & Red(oBorder.Color)
End Sub

Figure 98. Cells with borders.
Please note the following:

• The BorderLine structure is copied by value, not reference. To modify the structure, therefore, you
must copy the structure to a variable, modify the variable, and then copy the structure back to the
left, right, top, or bottom border.

• You can set borders on a cell range as well as an individual cell.

• Although the left border on cell B2 and C2 are both a red line, the red line is not shown in cell C2
(see Figure 98). How does OOo decide which border should be used right or left, top or bottom?
Although the behavior is not documented, the following precedence was observed:

◦ A border with a line distance is more important than a border without a line distance.

◦ Top and left borders are more important than right or bottom borders.

Table 165 contains cell-specific properties. Cell properties use the TableBorder structure to set the border
types.

Table 165. Properties supported by the com.sun.star.table.CellProperties service.
Property Description

CellStyle Optional property; the name of the style of the cell as a String.

CellBackColor The cell background color as a Long Integer (see IsCellBackgroundTransparent).

IsCellBackgroundTransparent If True, the cell background is transparent and the CellBackColor is ignored.

460

Property Description

HoriJustify The cell’s horizontal alignment as a com.sun.star.table.CellHoriJustify enum:

• STANDARD – Default alignment is left for numbers and right for text.

• LEFT – Content is aligned to the cell’s left edge.

• CENTER – Content is horizontally centered.

• RIGHT – Content is aligned to the cell’s right edge.

• BLOCK – Content is justified to the cell’s width (but this doesn’t seem to work).

• REPEAT – Content is repeated to fill the cell.

VertJustify The cell’s vertical alignment as a com.sun.star.table.CellVertJustify enum:

• STANDARD – Use the default.

• TOP – Align to the upper edge of the cell.

• CENTER – Align to the vertical middle of the cell.

• BOTTOM – Align to the lower edge of the cell.

IsTextWrapped If True, the cell’s content is automatically wrapped at the right border.

ParaIndent The indentation of the cell’s content (in 0.01 mm) as a Short Integer.

Orientation If the RotateAngle is zero, this specifies the orientation of the cell’s content as an enum
of type com.sun.star.table.CellOrientation:

• STANDARD – The cell’s content is displayed from left to right.

• TOPBOTTOM – The cell’s content is displayed from top to bottom.

• BOTTOMTOP – The cell’s content is displayed from bottom to top.

• STACKED – Same as TOPBOTTOM but each character is horizontal.

RotateAngle Defines how much to rotate the cell’s content (in 0.01 degrees) as a Long Integer. The
entire string is rotated as one unit rather than as individual characters.

RotateReference Defines the edge where rotated cells are aligned using the same enum as VertJustify.

AsianVerticalMode If True, only Asian characters use a vertical orientation. In other words, in Asian mode
only Asian characters are printed in horizontal orientation if the Orientation property is
STACKED; for other orientations, this value is not used.

TableBorder Description of the cell or cell range border (see Table 164). When used with a single cell, the
values set the borders for the single cell. When used with a range of cells, the borders are for the
outer edges of the range rather than the individual cells.

TopBorder Description of the cell’s top border line (see Table 163).

BottomBorder Description of the cell’s bottom border line (see Table 163).

LeftBorder Description of the cell’s left border line (see Table 163).

RightBorder Description of the cell’s right border line (see Table 163).

NumberFormat Index of the cell’s number format. The proper value can be determined by using the
com.sun.star.util.XNumberFormatter interface supported by the document.

ShadowFormat Defines the shadow format using a com.sun.star.table.ShadowFormat structure:

Location – The shadow’s location as a com.sun.star.table.ShadowLocation enum with
valid values of NONE, TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, and
BOTTOM_RIGHT.

• ShadowWidth – The shadow’s size as a Short Integer.

• IsTransparent – If True, the shadow is transparent.

• Color – The shadow’s color as a Long Integer.

461

Property Description

CellProtection Defines the cell’s protection as a com.sun.star.util.CellProtection structure:

• IsLocked – If True, the cell is locked from modifications by the user.

• IsFormulaHidden – If True, the formula is hidden from the user.

• IsHidden – If True, the cell is hidden from the user.

• IsPrintHidden – If True, the cell is hidden on printouts.

UserDefinedAttributes This property is used to store additional attributes in a
com.sun.star.container.XNameContainer interface.

In general, the process of setting cell attributes is very simple. The macro in Listing 412 demonstrates some
of the properties in Table 165 by setting the text of cell B1 to “Hello”, centering the text, and then rotating
the text 30 degrees counterclockwise.

Listing 412. Center “Hello” and rotate it 30 degrees.
Sub RotateCellText
 Dim oCell
 Dim oDoc

 oDoc = createNewCalcDoc()
 oCell = oDoc.Sheets(0).getCellByPosition(1, 0) 'Cell B1
 oCell.setString("Hello")
 oCell.HoriJustify = com.sun.star.table.CellHoriJustify.CENTER
 oCell.RotateAngle = 3000 '30 degrees
End Sub

Figure 99. Cell value rotated 30 degrees.
Cell properties (see Table 165) are generic to most types of cells including text table cells. Cells in a
spreadsheet contain other properties as well (see Table 166).

Table 166. Properties supported by the com.sun.star.sheet.SheetCell service.
Property Description

Position The position of the cell in the sheet (in 0.01 mm) as a com.sun.star.awt.Point structure. This
is the absolute position in the entire sheet, not the position in the visible area.

• X – The x-coordinate as a Long Integer.

• Y – The y-coordinate as a Long Integer.

Size The size of the cell (in 0.01 mm) as a com.sun.star.awt.Size structure:

• Width – The width as a Long Integer.

• Height – The height as a Long Integer.

FormulaLocal Optional string containing the formula using localized function names.

462

Property Description

FormulaResultType Formula result type with values from the com.sun.star.sheet.FormulaResult constant group:

• VALUE = 1 – The formula returns a Double precision floating-point number.

• STRING = 2 – The formula returns a String value.

• ERROR = 4 – The formula has an error of some sort.

ConditionalFormat The conditional formatting settings for this cell. When a conditional format is changed, it
must be reinserted into the property set.

ConditionalFormatLocal Optional property duplicating ConditionalFormat except that formula names use local
names.

Validation The data validation settings for this cell as a com.sun.star.beans.XPropertySet.

ValidationLocal Optional property duplicating Validation except that formula names use local names.

The macro in Listing 413 demonstrates how to obtain a cell’s position and size in a sheet.

Listing 413. Print cell dimensions.
Sub CellDimensions
 Dim oCell
 Dim s As String
 oCell = ThisComponent.Sheets(0).getCellByPosition(1, 0) 'Cell B1
 s = s & CStr(oCell.Position.X \ 100) & " mm from the left" & CHR$(10)
 s = s & CStr(oCell.Position.Y \ 100) & " mm from the top" & CHR$(10)
 s = s & CStr(oCell.Size.Width \ 100) & " mm wide" & CHR$(10)
 s = s & CStr(oCell.Size.Height \ 100) & " mm tall" & CHR$(10)
 MsgBox s, 0, "Size And Postion Of Cell " & oCell.AbsoluteName
End Sub

 15.2.4. Cell annotations

Each cell can contain one annotation that consists of simple unformatted text. The cell’s getAnnotation()
method returns an object that supports the com.sun.star.sheet.CellAnnotation service. Cell annotations
support the XSimpleText interface used in Writer documents as well as the more specific methods shown in
Table 167.

Table 167. Methods implemented by the com.sun.star.sheet.CellAnnotation service.
Method Description

getParent() Get the object (cell) containing this annotation.

setParent(oCell) Set the cell that contains this annotation.

getPosition() Get the com.sun.star.table.CellAddress of the cell containing this annotation (see Table 162).

getAuthor() Get the user who last changed the annotation as a String.

getDate() Get the date the annotation was last changed as a formatted String.

getIsVisible() Returns True if the annotation is visible.

setIsVisible(boolean) Set whether the annotation is visible.

The spreadsheet object supports the method getAnnotations(), which returns all of the annotations in the
spreadsheet. You can obtain individual annotations by using indexed access or enumeration. The object

463

returned by getAnnotations() also supports the methods removeByIndex(n) and insertNew(CellAddress,
String).

Listing 414. Manipulate cell annotations.
Sub manipulateAnnotations
 Dim doc As Object
 Dim aSheet As Object
 Dim aCell As Object
 Dim annotations As Object
 Dim myAnnotation As Object

 doc = ThisComponent
 aSheet = doc.sheets.getByIndex(0)

 'Insert a new annotation.
 aCell = aSheet.getCellByPosition(0, 0)
 annotations = aSheet.annotations
 annotations.insertNew(aCell.cellAddress, "Text content")

 'Modify an existing annotation.
 'Cannot use the cell's pseudo-property "annotation" which is read-only
 myAnnotation = getAnnotationByCell(aCell)
 myAnnotation.isVisible = true
 myAnnotation.annotationShape.fillColor = rgb(148, 0, 107)
 myAnnotation.annotationShape.charFontName = "Tahoma"
 myAnnotation.annotationShape.charHeight = 12

End Sub

Function getAnnotationByCell(aCell As Object) As Object
 Dim result As Object
 Dim annotations As Object
 Dim annotationIndex As Long
 Dim anAnnotation As Object
 Dim isFound As Boolean

 annotations = aCell.spreadSheet.annotations
 While ((annotationIndex < annotations.count) and (not isFound))
 anAnnotation = annotations.getByIndex(annotationIndex)
 isFound = ((anAnnotation.position.row = aCell.cellAddress.row) and
(anAnnotation.position.column = aCell.cellAddress.column))
 If (isFound) Then
 result = anAnnotation
 End If
 annotationIndex = annotationIndex + 1
 Wend
 getAnnotationByCell = result
End Function

 15.3. Uninterpreted XML Attributes

OpenOffice.org stores documents as XML. When an OOo document is read, it is parsed by an XML parser.
User-defined attributes are not interpreted by the parser, but they are simply read, stored, and then written.

464

The intent is that a parser can store attributes that it cannot handle by itself on reading an XML file. When
the file is stored again, the unknown attributes can be written back without loss.

Uninterpreted attributes also allow you to add your own properties that are saved with the document.

Table 168. Methods to manipulate user defined attributes.
Method Description

getByName Get the named attribute.

getElementNames Get an array of strings containing the existing attribute names.

hasByName(name) Determine if the named attribute exists.

hasElements Determine if any attributes exist.

insertByName(name, attr) Insert a new attribute.

removeByName(name) Remove an existing attribute.

replaceByName(name, attr) Replace an existing attribute.

Listing 415. To manipulate UserDefinedAttributes, use a copy and then assign it back.
 Sub UserDefinedAttributeToCell
 Dim oCell 'The cell that will contain the attribute
 Dim oUserData 'A copy of the UserDefinedAttributes
 Dim oMyAttribute As New com.sun.star.xml.AttributeData
 Dim oAttribute
 Dim oDoc

 oDoc = createNewCalcDoc()
 REM First, get the cell that will contain the new attribute
 oCell = oDoc.Sheets(0).getCellByPosition(1, 0) 'Cell B1

 REM Now add data to the attribute.
 REM The Namespace is usually left blank, but set it if you want to.
 REM omyAttribute.Namespace = "http://what/ever/you/want"

 REM Notice that the type is CDATA and not something like "String"
 oMyAttribute.Type = "CDATA"
 oMyAttribute.Value = "Andrew Pitonyak"

 REM Here is where things usually go wrong with a statement like
 REM oCell.UserDefinedAttributes.insertByName("Andy", oMyAttribute)
 REM This fails every time. Instead, first make a copy and then
 REM operate on the copy.
 oUserData = oCell.UserDefinedAttributes
 If NOT oUserData.hasByName("Andy") Then
 oUserData.insertByName("Andy", oMyAttribute)
 oCell.UserDefinedAttributes = oUserData
 End If
 oAttribute = oCell.UserDefinedAttributes.getByName("Andy")
 Print oAttribute.Value
End Sub

Tip All services that support UserDefinedAttributes work the same way.

465

 15.4. Sheet cell ranges

In Writer documents, continuous text can be grouped in a text range. In a spreadsheet, cells can be grouped
in rectangular regions with a SheetCellRange. Grouping cells together allows multiple cells to be operated
on at one time. The SheetCellRange service supports many of the same interfaces and properties as a
SheetCell.

Tip Each sheet in a spreadsheet document is also a SheetRange.

Each cell has a cell address (see Table 162) that identifies its location in the spreadsheet document. Each cell
range has an analogous structure that identifies its location in the spreadsheet (see Table 169).

Table 169. Properties of the com.sun.star.table.CellRangeAddress structure.
Property Description

Sheet Short Integer index of the sheet that contains the cell.

StartColumn Long Integer index of the column where the left edge is located.

StartRow Long Integer index of the row where the top edge is located.

EndColumn Long Integer index of the column of the right edge of the range.

EndRow Long Integer index of the row of the bottom edge of the range.

A single sheet cell range exists in a single sheet and contains one rectangular region. Multiple ranges are
encapsulated by the SheetCellRanges service, which supports most of the same properties and services as a
SheetCellRange. The similarity in functionality simplifies the learning curve and offers a lot of otherwise
complicated functionality.

The SheetCellRanges service provides access to each range through the use of the XElementAccess
interface and the XIndexAccess interface. The methods in Table 170 also provide access to the contained
cell ranges.

Table 170. Methods defined by the com.sun.star.table.XSheetCellRanges interface.
Method Description

getCells() Return the collection of contained cells as an XEnumerationAccess.

getRangeAddressesAsString() Return a string with the addresses of all contained ranges. The output format is
similar to “Sheet1.B2:D6;Sheet3.C4:D5”.

getRangeAddresses() Return an array of services of type CellRangeAddress (see Table 169).

 15.4.1. Sheet cell range properties

Sheet cell ranges and sheet cells both support the properties Position, Size, ConditionalFormat,
ConditionalFormatLocal, Validation, and ValidationLocal (see Table 166). The Position property for a sheet
cell range provides the location of the upper-left cell — this is equivalent to obtaining the position property
from the upper-left cell in the range. The Size property for a cell returns the size of a single cell, and the Size
property for a sheet cell range provides the size for all of the cells contained in the range.

466

Validation settings

Sheet cells and sheet cell ranges are able to validate the data that they contain, to prevent invalid data from
populating the cells. You can display a dialog when invalid data is entered (see Table 172). The service
com.sun.star.sheet.TableValidation controls the validation process.

Before demonstrating how a validation is performed, I must introduce a few enumerated values, properties,
and methods. Specify the validation that is performed by using the enumerated values shown in Table 171.

Table 171. Validation types defined by the com.sun.star.sheet.ValidationType enum.
Value Description

com.sun.star.sheet.ValidationType.ANY All content is valid; no conditions are used.

com.sun.star.sheet.ValidationType.WHOLE Compare a whole (integer) number against the specified condition.

com.sun.star.sheet.ValidationType.DECIMAL Compare any number against the specified condition.

com.sun.star.sheet.ValidationType.DATE Compare a date value against the specified condition.

com.sun.star.sheet.ValidationType.TIME Compare a time value against the specified condition.

com.sun.star.sheet.ValidationType.TEXT_LEN Compare a string length against the specified condition.

com.sun.star.sheet.ValidationType.LIST Only allow strings in the specified list.

com.sun.star.sheet.ValidationType.CUSTOM Specify a formula that determines if the contents are valid.

When a cell containing invalid data is found, the ValidationAlertStyle enum specifies how the invalid data
should be handled (see Table 172). Table 173 lists the supported conditional operators.

Table 172. Validation alerts defined by the com.sun.star.sheet.ValidationAlertStyle enum.
Value Description

com.sun.star.sheet.ValidationAlertStyle.STOP Display an error message and reject the change.

com.sun.star.sheet.ValidationAlertStyle.WARNING Display a warning message and ask the user if the change will be
accepted. The default answer is No.

com.sun.star.sheet.ValidationAlertStyle.INFO Display an information message and ask the user if the change
will be accepted. The default answer is Yes.

com.sun.star.sheet.ValidationAlertStyle.MACRO Execute a specified macro.

467

Table 173. Conditions defined by the com.sun.star.sheet.ConditionOperator enum.
Value Description

com.sun.star.sheet.ConditionOperator.NONE No condition is specified.

com.sun.star.sheet.ConditionOperator.EQUAL The value must be equal to the specified value.

com.sun.star.sheet.ConditionOperator.NOT_EQUAL The value must not be equal to the specified value.

com.sun.star.sheet.ConditionOperator.GREATER The value must be greater than the specified value.

com.sun.star.sheet.ConditionOperator.GREATER_EQUAL The value must be greater than or equal to the specified
value.

com.sun.star.sheet.ConditionOperator.LESS The value must be less than the specified value.

com.sun.star.sheet.ConditionOperator.LESS_EQUAL The value must be less than or equal to the specified value.

com.sun.star.sheet.ConditionOperator.BETWEEN The value must be between the two specified values.

com.sun.star.sheet.ConditionOperator.NOT_BETWEEN The value must be outside of the two specified values.

com.sun.star.sheet.ConditionOperator.FORMULA The specified formula must have a non-zero result.

The validation object defines the type of validation and how to react to the validation using properties of the
object (see Table 174).

Table 174. Properties supported by the com.sun.star.sheet.TableValidation service.
Property Description

Type The type of validation to perform, as shown in Table 171.

ShowInputMessage If True, an input message appears when the cursor is in an invalid cell.

InputTitle Title (String) of the dialog with the input message.

InputMessage Text (String) of the input message.

ShowErrorMessage If True, an error message appears when invalid data is entered.

ErrorTitle Title (String) of the dialog showing the error message.

ErrorMessage Text (String) of the error message.

IgnoreBlankCells If True, blank cells are allowed.

ErrorAlertStyle The action that is taken when an error occurs, as shown in Table 172.

Finally, the comparison that is performed is specified using methods implemented by the TableValidation
service (see Table 175).

468

Table 175. Methods supported by the com.sun.star.sheet.TableValidation service.
Method Description

getOperator() Get the operator used in the condition, as shown in Table 173.

setOperator(condition) Set the operator used in the condition, as shown in Table 173.

getFormula1() Get the comparison value (String) used in the condition, or the first value if two are
needed.

setFormula1(String) Set the comparison value used in the condition, or the first value if two are required.

getFormula2() Get the second value (String) if two are required.

setFormula2(String) Set the second value (String) if two are required.

getSourcePosition() Get the CellAddress that is used as a base for relative references in the formulas
(see Table 162).

setSourcePosition(CellAddress) Set the CellAddress that is used as a base for relative references in the formulas
(see Table 162).

The macro in Listing 416 sets a validation range in the first sheet — that is, the sheet with a numerical index
of 0. The cells from B2 to D6 are set to disallow any values that are not between 1 and 10. The macro itself
is unexpectedly simple.

Listing 416. Set validation range in Calc.
Sub SetValidationRange
 Dim oRange 'Range that will accept the validation
 Dim oValidation 'The validation object
 Dim oDoc

 oDoc = createNewCalcDoc()

 REM Sheets support returning a cell range based on UI type names.
 oRange = oDoc.Sheets(0).getCellRangeByName("B2:D6")

 REM Obtain the Validation object
 oValidation = oRange.Validation

 REM Configure the validation to perform
 oValidation.Type = com.sun.star.sheet.ValidationType.DECIMAL
 oValidation.ErrorMessage = "Please enter a number between one and ten"
 oValidation.ShowErrorMessage = True
 oValidation.ErrorAlertStyle = com.sun.star.sheet.ValidationAlertStyle.STOP
 oValidation.setOperator(com.sun.star.sheet.ConditionOperator.BETWEEN)

 oValidation.setFormula1(1.0)
 oValidation.setFormula2(10.0)

 REM Now set the validation
 oRange.Validation = oValidation
 Print "Try to enter a number in cells B2:D6 that is not between 1 and 10."
End Sub

The example in Listing 416 sets a Decimal validation between 1 and 10. This validation example does not
generate an error for a value of 0 or 0.5. Try a few examples to see what else might fail.

469

Conditional formatting

Conditional formatting allows the cell style to change based on the cell’s content. Sheet cells and sheet cell
ranges both support the ConditionalFormat property, which in turn supports the XSheetConditionalEntries
interface. You can access conditional formatting entries by using element access, indexed access, or the
methods addNew(properties()), clear(), and removeByIndex(index).

You can also apply multiple conditional formatting entries to the same cell. The first one that matches is
applied. Each formatting entry is represented by an array of PropertyValue structures. Conditional formatting
is very similar to validation in that they both use values and types from Table 171 through Table 175.

Validation is a relatively simple condition on a data element, enforcing type and format constraints.
Conditional formatting supports validation and a more extended set of checks, including attributes or
metadata defined on elements or collections of elements — the names are similar, but the actual operations,
applications, and implications are much more elaborate. It is more difficult to explain than it is to
demonstrate. The macro in Listing 417 sets a range of cells to use the “Heading1” style if the cell contains a
negative number.

Listing 417. Set conditional style in Calc.
Sub SetConditionalStyle
 Dim oRange 'Cell range to use
 Dim oConFormat 'Conditional format object
 Dim oCondition(2) As New com.sun.star.beans.PropertyValue

 REM Sheets support returning a cell range based on UI type names.
 oRange = ThisComponent.Sheets(0).getCellRangeByName("B2:D6")
 oConFormat = oRange.ConditionalFormat

 oCondition(0).Name = "Operator"
 oCondition(0).Value = com.sun.star.sheet.ConditionOperator.LESS
 oCondition(1).Name = "Formula1"
 oCondition(1).Value = 0
 oCondition(2).Name = "StyleName"
 oCondition(2).Value = "Heading1"
 oConFormat.addNew(oCondition())
 oRange.ConditionalFormat = oConFormat
End Sub

 15.4.2. Sheet cell range services

Sheet cells and sheet cell ranges have numerous services in common — for example, CellProperties (see
Table 165), CharacterProperties, CharacterPropertiesAsian, CharacterPropertiesComplex,
ParagraphProperties, and SheetRangesQuery.

Retrieving cells and ranges

A SheetCellRange support the CellRange service, which in turn supports CellProperties (see Table 165). The
CellRange service offers extra functionality that is appropriate for cell ranges, but not for individual cells —
for example, retrieving cells and cell ranges. When a cell range is retrieved using the methods in Table 176,
the cells are indexed relative to the top-left corner of the range. When the range is an entire sheet, the
location (0, 0) refers to the cell “A1.” If the range includes the cells “B2:D6”, however, the location (0,0)
refers to cell “B2.” The macros in Listing 410 through Listing 413 all use the method getCellByPosition().

470

Table 176. Methods supported by the com.sun.star.table.XCellRange interface.
Method Description

getCellByPosition(left, top) Get a cell within the range.

getCellRangeByPosition(left, top, right, bottom) Get a cell range within the range.

getCellRangeByName(name) Get a cell range within the range based on its name. The string
directly references cells using the standard formats — such as
“B2:D5” or “B2” — or defined cell range names.

Tip The methods getCellByPosition(), getCellRangeByPosition(), and getCellRangeByName()
cannot return a value that is not in the range (see Listing 445).

Querying cells

Sheet cell ranges and sheet cells both support the ability to find cells with specific properties. This ability
provides a mechanism for finding all cells that are referenced by the current cell’s formula and the ability to
see which cells reference the current cell. While performing a query based on the cell’s content, the
CellFlags in Table 177 specify the content type to search.

Table 177. Values in the com.sun.star.sheet.CellFlags constant group.
Value Flag Description

1 com.sun.star.sheet.CellFlags.VALUE Select numbers not formatted as dates or times.

2 com.sun.star.sheet.CellFlags.DATETIME Select numbers formatted as dates or times.

4 com.sun.star.sheet.CellFlags.STRING Select strings.

8 com.sun.star.sheet.CellFlags.ANNOTATION Select cell annotations.

16 com.sun.star.sheet.CellFlags.FORMULA Select formulas.

32 com.sun.star.sheet.CellFlags.HARDATTR Select explicit formatting — not styles.

64 com.sun.star.sheet.CellFlags.STYLES Select cell styles.

128 com.sun.star.sheet.CellFlags.OBJECTS Select drawing objects such as buttons and graphics.

256 com.sun.star.sheet.CellFlags.EDITATTR Select formatting within the cell’s content.

Each of the methods used to query a cell range (see Table 178) also returns a cell range (see Table 170).

Table 178. Methods to query a cell range.
Method Description

queryDependents(boolean) Return all cells that reference cells in this range. If True, search is recursive.

queryPrecedents(boolean) Return all cells referenced by cells in this range. If True, search is recursive.

queryVisibleCells() Return all visible cells.

queryEmptyCells() Return all empty cells.

queryContentCells(CellFlags) Return all cells with the specified content types (see Table 177).

queryFormulaCells(FormulaResult) Return all cells containing a formula with the specified result type (see
FormulaResultType in Table 166).

queryColumnDifferences(CellAddress) Return all cells that differ from the comparison cell in the specified cell’s
row (see Table 162).

471

Method Description

queryRowDifferences(CellAddress) Return all cells that differ from the comparison cell in the specified cell’s
column (see Table 162).

queryIntersection(CellRangeAddress) Return the range of cells that intersect the specified range (see Table 169).

Finding non-empty cells in a range

Use the method queryContentCells(CellFlags) to obtain a list of all cells in a range that are not empty. The
CellFlags argument is set to return all cells that contain a value, string, formula, or date/time. The interesting
thing about Listing 418 is not that it uses a query to find the nonempty cells, but rather that it demonstrates
how to extract the cells from the query and enumerate all of the returned cells. In other words, the macro in
Listing 418 demonstrates how to visit all of the nonempty cells in a specific range.

Listing 418. Find cells that are not empty in a range.
Function NonEmptyCellsInRange(oRange, sep$) As String
 Dim oCell 'The cell to use!
 Dim oRanges 'Ranges returned after querying for the cells
 Dim oAddrs() 'Array of CellRangeAddress
 Dim oAddr 'One CellRangeAddress
 Dim oSheet 'Sheet that contains the cell range
 Dim i As Long 'General index variable
 Dim nRow As Long 'Row number
 Dim nCol As Long 'Column number
 Dim s As String

 REM First, find the cells that are NOT empty in this range!
 REM I consider a cell to be not empty if it has a value,
 REM date/time, string, or formula.
 oRanges = oRange.queryContentCells(_
 com.sun.star.sheet.CellFlags.VALUE OR _
 com.sun.star.sheet.CellFlags.DATETIME OR _
 com.sun.star.sheet.CellFlags.STRING OR _
 com.sun.star.sheet.CellFlags.FORMULA)

 oAddrs() = oRanges.getRangeAddresses()
 For i = 0 To UBound(oAddrs())

 REM Get a specific address range
 oAddr = oAddrs(i)

 For nRow = oAddr.StartRow To oAddr.EndRow
 For nCol = oAddr.StartColumn To oAddr.EndColumn
 oCell = oRange.Spreadsheet.getCellByPosition(nCol, nRow)
 s = s & oCell.AbsoluteName & sep$
 Next
 Next

 Next
 NonEmptyCellsInRange = s
End Function

472

Using complex queries

Although the query methods are easy to use, some of them are conceptually quite complicated. All of the
query methods return a SheetCellRanges object. The macro in Listing 419 demonstrates how to find the cells
referenced by a formula using the queryPrecedents() method, how to find the cells referencing a particular
cell using the queryDependents() method, as well as how to find row and column differences using the
queryRowDifferences() and queryColumnDifferences() methods.

The macro in Listing 419 configures the first sheet with values and formulas, and then the macro performs
some queries. The code that performs the demonstrated queries is simple and short. The code that creates the
data that is queried, however, is more complicated and instructive. More specifically, the macro in Listing
419 demonstrates how to clear a range of cells by using the clearContents() method. The dialog produced by
Listing 419 is shown in Figure 100.

Listing 419. Query a range of cells to find references, dependencies, and differences.
Sub QueryCellRange
 Dim oCell 'Holds a cell temporarily
 Dim oCellAddress 'Holds a cell's address
 Dim oRange 'The primary range
 Dim oSheet 'The first sheet
 Dim i As Integer 'Temporary index variable
 Dim s As String 'Temporary String
 Dim oDoc : oDoc = createNewCalcDoc()

 PopulateSheetForQuery(oDoc)

 REM Sheets support returning a cell range based on UI type names.
 oSheet = oDoc.Sheets(0)

 REM Get the range I want to use!
 oRange = oSheet.getCellRangeByName("A1:F8")
 s = InputBox("Query which cell?", "Enter Cell Address", "C7")

 REM This includes cells "C2:C7". Notice that it includes the cell itself
 oCell = oSheet.getCellByPosition(2, 6)
 s = s & "=SUM(C2:C6) directly references " &_
 oCell.queryPrecedents(False).getRangeAddressesAsString() & CHR$(10)

 REM This includes cells "B2:B6;C2:C7"
 s = s & "=SUM(C2:C6) Including indirect references " &_
 oCell.queryPrecedents(True).getRangeAddressesAsString() & CHR$(10)

 REM Find direct and indirect references
 oCell = oSheet.getCellByPosition(1, 2) 'B3
 s = s & "Cells that reference B3 " &_
 oCell.queryDependents(True).getRangeAddressesAsString() & CHR$(10)

 oCellAddress = oCell.CellAddress
 s = s & "Column differences for B3 " &_
 oRange.queryColumnDifferences(oCellAddress).getRangeAddressesAsString()
 s = s & CHR$(10)

 s = s & "Row differences for B3 " &_

473

 oRange.queryRowDifferences(oCellAddress).getRangeAddressesAsString()
 s = s & CHR$(10)

 MsgBox s, 0, "Manipulating A Range"
End Sub

Figure 100. Query a range of cells to find references, dependencies, and similarities.

Table 179 shows the formulas and values created by the macro in Listing 419, assists in understanding the
output shown in Figure 100.

Table 179. The formulas and values set by Listing 419.
B C D E

1 2 =B1-1

2 1 =B2+1 =C2-1

3 2 =B3+1 =C3-1 2

4 3 =B4+1 =C4-1

5 4 =B5+1 =C5-1

6 5 =B6+1 =C6-1

7 =SUM(B2:B5) =SUM(C2:C6)

8 2 2

Query Precedents and Dependents

The first line in Figure 100 shows the result of queryPrecedents(False) on a range that contains only cell C7.
As shown in Table 179, cell C7 directly references the cells C2:C6 and itself. By calling
queryPrecedents(True) — the second line in Figure 100 — the cells B2:B6 are added because the cells in
column C reference the cells in column B.

The method queryDependents(True) provides the third line in Figure 100, which displays all of the cells that
reference B3, directly or indirectly. Table 179 shows that B3, B7, and C3 directly reference cell B3, and that
cells C7 and D3 indirectly reference cell B3.

474

Query Column Differences

The fourth line in Figure 100 lists the “column differences” based on cell B3. While calculating column
differences, only the row matters. In other words, the same result is returned if cell A3, C3, D3, or E3 is used
instead of cell B3. Figure 101 shows the sheet; the cells that are considered different are marked with a black
background. Figure 101 helps to illustrate what is, and is not, considered a difference. By choosing cell B3,
all of the cells in each column (of the range) are compared to the cell in row 3 (in the same column). The
first column, A, has no cells selected because they are all empty; therefore, all the cells in the column have
the same value. In column B, cell B3 contains the constant value of 2. Cells B1 and B8 also contain the
constant value 2, so these cells are not considered different. Column C is very interesting in that it does not
contain constants, but rather it contains formulas that are similar. The cells C2, C4, C5, and C6 are similar to
cell C3. The formulas are effectively the same (see Table 179) in that they all add 1 to the cell to the left. The
formula in C1 is not similar to C3 so it is included in the difference list. Column D is similar to column C
and column E is similar to column B. I leave it as an exercise for the reader to explain the row differences as
shown in Figure 101.

Figure 101. Output from Listing 419 with “column differences” highlighted.

 15.4.3. Searching and replacing

The thing that I find most interesting about searching in a spreadsheet document is that searching is not
supported by the document object. Cell object and cell range objects support searching, however. Each sheet
is also a sheet range, so it’s possible to search an entire sheet. It is not possible, therefore, to search an entire
document at one time; you must search each sheet separately. Listing 420 demonstrates searching and
replacing text in a single sheet.

Listing 420. Simple Calc search.
Sub SearchSheet
 Dim oSheet 'Sheet in which to replace
 Dim oReplace 'Replace descriptor
 Dim nCount 'Number of times replaced

 oSheet = ThisComponent.Sheets(3)
 oReplace = oSheet.createReplaceDescriptor()
 oReplace.setSearchString("Xyzzy")
 oReplace.setReplaceString("Something Else")
 oReplace.SearchWords = False
 nCount = oSheet.replaceAll(oReplace)
 MsgBox "Replaced " & nCount
End Sub

475

Searching a sheet in a Calc document is almost identical to searching for text in a Writer document. In a
Calc document, setting SearchWords to True forces the entire cell to contain the search text. In a Writer
document, setting SearchWords to True forces the text to not be part of another word.

Tip In a Calc document, setting SearchWords to True forces the entire cell to contain the search text.

 15.4.4. Merging cells

Use the merge method to merge and unmerge a range of cells. After merging the range B2:D7, cell B2
appears in the area formerly used by the entire range. What is not shown in Figure 102 is that the cells that
aren’t visible still exist and are accessible; they are simply not displayed. Use the getIsMerged() method to
determine if all of the cells in a range are merged.

Listing 421. Merge a range of cells.
Sub MergeExperiment
 Dim oCell 'Holds a cell temporarily
 Dim oRange 'The primary range
 Dim oSheet 'The first sheet

 REM Merge a range of cells
 oSheet = ThisComponent.Sheets(0)
 oRange = oSheet.getCellRangeByName("B2:D7")
 oRange.merge(True)

 REM Now obtain a cell that was merged
 REM and I can do it!
 oCell = oSheet.getCellByPosition(2, 3) 'C4
 Print oCell.getValue()
End Sub

Figure 102. Merging cells causes the top-left cell to use the entire merged area.

 15.4.5. Retrieving, inserting, and deleting columns and rows

Use the methods getColumns() and getRows() to retrieve columns and rows covered by cells and cell ranges.
After retrieving the columns for a range or a cell, you can retrieve the individual columns by using the
interfaces XElementAccess or XindexAccess. You can use two additional methods — insertByIndex(index,
count) and removeByIndex(index, count) — to insert and remove columns. After obtaining a single column,
you can get the column’s name with getName(), set cell properties for the entire column, and extract cells by
using the cell range methods in Table 176.

476

All of the manipulations mentioned for columns — except for getName() — also apply to the rows obtained
by using the getRows() method. The difference lies in the properties supported by the individual columns
and rows (see Table 180).

Table 180. Individual row and column properties.
Type Property Description

Column Width Width of the column (in 0.01 mm) as a Long Integer.

Row Height Height of the row (in 0.01 mm) as a Long Integer.

Column OptimalWidth If True, the column always keeps its optimal width.

Row OptimalHeight If True, the row always keeps its optimal height.

Both IsVisible If True, the row or column is visible.

Both IsStartOfNewPage If True, a horizontal (vertical) page break is attached to the column (row).

The macro in Listing 422 obtains the range “B6:C9” and then traverses all of the nonempty cells. The hard
part is done in the routine NonEmptyCellsInRange() as shown in Listing 418. Listing 422, however,
demonstrates how to extract the individual rows from a range. Typically, when writing a macro, you know
where the data lies so you simply write code to traverse the data directly. Figure 103 shows the output from
Listing 422 when the macro is run using the data shown in Figure 101.

Listing 422. Enumerate rows in a range and find nonempty cells.
Sub TraverseRows
 Dim oRange 'The primary range
 Dim oSheet 'The fourth sheet
 Dim oRows 'Rows object
 Dim oRow 'A single row
 Dim oRowEnum 'Enumerator for the rows
 Dim s As String 'General String Variable

 oSheet = ThisComponent.Sheets(3)
 oRange = oSheet.getCellRangeByName("B6:C9")

 REM I now want to find ALL of the cells that are NOT empty in the
 REM rows that are related to the range. Notice that I do not want to
 REM limit myself to cells in the range, but that I am interested in the
 REM rows.
 oRows = oRange.getRows()
 REM Sure, I could access things by index, but you probably expected that!
 oRowEnum = oRows.createEnumeration()
 Do While oRowEnum.hasMoreElements()
 oRow = oRowEnum.nextElement()
 s = s & NonEmptyCellsInRange(oRow, " ") & CHR$(10)
 Loop
 MsgBox s, 0, "Non-Empty Cells In Rows"
End Sub

477

Figure 103. The nonempty cells are displayed from rows 6 through 8.

 15.4.6. Retrieving and setting data as an array

You can quickly and easily obtain all data from a range as an array of arrays by using the getDataArray()
method. The data in each cell is returned as either a number or a string. You can also set the data for a range
by using the setDataArray() method; just be certain that the array dimensions match the range dimensions
(see Listing 423).

Listing 423. Get and set data in a Calc sheet.
Sub GetAndSetData
 Dim oRange 'The primary range
 Dim oSheet 'The fourth sheet
 Dim oAllData 'Array containing the data
 Dim s As String 'General string variable
 Dim i As Integer 'General index variable

 oSheet = ThisComponent.Sheets(3)
 oRange = oSheet.getCellRangeByName("B6:E8")

 REM Get the data contained in the range!
 REM Data from empty cells is included.
 oAllData = oRange.getDataArray()
 For i = 0 To UBound(oAllData)
 REM oAllData(i) is an array, so simply join the data together
 REM for a quick printing!
 s = s & "(" & Join(oAllData(i), ") (") & ")" & CHR$(10)
 Next
 MsgBox s, 0, "Data In Range"

 REM Now quickly set some data.
 oRange = oSheet.getCellRangeByName("F1:G2")
 oRange.setDataArray(Array(Array(1, "One"), Array(2, "Two")))
End Sub

Tip As of Calc 3.0, the maximum number of columns is 1024 (column is AMJ), the maximum number of rows
is 65,536, and the maximum number cells in a sheet is 67,108,864. Laurent Godard performed tests and
increased the number for testing purposes: see

http://blogs.nuxeo.com/dev/2006/08/the-spreadsheet-next.html

http://wiki.services.openoffice.org/wiki/Calc/hacks/number_of_rows

478

http://wiki.services.openoffice.org/wiki/Calc/hacks/number_of_rows
http://blogs.nuxeo.com/dev/2006/08/the-spreadsheet-next.html

Sheet cell ranges also provide the ability to get and set formulas in bulk using arrays. Use the methods
getFormulaArray() and setFormulaArray() to get and set the formulas in a range as an array — these two
methods can be a real time saver.

If you inspect a sheet range, you will notice that a sheet supports getData() and getDataArray(). Both
methods return an array of arrays. The method getDataArray returns numbers and strings. The getData
method defined by the XChartData interface, however, returns numbers and ignores strings.

 15.4.7. Computing functions on a range

It’s possible to compute a value based on a specified range (see Listing 418 and Listing 422), but it is
tedious. You can use the getDataArray() method (see Listing 423) to quickly obtain all of the data and
simply process the data in the nested arrays. To easily apply a simple function to a range, use the object
method computeFunction(GeneralFunction). Table 181 lists the functions supported by the GeneralFunction
enumeration.

Table 181. The com.sun.star.sheet.GeneralFunction enumeration.
Value Description

com.sun.star.sheet.GeneralFunction.NONE Nothing is calculated.

com.sun.star.sheet.GeneralFunction.AUTO Use SUM if all values are numerical; otherwise use COUNT.

com.sun.star.sheet.GeneralFunction.SUM Sum (add) all of the numerical values.

com.sun.star.sheet.GeneralFunction.COUNT Count all of the values.

com.sun.star.sheet.GeneralFunction.AVERAGE Average all of the numerical values.

com.sun.star.sheet.GeneralFunction.MAX Maximum numerical value.

com.sun.star.sheet.GeneralFunction.MIN Minimum numerical value.

com.sun.star.sheet.GeneralFunction.PRODUCT Product (multiplication) of all the numerical values.

com.sun.star.sheet.GeneralFunction.COUNTNUMS Count the numerical values.

com.sun.star.sheet.GeneralFunction.STDEV Standard deviation based on a sample.

com.sun.star.sheet.GeneralFunction.STDEVP Standard deviation based on the entire population.

com.sun.star.sheet.GeneralFunction.VAR Variance based on a sample.

com.sun.star.sheet.GeneralFunction.VARP Variance based on the entire population.

The macro in Listing 424 demonstrates the use of the compute function. Using the sheet shown in Figure
101 and the macro in Listing 424, there are seven nonempty cells in the range A5:C9.

Listing 424. Compute a function on a range.
Sub UseCompute
 Dim oRange 'The primary range
 Dim oSheet 'The fourth sheet
 Dim d As Double 'Return value

 oSheet = ThisComponent.Sheets(3)
 oRange = oSheet.getCellRangeByName("A5:C9")
 d = oRange.computeFunction(com.sun.star.sheet.GeneralFunction.COUNT)
 MsgBox "Non-Empty cells in A5:C9 = " & d, 0, "ComputFuntion()"
End Sub

479

 15.4.8. Clearing cells and cell ranges

In a Calc document, click on a cell and press the Delete key. A dialog opens with a list of things that can be
deleted. The ability to delete any combination of things from different types of content or formatting is
amazingly powerful and flexible. The types of things that can be deleted are encapsulated by the CellFlags
shown in Table 177. CellFlags may be combined using the OR operator and passed to the
clearContents(CellFlags) method (see Listing 419).

Tip The clearContents() method is supported by cells, cell ranges, and even rows and columns.

 15.4.9. Automatic data fill

Listing 419 painfully fills consecutive cells with data. Sheet cell ranges provide a better method for
automatically filling a range with data by using the fillAuto(FillDirection, nCount) method. The
FillDirection enumerated values shown in Table 182 control how the data is propagated.

Table 182. The com.sun.star.sheet.FillDirection enumeration.
Value Description

com.sun.star.sheet.FillDirection.TO_BOTTOM Rows are filled from top to bottom.

com.sun.star.sheet.FillDirection.TO_RIGHT Columns are filled from left to right.

com.sun.star.sheet.FillDirection.TO_TOP Rows are filled from bottom to top.

com.sun.star.sheet.FillDirection.TO_LEFT Columns are filled from right to left.

Use the method fillAuto(FillDirection, nCount) to automatically fill an area. First, select the range that you
want to fill. Second, set the initial value that will be incremented by the fillAuto() method. The location of
the initial values depend on the direction that will be filled. For example, if using TO_LEFT, the rightmost
cells in the range must contain an initial value so that they can be filled to the left.

While filling new values, the fillAuto() method increments the number by 1 while moving to the right or
bottom, and decrements the number by 1 while moving to the left or top. If the number is formatted as a
time or date, incrementing by 1 adds one day.

Tip When a time is incremented using fillAuto(), it is incremented by one day. If the cell is formatted to show
only the time, it will appear as though the value does not change — although it has. This should be obvious
if you think about it.

The fillAuto() method uses the last argument, nCount, to determine how many cells to move before entering
a new value. A value of 1, therefore, fills every cell as the cursor moves. While filling new cells, the
fillAuto() method won’t move outside the range used to call fillAuto(). The code snippet in Listing 425
assumes that Sheet 3 contains numerical values in the cell range E11:E20.

Listing 425. Fill values from E11:N20 using fillAuto.
oSheet = ThisComponent.Sheets(3)
oRange = oSheet.getCellRangeByName("E11:N20")
oRange.fillAuto(com.sun.star.sheet.FillDirection.TO_RIGHT, 1)

OOo also supports more complicated fill methods. The FillMode enumeration (see Table 183) directs the
special functionality provided by the method fillSeries(). The fillAuto() method always uses the LINEAR
mode to increment the value by one, whereas the fillSeries() method allows for any fill mode.

480

Table 183. The com.sun.star.sheet.FillMode enumeration.
Value Description

com.sun.star.sheet.FillMode.SIMPLE All of the values are the same (constant series).

com.sun.star.sheet.FillMode.LINEAR The values change by a constant increment (arithmetic series).

com.sun.star.sheet.FillMode.GROWTH The values change by a constant multiple (geometric series).

com.sun.star.sheet.FillMode.DATE An arithmetic series for date values. This causes all numbers to be treated
as dates, regardless of formatting.

com.sun.star.sheet.FillMode.AUTO The cells are filled from a user-defined list.

The fillSeries() method recognizes dates and times based on the numerical format used to display them.
Using the FillMode DATE forces all numbers to be recognized as dates rather than just numbers that are
formatted as dates. When a date is filled, the day, month, or year can be changed as specified by the
FillDateMode enumerated values (see Table 184).

Table 184. The com.sun.star.sheet.FillDateMode enumeration.
Value Description

com.sun.star.sheet.FillDateMode.FILL_DATE_DAY Increment the day by 1.

com.sun.star.sheet.FillDateMode.FILL_DATE_WEEKDAY Increment the day by 1 but skip Saturday and Sunday.

com.sun.star.sheet.FillDateMode.FILL_DATE_MONTH Increment the month (the day is unchanged).

com.sun.star.sheet.FillDateMode.FILL_DATE_YEAR Increment the year (the day and month are unchanged).

The method fillSeries(FillDirection, FillMode, FillDateMode, nStep, nEndValue) provides the greatest
flexibility for filling values. The nStep value indicates how the value is modified from cell to cell. The final
argument specifies a final value not to exceed during the fill. The fillSeries() method will not modify a value
outside of the range and stops adding values when passing the end value. While specifying an end value,
remember that dates expressed as a regular number are rather large; 40000 refers to July 6, 2009. Listing 426
uses the fillSeries() method to fill a range of dates.

Tip The fillAuto() method increments or decrements the value depending on the direction in which the values
are filled. The fillSeries() method, however, always uses the nStep value regardless of the direction.

Listing 426. Fill values from E11:N20 using fillSeries().
oSheet = ThisComponent.Sheets(3)
oRange = oSheet.getCellRangeByName("E11:N20")
oRange.fillSeries(com.sun.star.sheet.FillDirection.TO_LEFT,_
 com.sun.star.sheet.FillMode.LINEAR,_
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY,2, 40000)

If text containing a number is found in an initial cell, the copied value copies the text and increments the
rightmost number in the text. For example, I entered the text “Text 1” and the filled text contained “Text 3”,
“Text 5”, and so on.

 15.4.10. Array formulas

The simplest usage of an array formula that I have seen involves placing an array formula in one cell and
using the formula in multiple cells. Now that I have provided just enough detail to cause confusion, consider
the simple example shown in Table 185.

481

Table 185. A simple formula in column I.
F G H I J K

3 1 3 =G3+H3

4 2 4 =G4+H4

5 3 5 =G5+H5

6 4 6 =G6+H6

7 5 7 =G7+H7

8 6 8 =G8+H8

Column I contains the formula to add column G to column H. This can be done using an array formula by
entering one formula in one cell. To enter an array formula into column J that mimics the formula in column
I, first place the cursor in cell J3. Enter the formula “=G3:G8+H3:H8” and then press Ctrl-Shift-Enter. The
cells J3 through J8 now contain the single formula “{=G3:G8+H3:H8}” and the values in column J should
match those in column I. Column I contains six formulas that are not directly related to each other, but the
cells in column J use only one formula. The macro in Listing 427 sets a sheet to look like Table 185 and then
sets column J to contain an array formula that calculates the same values as column I.

Listing 427. Demonstrate an array formula.
Sub ArrayFormula
 Dim oRange 'The primary range
 Dim oSheet 'The fourth sheet
 Dim oCell 'Holds a cell temporarily
 Dim i As Integer 'General Index Variable
 Dim oDoc 'Reference newly created calc document.

 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())
 oSheet = oDoc.Sheets(0)

 REM Set the two top cells in G3:H8
 oCell = oSheet.getCellByPosition(6, 2) 'Cell G3
 oCell.setValue(1)

 oCell = oSheet.getCellByPosition(7, 2) 'Cell H3
 oCell.setValue(3)

 REM Fill the values down!
 oRange = oSheet.getCellRangeByName("G3:H8")
 oRange.fillAuto(com.sun.star.sheet.FillDirection.TO_BOTTOM, 1)

 REM This demonstrates setting each cell individually.
 For i = 3 To 8
 oCell = oSheet.getCellByPosition(8, i-1) 'Cell I3 - I8
 oCell.setFormula("=G" & i & "+H" & i)
 Next

 REM Setting a single array formula is much easier in this case.
 oRange = oSheet.getCellRangeByName("J3:J8")
 oRange.setArrayFormula("=G3:G8+H3:H8")

 REM Add some headings!

482

 oRange = oSheet.getCellRangeByName("G2:J2")
 oRange.setDataArray(Array(Array("G", "H", "Formula", "Array Formula")))
End Sub

 15.4.11. Computing multiple functions on a range

OOo supports using a series of single variable formulas against a series of values. A typical example
involves a single column (or row) of numbers with adjacent columns (or rows) containing formulas using
the numbers. The enumerated values in Table 186 specify if rows or columns are used.

Table 186. The com.sun.star.sheet.TableOperationMode enumeration
Value Description

com.sun.star.sheet.TableOperationMode.COLUMN Apply the operation down the columns.

com.sun.star.sheet.TableOperationMode.ROW Apply the operation across the rows.

com.sun.star.sheet.TableOperationMode.BOTH Apply the operation to both rows and columns.

The setTableOperation() method provides the ability to quickly apply multiple single variable functions to
the same set of data producing a table of values. The method setTableOperation() accepts four arguments as
follows:

1. CellRangeAddress — Cell range address that contains the functions to apply.

2. TableOperationMode — Identifies if the data is in rows or columns (see Table 186).

3. CellAddress — Cell address that is used if using columns (row mode or both).

4. CellAddress — Cell address that is used if using rows (column mode or both).

The macro in Listing 428 generates a column of numbers from 0 to 6.3, the functions Sin() and Cos() are
then applied to the columns.

Listing 428. Use setTableOperation to quickly set an operation on a column.
Sub MultipleOpsColumns
 Dim oRange 'The primary range
 Dim oSheet 'The fourth sheet
 Dim oCell 'Holds a cell temporarily
 Dim oBlockAddress 'Address of the block to fill
 Dim oCellAddress 'Row or column cell
 Dim oDoc 'Reference newly created calc document.

 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())
 oSheet = oDoc.Sheets(0)

 REM Set the top-most value!
 oCell = oSheet.getCellByPosition(0, 9) 'Cell A10
 oCell.setValue(0)

 REM Fill the values down! for 0 to 6.4
 oRange = oSheet.getCellRangeByName("A10:A74")
 oRange.fillSeries(com.sun.star.sheet.FillDirection.TO_BOTTOM,_
 com.sun.star.sheet.FillMode.LINEAR,_
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 0.1, 6.4)

483

 REM Now set the Sin() and Cos() Header values
 oCell = oSheet.getCellByPosition(1, 8) 'Cell B9
 oCell.setString("Sin()")
 oCell = oSheet.getCellByPosition(2, 8) 'Cell C9
 oCell.setString("Cos()")

 REM Now set the Sin() and Cos() formulas
 oCell = oSheet.getCellByPosition(1, 9) 'Cell B10
 oCell.setFormula("=Sin(A10)")
 oCell = oSheet.getCellByPosition(2, 9) 'Cell C10
 oCell.setFormula("=Cos(A10)")

 REM Obtain the entire block on which to operate.
 oRange = oSheet.getCellRangeByName("A11:C74")

 REM Obtain the address that contains the formulas to copy.
 oBlockAddress = oSheet.getCellRangeByName("B10:C10").getRangeAddress()

 REM The address of the cell that contains the column of data.
 oCellAddress = oSheet.getCellByPosition(0, 9).getCellAddress()

 REM I really only need the column value because the row value is not used.
 oRange.setTableOperation(oBlockAddress,_
 com.sun.star.sheet.TableOperationMode.COLUMN,_
 oCellAddress, oCellAddress)
End Sub

If the table operation mode is set to BOTH rather than just ROW or COLUMN, then a single function is
applied to two variables. The macro in Listing 429 creates the multiplication table that I memorized in third
grade.

Listing 429. Use a table operation to create a multiplication table
Sub createMultiplicationTableWrapper()
 createMultiplicationTable()
End Sub

Function createMultiplicationTable()
 Dim oRowCell 'The row cell
 Dim oColCell 'The column cell
 Dim oRange 'The primary range
 Dim oSheet 'The fourth sheet
 Dim oCell 'Holds a cell temporarily
 Dim oBlockAddress 'Address of the block to fill
 Dim oCellAddress 'Row or column cell
 Dim oDoc 'Reference newly created calc document.

 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())
 oSheet = oDoc.Sheets(0)

 REM Set the row of constant values
 oRowCell = oSheet.getCellByPosition(1, 9) 'Cell B10
 oRowCell.setValue(1)

484

 oRange = oSheet.getCellRangeByName("B10:K10")
 oRange.fillAuto(com.sun.star.sheet.FillDirection.TO_RIGHT, 1)
 oRange.CharWeight = com.sun.star.awt.FontWeight.BOLD
 oRange.CharHeight = 14

 REM Set the column of constant values
 oColCell = oSheet.getCellByPosition(0, 10) 'Cell A11
 oColCell.setValue(1)
 oRange = oSheet.getCellRangeByName("A11:A20")
 oRange.fillAuto(com.sun.star.sheet.FillDirection.TO_BOTTOM, 1)
 oRange.CharWeight = com.sun.star.awt.FontWeight.BOLD
 oRange.CharHeight = 14

 REM Set the formula that will be used. It references the first values!
 oCell = oSheet.getCellByPosition(0, 9) 'Cell A10
 oCell.setFormula("=A11*B10")

 REM Get the range of the cells
 oRange = oSheet.getCellRangeByName("A10:K20")

 REM Fill the multiplication tables for the values 1x1 through 10x10
 oRange.setTableOperation(oRange.getRangeAddress(),_
 com.sun.star.sheet.TableOperationMode.BOTH,_
 oColCell.getCellAddress(),_
 oRowCell.getCellAddress())
 createMultiplicationTable() = oDoc
End Function

 15.4.12. Cells with the same formatting

Sheet cell ranges provide two methods for obtaining groups of cells that contain the same format. The
getCellFormatRanges() method returns an object that supports both index and enumeration access. The
equally formatted cells are split into multiple rectangular ranges. The enumerated ranges are returned as a
SheetCellRange object.

The object method getUniqueCellFormatRanges() is very similar to the method getCellFormatRanges()
except that the returned values are objects of type SheetCellRanges. The primary difference is that all of the
similarly formatted objects are returned in one container. The macro in Listing 430 displays the similarly
formatted ranges using the two different methods.

Listing 430. Use two different methods to display groups of cells that contain the same format..
Sub DisplaySimilarRanges
 Dim oSheetCellRange 'An individual sheet cell range
 Dim oSheetCellRanges 'Sheet cell ranges
 Dim oAddr 'An address object from the sheet cell range
 Dim s$ 'Utility string variable
 Dim x 'The returned range objects are stored here
 Dim i% 'Utility index variable
 Dim oSheet
 Dim oDoc 'Reference newly created calc document.

 oDoc = createMultiplicationTable()
 oSheet = oDoc.Sheets(0)

485

 REM Do this for the entire sheet!
 x = oSheet.getCellFormatRanges()
 s = "**** getCellFormatRanges()" & CHR$(10)
 For i = 0 To x.getcount()-1
 oSheetCellRange = x.getByIndex(i)
 oAddr = oSheetCellRange.getRangeAddress()
 s = s & prettyRangeAddressName(oAddr) & CHR$(10)
 Next

 REM SheetCellRanges
 x = oSheet.getUniqueCellFormatRanges()
 s = s & CHR$(10) & "**** getUniqueCellFormatRanges()" & CHR$(10)
 For i = 0 To x.getcount()-1
 oSheetCellRanges = x.getByIndex(i)
 s = s & i & " = "& oSheetCellRanges.getRangeAddressesAsString() & CHR$(10)
 Next
 MsgBox s, 0, "Like Ranges"
End Sub

Figure 104 demonstrates very clearly the difference between the two methods. The getCellFormatRanges()
method continually lists the rectangular ranges that are formatted similarly: with each change of format a
new range starts. The getUniqueCellFormatRanges() method groups the found ranges in containers that
contain ranges of similar format. So out of the seven ranges there are five (index 0) resp. two (index 1) that
are formatted similarly. Both methods contain the same ranges; it is only a question of grouping.

Figure 104. The two methods group the data differently.

486

 15.4.13. Sorting

In general, OOo knows what type of data a cell contains. Knowledge of the contained data types reduces the
need to inform OOo of the type of data that it is sorting, but it is still possible using the TableSortFieldType
enumeration (see Table 187). When you request a sort operation, an array of TableSortField structures
identifies which columns or rows are used to determine the sort order and how they are sorted (see Table
188).

Table 187. The com.sun.star.table.TableSortFieldType enumeration.
Value Description

com.sun.star.table.TableSortFieldType.AUTOMATIC Automatically determine the data type.

com.sun.star.table.TableSortFieldType.NUMERIC Sort the data as a number.

com.sun.star.table.TableSortFieldType.ALPHANUMERIC Sort the data as text.

Table 188. The com.sun.star.table.TableSortField structure.
Property Description

Field Zero-based index of the row or column in the table to sort. The index is relative to the
start of the sort range.

IsAscending If True, sort the data in ascending order.

IsCaseSensitive If True, the sort is case sensitive.

FieldType Specify the data type as a TableSortFieldType (see Table 187).

CollatorLocale The Locale object to use when sorting text.

CollatorAlgorithm The sorting algorithm used by the collator when sorting text. Check the interface
com.sun.star.i18n.XCollator to investigate what algorithms are supported for your locale.
I have always used the default value.

When you request a sort operation, an array of properties is passed to the sort routine. The properties
determine what to sort and how it is sorted. One of the supported properties is SortFields (see Table 189),
which contains the array of TableSortField structures that determine how the rows or columns are sorted.

Table 189. The old way to specify a sort using a SortDescriptor.
Property Description

IsCaseSensitive If True, the sort is case sensitive.

SortAscending If True, sort the data in ascending order. This property typically is not used, because the
TableSortField specifies IsAscending for each field.

SortColumns If True, columns are sorted. If False, rows are sorted.

CollatorLocale The Locale object to use when sorting text (usually set in the TableSortField).

CollatorAlgorithm Sorting algorithm to use (usually set in the TableSortField).

SortFields Array of type TableSortField (see Table 188) that directs what is sorted.

MaxSortFieldsCount Long Integer that specifies the maximum number of sort fields the descriptor can hold. This
value cannot be set, but it can be read.

ContainsHeader If True, the first row or column is considered a header and is not sorted.

Orientation This property is deprecated and should no longer be used!

487

Table 188 and Table 189 reveal that there is a great deal of redundancy. For example, you can specify if the
sort is case sensitive either globally (using Table 189) or for each specific field (using Table 188). Although
the redundant fields in Table 189 are not required and are therefore typically not used, a new set of sort
descriptors has been introduced (see Table 190). Although you can use properties from Table 189 or Table
190, you cannot mix the two. My recommendation is that you use the new set in Table 190; the OO
development team has already deprecated the use of the Orientation property in Table 189.

Table 190. The new way to specify a sort using a SortDescriptor2.
Property Description

SortFields Array of type TableSortField (see Table 188) that directs what is sorted.

MaxSortFieldsCount Long Integer that specifies the maximum number of sort fields the descriptor can hold. This
value cannot be set, but it can be read.

IsSortColumns If True, columns are sorted. If False, rows are sorted.

BindFormatsToContent If True, cell formats are moved with the contents during the sort. This property matters only
if different cells in the sort range use different formatting.

IsUserListEnabled If True, a user-defined sorting list is used from the GlobalSheetSettings.

UserListIndex Specify which user-defined sorting list is used as a Long Integer.

CopyOutputData If True, the sorted data is copied to another position in the document.

OutputPosition CellAddress that specifies where to copy the sorted data (if CopyOutputData is True).

ContainsHeader If True, the first row or column is considered a header and is not sorted.

The first step in sorting a range is to define the fields on which to sort by using an array of type SortField.
Next, define the properties from Table 190 that you intend to use in the sort. Finally, call the sort() routine
on the range to sort. The macro in Listing 431 performs a descending sort on the first column.

Listing 431. Sort one column in a Calc sheet.
Sub SortColZero
 Dim oSheet
 Dim oRange
 Dim oSortFields(0) as new com.sun.star.util.SortField
 Dim oSortDesc(0) as new com.sun.star.beans.PropertyValue

 oSheet = ThisComponent.Sheets(0)
 REM Set the range on which to sort
 oRange = oSheet.getCellRangeByName("B28:D33")

 REM Sort on the first field in the range
 oSortFields(0).Field = 0
 oSortFields(0).SortAscending = FALSE

 REM Set the sort fields to use
 oSortDesc(0).Name = "SortFields"
 oSortDesc(0).Value = oSortFields()

 REM Now sort the range!
 oRange.Sort(oSortDesc())
End Sub

488

Sorting on two columns rather than just one is as easy as adding a second sort field. Listing 432 sorts on the
second and third columns.

Listing 432. Sort two columns in a Calc sheet.
Sub SortColOne
 Dim oSheet
 Dim oRange
 Dim oSortFields(1) as new com.sun.star.util.SortField
 Dim oSortDesc(0) as new com.sun.star.beans.PropertyValue

 oSheet = ThisComponent.Sheets(0)

 REM Set the range on which to sort
 oRange = oSheet.getCellRangeByName("B28:D33")

 REM Sort on the second field in the range
 oSortFields(0).Field = 1
 oSortFields(0).SortAscending = True
 oSortFields(0).FieldType = com.sun.star.util.SortFieldType.NUMERIC

 REM Sort on the third field in the range
 oSortFields(1).Field = 2
 oSortFields(1).SortAscending = True
 oSortFields(1).FieldType = com.sun.star.util.SortFieldType.ALPHANUMERIC

 REM Set the sort fields to use
 oSortDesc(0).Name = "SortFields"
 oSortDesc(0).Value = oSortFields()

 REM Now sort the range!
 oRange.Sort(oSortDesc())
End Sub

The method createSortDescriptor() returns an array of property values that define how a sort should occur.
Inspecting this created sort descriptor indicates that you can use a maximum of three fields when sorting (see
the MaxSortFieldsCount in Table 190). The macro in Listing 433 creates a sort descriptor and then displays
the properties that it contains (see Figure 105).

Listing 433. Display sort descriptor properties in Calc.
Sub DisplaySortDescriptor
 On Error Resume Next
 Dim oSheet
 Dim oRange ' A range is needed to create the sort descriptor.
 Dim oSortDescript
 Dim i%
 Dim s$
 Dim oDoc 'Reference newly created calc document.

 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())
 oSheet = oDoc.Sheets(0)
 oRange = oSheet.getCellRangeByName("B28:D33")
 oSortDescript = oRange.createSortDescriptor()
 For i = LBound(oSortDescript) To UBound(oSortDescript)
 s = s & oSortDescript(i).Name & " = "

489

 s = s & oSortDescript(i).Value
 s = s & CHR$(10)
 Next
 MsgBox s, 0, "Sort Descriptor"
End Sub

Figure 105. Sort descriptor attributes.

 15.5. Sheets

Most of a Calc document’s functionality is contained in the individual sheets rather than the document as a
whole. The interfaces implemented by the spreadsheet document (see Table 160) are primarily related to the
document as a whole, rather than the individual sheets.

The sheets in a Calc document implement the SheetCellRange service, which provides extensive
functionality. The functionality provided by sheet cell ranges applies to any sheet cell range and is not
limited to sheets. In other words, any range is able to use the methods implemented by the SheetCellRange
service. The individual sheets support other interfaces that are not directly related to sheet cell ranges (see
Table 191).

490

Table 191. Interfaces implemented by the com.sun.star.sheet.Spreadsheet service.
Interfaces Description

com.sun.star.sheet.XSpreadsheet Methods to create a cell cursor.

com.sun.star.container.XNamed Access the spreadsheet name.

com.sun.star.util.XProtectable Methods to protect and unprotect the individual sheet.

com.sun.star.sheet.XDataPilotTablesSupplier Access the DataPilot tables with the method
getDataPilotTables(). In LibreOffice, the Data Pilot is called
Pivot Tables.

com.sun.star.sheet.XScenariosSupplier Access the scenarios with the method getScenarios().

com.sun.star.sheet.XSheetAnnotationsSupplier Access the annotations with the method getAnnotations().

com.sun.star.drawing.XDrawPageSupplier Access the sheet’s draw page with the method getDrawPage().

com.sun.star.table.XTableChartsSupplier Access the document’s chart objects with the method
getCharts().

com.sun.star.sheet.XCellRangeMovement Move cell ranges inside the sheet or to other spreadsheets in this
document.

com.sun.star.sheet.XPrintAreas Access to the print-area settings of this sheet.

com.sun.star.sheet.XSheetPageBreak Access and modify the page breaks in this sheet.

com.sun.star.sheet.XScenario Provide methods for a scenario sheet.

com.sun.star.sheet.XSheetOutline Access the row and column outline settings for the sheet.

com.sun.star.sheet.XSheetAuditing Look for linked cells (detective).

com.sun.star.sheet.XSheetLinkable Methods to link to existing sheets in other documents.

 15.5.1. Linking to an external spreadsheet

An individual sheet may link to a sheet from another spreadsheet document. Linking causes the “link sheet”
to act as a container for the “linked sheet.” After linking to a sheet, although you can modify the linked sheet
in the container, these updates are not propagated back to the original document. If the linked sheet is
changed in the original document, the change is not visible in the link document unless the link itself is
refreshed. You can link documents by using one of the enumerated values in Table 192.

Table 192. Values supported by the com.sun.star.sheet.SheetLinkMode enumeration.
Value Description

com.sun.star.sheet.SheetLinkMode.NONE The sheet is not linked.

com.sun.star.sheet.SheetLinkMode.NORMAL Copy the entire content including values and
formulas.

com.sun.star.sheet.SheetLinkMode.VALUE Copy the content by value; each formula’s returned
value is copied rather than the formula itself.

Use the link() method to establish a link with a sheet in another document. Table 193 lists the link-related
methods supported by a sheet.

Table 193. Methods defined by the com.sun.star.sheet.XSheetLinkable interface.
Method Description

getLinkMode() Get the sheet’s link mode (see Table 192).

491

Method Description

getLinkMode(SheetLinkMode) Set the link mode (see Table 192).

getLinkUrl() Get the link URL.

setLinkUrl(url) Set the link URL.

getLinkSheetName() Get the name of the linked sheet.

setLinkSheetName(name) Set the name of the linked sheet.

link(url, sheetName, filterName, filterOptions,
SheetLinkMode)

Link the sheet to another sheet in another document.

The macro in Listing 434 creates a sheet named “LinkIt” and then links to a sheet in a specified external
document. If the “LinkIt” sheet already exists, the link is obtained from the spreadsheet document and the
link is refreshed. Refreshing a link causes the data linked into the current document to be updated.

Listing 434. Link to an external sheet.
Sub LinkASheet
 Dim oSheets 'The sheets object that contains all of the sheets
 Dim oSheet 'Individual sheet
 Dim oSheetEnum 'For accessing by enumeration
 Dim s As String 'String variable to hold temporary data
 Dim i As Integer 'Index variable
 Dim sURL As String 'URL of the document to import
 Dim oLink 'The link object

 sURL = "file://C:/My%20Documents/CH15/test.ods"
 oSheets = ThisComponent.Sheets

 If oSheets.hasbyName("LinkIt") Then
 REM The links are available from the document object
 REM based on the URL used to load them.
 oLink = ThisComponent.SheetLinks.getByName(sURL)
 oLink.refresh()
 MsgBox "The sheet named LinkIt was refreshed"
 Exit Sub
 End If

 REM Insert the new sheet at the end.
 oSheets.insertNewByName ("LinkIt", oSheets.getCount())
 oSheet = oSheets.getByName("LinkIt")

 oSheet.link(sURL, "Sheet1", "", "", com.sun.star.sheet.SheetLinkMode.NORMAL)

End Sub

The first application that I saw for linked sheets was to consolidate a list of various investments that were
tracked in different Calc documents. Each of the Calc documents contained a summary sheet for the
investments in the document. A single summary document inserted links to the summary page for each of
the other investment sheets.

Although linked sheets are nice, they are sometimes overkill. If you don’t want to reference an entire sheet
from another document, you can set the formula to directly access just one cell. See Listing 435.

492

Listing 435. Link cell A1 to K89 in another document.
oCell = thiscomponent.sheets(0).getcellbyposition(0,0) ' A1
oCell.setFormula("=" & "'file:///home/USER/CalcFile2.odt'#$Sheet2.K89")

 15.5.2. Finding dependencies by using auditing functions

The methods queryDependents() and queryPrecedents(), listed in Table 178, return a list of cells that depend
on a range. The query methods are useful for writing macros that manipulate each dependent cell. The
auditing functionality provided by the XSheetAuditing interface provides methods for visualizing cell
dependencies (see
Table 194).

Table 194. Methods supported by the com.sun.star.sheet.XSheetAuditing interface.
Method Description

hideDependents(CellAddress) Remove arrows for one level of dependents; return True if cells are marked.

hidePrecedents(CellAddress) Remove arrows for one level of precedents; return True if cells are marked.

showDependents(CellAddress) Draw arrows from the CellAddress (see Table 162) to its dependents; return True if
cells are marked.

showPrecedents(CellAddress) Draw arrows to the CellAddress (see Table 162) from its precedents; return True if
cells are marked.

showErrors(CellAddress) Draw arrows from the CellAddress (see Table 162) containing an error and the cells
causing the error; return True if cells are marked.

showInvalid() Show all cells containing invalid values; return True if cells are marked.

clearArrows() Remove all auditing arrows from the sheet.

Each time that the showPrecedents() method is called, another level of precedents is marked with arrows.
After the first call, arrows are drawn from all cells directly referenced by the specified cell. The QueryRange
macro in Listing 419 displays the dependencies (see Figure 100); Listing 436, however, displays the
precedents in the spreadsheet. Figure 106 shows one level of precedents.

The cell B7 contains the formula “=Sum(B1:B6)”. As Figure 106 shows, cell B7 refers to all of the
“summed” cells. If you call the method showPrecedents() again, you’ll see the cells that reference the cells
B2:B6. The showPrecedents() method returns True as long as more precedent cells are marked with arrows.
Figure 107 shows the next level of precedents.

Listing 436. Display precedents.
Function SimpleCalcDocAddition()
 Dim oDoc 'Reference newly created calc document.
 Dim oSheet
 Dim oRange

 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())
 oSheet = oDoc.Sheets(0)
 oSheet.getCellByPosition(0, 0).setValue(1)
 oRange = oSheet.getCellRangeByName("A1:A6")
 oRange.fillAuto(com.sun.star.sheet.FillDirection.TO_BOTTOM, 1)
 oRange = oSheet.getCellRangeByName("B1:B6")
 oRange.setArrayFormula("=A1:A6+1")
 oSheet.getCellByPosition(1, 6).setFormula("=Sum(B1:B6)")
 SimpleCalcDocAddition = oDoc

493

End Function

Sub ShowCellPrecedence()
 Dim oDoc
 Dim oSheet
 Dim oAddr

 oDoc = SimpleCalcDocAddition()
 oSheet = oDoc.Sheets(0)
 oAddr = oSheet.getCellByPosition(1, 6).CellAddress
 oSheet.showPrecedents(oAddr)
 Print "See one level of Precedents for cells B1:B6"
 oSheet.showPrecedents(oAddr)
 Print "See two levels of Precedents for cell B1:B6"
End Sub

Figure 106. One level of precedents.

Figure 107. Two levels of precedents with an array formula in B1:B6.
The arrows in Figure 107 demonstrate two levels of precedents assuming an array formula. If a simple
formula is used in each cell rather than an array formula, the figure changes noticeably. As an exercise,
consider why this is.

494

Figure 108. Two levels of precedents with formulas in B2:B6.

 15.5.3. Outlines

Outlines in a Calc document group rows and columns together so that you can collapse and expand the
groups with a single mouse click. When you create an outline, you must specify whether it’s row-centric or
column-centric by using TableOrientation enumeration (see Table 195). The methods in Table 196 behave
like their menu counterparts in the OOo GUI for dealing with spreadsheet outlines.

Table 195. Values defined by the com.sun.star.table.TableOrientation enumeration.
Value Description

com.sun.star.table.TableOrientation.ROWS Use rows.

com.sun.star.table.TableOrientation.COLUMNS Use columns.

Table 196. Methods supported by the com.sun.star.sheet.XSheetOutline interface.
Method Description

group(CellRangeAddress, TableOrientation) Group the cells in the cell range into one group.

ungroup(CellRangeAddress, TableOrientation) Remove the innermost levels from the group.

autoOutline(CellRangeAddress) Create outline groups based on formula
references.

clearOutline() Remove all outline groups from the sheet.

hideDetail(CellRangeAddress) Collapse an outline group.

showDetail(CellRangeAddress) Open (uncollapse) an outline group.

showLevel(n, CellRangeAddress) Show outlined groups from levels one through n.

 15.5.4. Copying, moving, and inserting cells

In a Writer document, the primary method for moving or copying text content is to use the clipboard. The
Spreadsheet service, however, provides methods for directly moving and inserting cells. When new cells are
inserted, you specify how cells are moved out of the way by using the CellInsertMode enumeration (see
Table 197).

495

Table 197. Values defined by the com.sun.star.sheet.CellInsertMode enumeration.
Value Description

com.sun.star.sheet.CellInsertMode.NONE No cells are moved.

com.sun.star.sheet.CellInsertMode.DOWN Move cells down.

com.sun.star.sheet.CellInsertMode.RIGHT Move cells right.

com.sun.star.sheet.CellInsertMode.ROWS Move the entire row down.

com.sun.star.sheet.CellInsertMode.COLUMNS Move the entire column right.

Use the insertCells(CellRangeAddress, CellInsertMode) method to create space the size of the cell range
address. If the insert mode is COLUMNS, then the entire column, starting with the leftmost column in the
range, is shifted to the right the width of the range. If the insert mode is RIGHT, then the entire column is
not shifted right; only the rows in the range are shifted. The cell insert modes ROWS and DOWN behave
similarly to the COLUMNS and RIGHT modes. Using the cell insert range of NONE causes no cells to be
moved; in other words, nothing happens. Listing 437 moves cells down.

Listing 437. Move the range L4:M5 down.
Dim oSheet
Dim oRangeAddress 'The range to move
oSheet = ThisComponent.Sheets(0)
oRangeAddress = oSheet.getCellRangeByName("L4:M5").getRangeAddress()
oSheet.insertCells(oRangeAddress, com.sun.star.sheet.CellInsertMode.DOWN)

Tip The insertCells() and removeRange() methods silently fail if the insertion will cause an array formula to be
split.

The removeRange(CellRangeAddress, CellInsertMode) method is essentially an “undo” command for the
insertCells() method.

Use the copyRange(CellAddress, CellRangeAddress) method to copy a range of cells to the location
specified by the cell address. The top-left cell in the cell range address is positioned at the specified cell
address when the range is copied. The net effect of the copyRange() method is the same as copying a range
of cells to the clipboard, positioning the cursor at the specified cell, and then pasting the cells into place (see
Listing 438).

Listing 438. Copy the range L4:M5 to N8.
Dim oSheet
Dim oRangeAddress 'The range to copy
Dim oCellAddress 'Destination address
oSheet = ThisComponent.Sheets(0)
oRangeAddress = oSheet.getCellRangeByName("L4:M5").getRangeAddress()
oCellAddress = oSheet.getCellByPosition(13, 7).getCellAddress() 'N8
oSheet.copyRange(oCellAddress, oRangeAddress)

Use the moveRange(CellAddress, CellRangeAddress) method to move (rather than copy) a range of cells.
The behavior of the moveRange() method is similar to that of the copyRange() method except that the cells
are moved, rather than copied; the cells in the original range are left empty.

496

 15.5.5. Copy data between documents

The copyRange method only supports copying a range in the same document. Other methods must be used
to copy data between different documents.

Data functions

Use getData() and setData() to copy numbers. Use getDataArray() and setDataArray() to copy numbers and
strings. The data functions are fast and easy, but they only copy data, not formatting.

Clipboard

Use dispatch commands to copy data using the clipboard. The clipboard provides many options when
copying data. The primary issue with using the clipboard, is that the clipboard is inherently unsafe because
other applications may be using the clipboard at the same time. Although the clipboard is not inherently safe,
Paste Special provides numerous options when pasting data not available using other methods.

Listing 439. Use the clipboard to copy data between two documents.
oDispatcher = createUnoService("com.sun.star.frame.DispatchHelper")
oFrame1 = oDoc1.CurrentController.Frame
' Use the documents controller to select the cells A1:B2.
oSheet = oDoc1.Sheets(0)
rng = oSheet.getCellRangeByName("A1:B2")
oDoc1.CurrentController.Select(rng)
' Use a dispatch to copy to the clipboard.
oDispatcher.executeDispatch(oFrame1, ".uno:Copy", "", 0, Array())
' Upper left corner of where to paste the data.
rng = oDoc2.Sheets(0).getCellRangeByName("A1")
' Place the view cursor there then paste the clipboard.
oDoc2.CurrentController.Select(rng)
oFrame2 = oDoc2.CurrentController.Frame
oDispatcher.executeDispatch(oFrame2, ".uno:Paste", "", 0, Array())

Use the macro recorder with Paste Special to see how arguments are set with paste special. One example is
as follows:

Listing 440. Arguments for Paste Special.
Dim args1(5) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Flags"
args1(0).Value = "SVDNT"
args1(1).Name = "FormulaCommand"
args1(1).Value = 0
args1(2).Name = "SkipEmptyCells"
args1(2).Value = false
args1(3).Name = "Transpose"
args1(3).Value = false
args1(4).Name = "AsLink"
args1(4).Value = false
args1(5).Name = "MoveMode"
args1(5).Value = 4
oDispatcher.executeDispatch(oFrame2, ".uno:InsertContents", "", 0, args1())

497

Transferable content

Transferable content, the newest method available for copying content, returns a copy of the selected data as
though it was copied to the clipboard, without using the clipboard. Transferable content is also available in
Writer documents. Unlike the clipboard, there is no inherent problems with transferable content, but you
also do not have the flexibility of paste special.

Listing 441. Use transferable content to copy data between two documents.
 Dim o
 Dim oSheet
 Dim oRange
 Dim oDoc

 oRange = oDoc1.Sheets(0).getCellRangeByName("B2:C3")
 oDoc1.CurrentController.select(oRange)
 o = oDoc1.CurrentController.getTransferable()

 oRange = oDoc2.Sheets(0).getCellRangeByName("F1")
 oDoc2.CurrentController.select(oRange)
 oDoc2.CurrentController.insertTransferable(o)

 15.5.6. Data pilot and pivot tables

OpenOffice.org has a feature named Data Pilot, but LibreOffice changed the name the Pivot Tables. This
section assumes that you already know and understand the feature, and merely demonstrates how to
implement some of the functions using macros.

Tip I could write a large section on the numerous uses of data pilot tables. To get a feel for the possibilities,
look at the input table in Table 198 and then inspect the summary data in Figure 109, which is
automatically generated by the data pilot functionality.

The DataPilot is a powerful mechanism that allows you to combine, compare, and analyze large amounts of
data. The DataPilot manipulates portions of the data from the “source table” and then displays the results in
a new location. Unfortunately, numerous details are involved with the creation and manipulation of data
pilot tables, but this is due to their enormous flexibility.

There are numerous details with respect to creating and using data pilot tables. Although the numerous
details are logical and straightforward, they are so many that it is easy to become lost in the details. It’s
instructive, therefore, to review a simple example that clarifies the details. I’ll present the specific types and
enumerations following the example; you can review these as required.

A data pilot example

For this example, I assume a fake company that sells books, candy, and pens. The company has offices in
three states and multiple salespeople in each state. I created a spreadsheet that shows the sales for each
product broken down by salesperson and year. The final goal of this example is to create a data pilot table
that summarizes the sales of each product by type and state. The initial data used for this example in shown
in Table 198.

498

Table 198. Data values used for the DataPilot / PivotTable examples.
Item State Team 2002 2003 2004

Books Michigan Jean $14,788.00 $30,222.00 $23,490.00

Candy Michigan Jean $26,388.00 $15,641.00 $32,849.00

Pens Michigan Jean $16,569.00 $32,675.00 $25,396.00

Books Michigan Volker $21,961.00 $21,242.00 $29,009.00

Candy Michigan Volker $26,142.00 $22,407.00 $32,841.00

Pens Michigan Volker $29,149.00 $18,320.00 $34,429.00

Books Ohio Rebecca $21,845.00 $33,503.00 $32,200.00

Candy Ohio Rebecca $23,799.00 $23,597.00 $23,020.00

Pens Ohio Rebecca $28,328.00 $17,930.00 $23,303.00

Books Ohio Catherine $22,797.00 $31,386.00 $39,490.00

Candy Ohio Catherine $13,613.00 $16,174.00 $35,163.00

Pens Ohio Catherine $17,103.00 $32,563.00 $35,804.00

Books Kentucky Michelle $29,952.00 $19,133.00 $33,480.00

Candy Kentucky Michelle $15,348.00 $31,094.00 $39,722.00

Pens Kentucky Michelle $24,358.00 $27,236.00 $27,129.00

Books Kentucky Andy $17,199.00 $26,386.00 $30,450.00

Candy Kentucky Andy $11,628.00 $18,232.00 $28,953.00

Pens Kentucky Andy $23,828.00 $32,031.00 $37,551.00

Generating the data

The data shown in Table 198 is generated by the macro in Listing 442, which sets both the data and the
formatting. Watch for the following techniques:

• Generating random data.

• Setting all of the data at one time using the method setDataArray().

• Centering the headers and setting the cell background color.

• Formatting a cell as currency.

499

Listing 442. Create the document used for the DataPilot / PivotTable examples.
Function createPivotTableDoc()
 Dim oDoc 'Reference newly created calc document.
 Dim oSheet
 Dim oRange
 Dim oData
 Dim oFormats

 oData = Array(Array("Item", "State", "Team", "2002", "2003", "2004"), _
 Array("Books", "Michigan", "Jean", 14788, 30222, 23490), _
 Array("Candy", "Michigan", "Jean", 26388, 15641, 32849), _
 Array("Pens", "Michigan", "Jean", 16569, 32675, 25396), _
 Array("Books", "Michigan", "Volker", 21961, 21242, 29009), _
 Array("Candy", "Michigan", "Volker", 26142, 22407, 32841), _
 Array("Pens", "Michigan", "Volker", 29149, 18320, 34429), _
 Array("Books", "Ohio", "Rebecca", 21845, 33503, 32200), _
 Array("Candy", "Ohio", "Rebecca", 23799, 23597, 23020), _
 Array("Pens", "Ohio", "Rebecca", 28328, 17930, 23303), _
 Array("Books", "Ohio", "Catherine", 22797, 31386, 39490), _
 Array("Candy", "Ohio", "Catherine", 13613, 16174, 35163), _
 Array("Pens", "Ohio", "Catherine", 17103, 32563, 35804), _
 Array("Books", "Kentucky", "Michelle", 29952, 19133, 33480), _
 Array("Candy", "Kentucky", "Michelle", 15348, 31094, 39722), _
 Array("Pens", "Kentucky", "Michelle", 24358, 27236, 27129), _
 Array("Books", "Kentucky", "Andy", 17199, 26386, 30450), _
 Array("Candy", "Kentucky", "Andy", 11628, 18232, 28953), _
 Array("Pens", "Kentucky", "Andy", 23828, 32031, 37551))

 oDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_default", 0, Array())
 oSheet = oDoc.Sheets(0)
 oSheet.getCellRangeByName("A1:F19").setDataArray(oData)

 ' Set the title area
 oRange = oSheet.getCellRangeByName("A1:F1")
 oRange.HoriJustify = com.sun.star.table.CellHoriJustify.CENTER
 oRange.CellBackColor = RGB(225, 225, 225)

 ' Format numbers as currency
 oFormats = oDoc.NumberFormats
 Dim aLocale As New com.sun.star.lang.Locale
 oRange = oSheet.getCellRangeByName("D2:F19")
 oRange.NumberFormat = oFormats.getStandardFormat(_
 com.sun.star.util.NumberFormat.CURRENCY, aLocale)
 createPivotTableDoc = oDoc
End Function

Creating the data pilot table

The macro in Listing 443 creates and inserts a data pilot table as follows:

1. Create the data pilot table descriptor using the method createDataPilotDescriptor().

2. Set the source range of the data to use.

500

3. Configure which column is used for which purpose.

4. Insert the data pilot table descriptor into the set of tables.

Listing 443. Create a data pilot table.
Sub CreateDataPilotTable()
 Dim oSheet 'Sheet that contains the data pilot
 Dim oRange 'Range for the data pilot source
 Dim oRangeAddress'The address of the range object
 Dim oTables 'Collection of data pilot tables
 Dim oTDescriptor 'A single data pilot descriptor
 Dim oFields 'Collection of all fields
 Dim oField 'A single field
 Dim oCellAddress As New com.sun.star.table.CellAddress
 Dim oDoc

 oDoc = createPivotTableDoc()
 oSheet = oDoc.Sheets.getByIndex(0)
 oRange = oSheet.getCellRangeByName("A1:F19")

 REM Sure, I could simply specify the address, but this is much more fun!
 REM Set the destination address to be two rows below the data.
 oRangeAddress = oRange.getRangeAddress()
 oCellAddress.Sheet = oRangeAddress.Sheet
 oCellAddress.Column = oRangeAddress.StartColumn
 oCellAddress.Row = oRangeAddress.EndRow + 2

 oTables = oSheet.getDataPilotTables()

 REM Step 1, create the descriptor
 oTDescriptor = oTables.createDataPilotDescriptor()

 REM Step 2, Set the source range
 oTDescriptor.setSourceRange(oRangeAddress)

 REM Step 3, Set the fields
 oFields = oTDescriptor.getDataPilotFields()

 REM Column 0 in the source is Item and I want this as a row item.
 oField = oFields.getByIndex(0)
 oField.Orientation = com.sun.star.sheet.DataPilotFieldOrientation.ROW

 REM Column 1 in the source is State and I want this as a column item.
 oField = oFields.getByIndex(1)
 oField.Orientation = com.sun.star.sheet.DataPilotFieldOrientation.COLUMN

 REM Column 3 in the source is 2002. Create a sum in the data for this!
 oField = oFields.getByIndex(3)
 oField.Orientation = com.sun.star.sheet.DataPilotFieldOrientation.DATA
 oField.Function = com.sun.star.sheet.GeneralFunction.SUM

 oTables.insertNewByName("MyFirstDataPilot", oCellAddress, oTDescriptor)
End Sub

501

Figure 109. The macro in Listing 443 inserts the data pilot table immediately after the source data.

Manipulating data pilot tables

The getDataPilotTables() method, supported by each spreadsheet, returns an object that supports the service
com.sun.star.sheet.DataPilotTables. The returned service provides access to the data pilot tables in the
spreadsheet using both indexed and enumeration access. The DataPilotTables object also supports the
methods in Table 199.

Table 199. Methods defined by the com.sun.star.sheet.XDataPilotTables interface.
Method Description

createDataPilotDescriptor() Create a new data pilot descriptor.

insertNewByName(name, CellAddress,
DataPilotDescriptor)

Add a new data pilot table to the collection that uses the provided
CellAddress (see Table 162) as the top-left corner of the table.

removeByName(name) Delete a data pilot table from the collection.

Data pilot fields

Each “field” in the created data pilot table is represented by a column in the source data pilot table (cell
range) and is named using the topmost cell of the column in the range. The field name is available through
the methods getName() and setName(String).

Each field contains an Orientation property of type DataPilotFieldOrientation that specifies how the field is
used in the final output (see Table 200). The Function property specifies the function used to calculate
results for this field based on the GeneralFunction enumeration (see Table 181).

Table 200. Values defined by the com.sun.star.sheet.DataPilotFieldOrientation enumeration.
Value Description

com.sun.star.sheet.DataPilotFieldOrientation.HIDDEN Do not use the field.

com.sun.star.sheet.DataPilotFieldOrientation.COLUMN Use the field as a column field.

com.sun.star.sheet.DataPilotFieldOrientation.ROW Use the field as a row field.

com.sun.star.sheet.DataPilotFieldOrientation.PAGE Use the field as a page field.

com.sun.star.sheet.DataPilotFieldOrientation.DATA Use the field as a data field.

502

Filtering data pilot fields

The fields in the created table may be conditionally displayed based on a FilterOperator (see Table 201).

Table 201. Values defined by the com.sun.star.sheet.FilterOperator enumeration.
Value Description

com.sun.star.sheet.FilterOperator.EMPTY Select empty entries.

com.sun.star.sheet.FilterOperator.NOT_EMPTY Select nonempty entries.

com.sun.star.sheet.FilterOperator.EQUAL The entry’s value must equal the specified value.

com.sun.star.sheet.FilterOperator.NOT_EQUAL The entry’s value must not be equal to the specified value.

com.sun.star.sheet.FilterOperator.GREATER The entry’s value must be greater than the specified value.

com.sun.star.sheet.FilterOperator.GREATER_EQUAL The entry’s value must be greater than or equal to the
specified value.

com.sun.star.sheet.FilterOperator.LESS The entry’s value must be less than the specified value.

com.sun.star.sheet.FilterOperator.LESS_EQUAL The entry’s value must be less than or equal to the
specified value.

com.sun.star.sheet.FilterOperator.TOP_VALUES Select a specified number with the greatest values.

com.sun.star.sheet.FilterOperator.TOP_PERCENT Select a specified percentage with the greatest values.

com.sun.star.sheet.FilterOperator.BOTTOM_VALUES Select a specified number with the lowest values.

com.sun.star.sheet.FilterOperator.BOTTOM_PERCENT Select a specified percentage with the lowest values.

The individual filter operators are combined using the FilterConnection enumeration (see Table 202). Each
individual filter field is stored in a TableFilterField structure (see Table 203). The entire collection of
TableFilterFields is stored in a SheetFilterDescriptor. The descriptor supports the methods getFilterFields()
and setFilterFields(), to get and set the table filter fields as an array of TableFilterField structures. The
properties in
Table 204 are defined by the SheetFilterDescriptor to direct the filtering process.

Table 202. Values defined by the com.sun.star.sheet.FilterConnection enumeration.
Value Description

com.sun.star.sheet.FilterConnection.AND Both conditions must be satisfied.

com.sun.star.sheet.FilterConnection.OR At least one of the conditions must be satisfied.

Table 203. Properties in the com.sun.star.sheet.TableFilterField structure.
Property Description

Connection Specify how the condition is connected to the previous condition as a FilterConnection (see
Table 202).

Field Specify which field (column) is used for the condition as a Long Integer.

Operator Specify the condition type as a FilterOperator (see Table 201).

IsNumeric If True, the NumericValue property is used; otherwise the StringValue is used.

NumericValue Specify a numeric value for the condition as a Double.

StringValue Specify a String value for the condition.

503

Table 204. Properties defined by the com.sun.star.sheet.SheetFilterDescriptor service.
Property Description

IsCaseSensitive If True, string comparisons are case sensitive.

SkipDuplicates If True, duplicate entries are not included in the result.

UseRegularExpressions If True, string values in the TableFilterField structure are interpreted as regular
expressions.

SaveOutputPosition If True (and CopyOutputData is True), the OutputPosition is saved for future calls.

Orientation Specify if columns or rows are filtered using the TableOrientation enumeration (see
Table 195).

ContainsHeader If True, the first row (or column) is assumed to be a header and is not filtered.

CopyOutputData If True, the filtered data is copied to the OutputPosition.

OutputPosition Specify where filtered data is copied as a CellAddress (see Table 162).

MaxFieldCount The maximum number of filter fields in the descriptor as a Long Integer.

Tables

Each data pilot table is based on a spreadsheet cell range. Each data pilot table also supports the object
method getOutputRange(), which returns a CellRangeAddress (see Table 169). The refresh() method re-
creates the table using the current data in the source range. Each data pilot table also suports the
DataPilotDescriptor service, which defines the methods in Table 205.

Table 205. Methods defined by the com.sun.star.sheet.XDataPilotDescriptor interface.
Method Description

getTag() Get the data pilot table tag as a String.

setTag(String) Set the data pilot table tag.

getSourceRange() Return the CellRangeAddress (see Table 169) containing the data for
the data pilot table.

setSourceRange(CellRangeAddress) Set the cell range containing the data for the data pilot table.

getFilterDescriptor() Get the SheetFilterDescriptor (see Table 204) that specifies which data
from the source cell range is used for the data pilot table.

getDataPilotFields() Get the data pilot fields as an object that supports indexed access.

getColumnFields() Get the data pilot fields used as column fields as an object that
supports indexed access.

getRowFields() Get the data pilot fields used as row fields as an object that supports
indexed access.

getPageFields() Get the data pilot fields used as page fields as an object that supports
indexed access.

getDataFields() Get the data pilot fields used as data fields as an object that supports
indexed access.

getHiddenFields() Get the data pilot fields that are not used as column, row, page, or data
fields.

 15.5.7. Sheet cursors

In a Calc document, a cursor is a cell range that contains methods to move through the contained cells.
Cursors are not used as frequently with Calc documents as with Writer documents because, unlike Writer

504

documents, most content is directly accessible by index or name. Sheet cursors, like cell ranges, are limited
to one sheet at a time. The SheetCellCursor service used by Calc documents is similar to cell cursors used in
text tables (see Table 206).

Table 206. Primary components supported by the com.sun.star.sheet.SheetCellCursor service.
Component Description

 com.sun.star.table.CellCursor Methods to control the position of a cell cursor.

 com.sun.star.table.CellRange Methods to access cells or subranges of a cell range (see Table 176).

com.sun.star.sheet.XSheetCellCursor Advanced methods to control the position of the cursor.

com.sun.star.sheet.SheetCellRange A rectangular range of cells in a spreadsheet document; this is an
extension of the CellRange service for use in spreadsheet documents.

com.sun.star.sheet.XUsedAreaCursor Methods to find the used area in a sheet.

The primary methods supported by the SheetCellCursor are shown in Table 207.

Table 207. Primary methods supported by the com.sun.star.sheet.SheetCellCursor service.
Interface Method Description

XCellCursor gotoStart() Move the cursor to the first filled cell at the beginning of a
contiguous series of filled cells. This cell may be outside the
cursor’s range.

XCellCursor gotoEnd() Move the cursor to the last filled cell at the end of a contiguous
series of filled cells. This cell may be outside the cursor’s range.

XCellCursor gotoNext() Move the cursor to the next (right) unprotected cell.

XCellCursor gotoPrevious() Move the cursor to the previous (left) unprotected cell.

XCellCursor gotoOffset(nCol, nRow) Shift the cursor’s range relative to the current position. Negative
numbers shift left and up; positive numbers shift right and down.

XCellRange getCellByPosition(left, top) Get a cell within the range.

XCellRange getCellRangeByPosition(left
, top, right, bottom)

Get a cell range within the range.

XCellRange getCellRangeByName(name
)

Get a cell range within the range based on its name. The string
directly references cells using the standard formats — such as
“B2:D5” or “B2” — or defined cell range names.

XSheetCellCursor collapseToCurrentRegion() Expand the range to contain all contiguous nonempty cells.

XSheetCellCursor collapseToCurrentArray() Expand the range to contain the current array formula.

XSheetCellCursor collapseToMergedArea() Expand the range to contain merged cells that intersect the range.

XSheetCellCursor expandToEntireColumns() Expand the range to contain all columns that intersect the range.

XSheetCellCursor expandToEntireRows() Expand the range to contain all rows that intersect the range.

XSheetCellCursor collapseToSize(nCols,
nRows)

Without changing the upper-left corner, set the cursor range size.

XSheetCellRange getSpreadsheet() Get the sheet object that contains the cell range.

XUsedAreaCursor gotoStartOfUsedArea() Set the cursor to the start of the used area.

XUsedAreaCursor gotoEndOfUsedArea() Set the cursor to the end of the used area.

505

Cell ranges, and therefore cell cursors, deal with rectangular regions. The use of rectangular regions may be
obvious now that I state it, but it caught me by surprise when I tested the gotoStart() and gotoEnd() methods
listed in Table 207. I started with the configuration shown in Figure 101 when writing the code in Listing
444.

Listing 444. Simple cursor movement commands use contiguous blocks.
oCurs = oSheet.createCursorByRange(oSheet.getCellRangeByName("C3"))
oCurs.gotoStart() REM Move the cursor to cell B1
oCurs.gotoEnd() REM Move the cursor to cell E8
oCurs.gotoStart() REM Move the cursor to cell E8

The first line in Listing 444 positions the cursor at cell C3, right in the middle of a block of values. In Figure
101, the leftmost contiguous column is B and the topmost contiguous row is 1. The method gotoStart(),
therefore, positions the cursor in the top-left corner at location B1. This is where things become a little bit
unexpected. The rightmost contiguous column is E and the bottommost contiguous row is 8. The method
gotoEnd(), therefore, positions the cursor at location E8. As it is shown in Figure 101, the cell E8 is
completely disconnected from the contiguous group of cells. The cursor is positioned to cell E8, even if it
does not contain a value. The cursor is no longer related to the original block of cells, so the method
gotoStart() does not move the cursor back to cell B1.

To understand the behavior of Listing 444, it’s important to understand how OOo determines contiguous
cells, because it isn’t documented anywhere that I can find. Experimentally, I have determined that the set of
contiguous nonempty cells is defined as the smallest range (square block of cells) that can be enclosed by
empty cells. If cell E9 contained a value, then even though cells E8 and E9 are not directly connected via
nonempty cells to the original block of cells, they would both be considered part of the block of contiguous
nonempty cells.

The method collapseToCurrentRegion() causes the cursor to contain the block of contiguous cells. The only
caveat is that after the range is collapsed, it always contains the original range, even if this range includes
unnecessary empty cells. The method collapseToCurrentArray() is similar to collapseToCurrentRegion(),
except that it returns a range that contains an array formula. The upper-left corner of the region must include
an array formula for the collapseToCurrentArray() method to work.

The code snippet in Listing 445 creates a cursor over a range and then demonstrates that getCellByPosition()
and getCellRangeByPosition() are relative to the upper-left corner of the range. The method
getCellRangeByName() generates an exception if a cell outside the range is requested.

Listing 445. Some commands work only relative to the range.
oCurs = oSheet.createCursorByRange(oSheet.getCellRangeByName("C3:F12"))
oCell = oCurs.getCellByPosition(0, 0) REM Cell C3
oRange = oCurs.getCellRangeByPosition(1, 0, 3, 2) REM D3:F5
oRange = oCurs.getCellRangeByName("C4:D6") REM C4:D6
oRange = oCurs.getCellRangeByName("C2:D6") REM Error C2 not in range!

Tip The methods getCellByPosition(), getCellRangeByPosition(), and getCellRangeByName() cannot return a
value that is not in the range.

 15.6. Calc documents

Many of the document-level methods and properties affect the entire document — for example, the ability
to save and print a document. Other methods and properties exist purely as a convenience and the
information is also available at the sheet level. For example, the Calc document acts as a draw-page supplier

506

to access all of the draw pages, even though they are available individually from the sheet that contains
them.

 15.6.1. Named range

The official definition of a named range is a named formula expression. Typically, a named range represents
a cell range, but it may also refer to external data. Naming ranges allows you to give meaningful names to
things that you reference. Named ranges may therefore be used as an address in a formula; for example, after
defining a range named Scores, I can use the formula =Sum(Scores). The NamedRangeFlag constants define
how a named range may be used (see Table 208).

Table 208. Constants defined by the com.sun.star.sheet.NamedRangeFlag constant group.
Value Name Description

1 FILTER_CRITERIA The range contains filter criteria.

2 PRINT_AREA The range can be used as a print range.

4 COLUMN_HEADER The range can be used as column headers for printing.

8 ROW_HEADER The range can be used as row headers for printing.

Each named range service supports the methods in Table 209.

Table 209. Methods implemented by the com.sun.star.sheet.NamedRange service.
Method Description

getReferredCells() Get the CellRange referenced by named range.

getContent() The named range content is a string and can be a reference to a cell, cell range,
or formula expression.

setContent(String) Set the content of the named range.

getReferencePosition() Get the CellAddress used as a base for relative references in the content.

setReferencePosition(CellAddress) Set the reference position.

getType() Get the type as a NamedRangeFlag constant (see Table 208).

setType(NamedRangeFlag) Set the type of the named range.

The document’s NamedRanges property contains the collection of named ranges in the document. You can
extract each individual named range by using named and indexed access.

The method addNewByname() accepts four arguments; the name, content, position, and type. The fourth
argument to the method addNewByName() is a combination of flags that specify how the named range will
be used — the most common value is 0, which is not a defined constant value. The name and the content are
both of type String. The CellAddress specifies the base address for relative cell references.

Listing 446. Create a named range that references $Sheet1.$B$3:$D$6.
Sub AddNamedRange()
 Dim oRange ' The created range.
 Dim oRanges ' All named ranges.
 Dim sName$ ' Name of the named range to create.
 Dim oCell ' Cell object.
 Dim s$

507

 sName$ = "MyNRange"
 oRanges = ThisComponent.NamedRanges
 If NOT oRanges.hasByName(sName$) Then
 REM I can obtain the cell address by obtaining the cell
 REM and then extracting the address from the cell.
 Dim oCellAddress As new com.sun.star.table.CellAddress
 oCellAddress.Sheet = 0 'The first sheet.
 oCellAddress.Column = 1 'Column B.
 oCellAddress.Row = 2 'Row 3.

 REM The first argument is the range name.
 REM The second argument is formula or expression to
 REM use. The second argument is usually a string that
 REM defines a range.
 REM The third argument specifies the base address for
 REM relative cell references.
 REM The fourth argument is a set of flags that define
 REM how the range is used, but most ranges use 0.
 REM The fourth argument uses values from the
 REM NamedRangeFlag constants.
 s$ = "$Sheet1.$B$3:$D$6"
 oRanges.addNewByName(sName$, s$, oCellAddress, 0)
 End If
 REM Get a range using the created named range.
 oRange = ThisComponent.NamedRanges.getByName(sName$)

 REM Print the string contained in cell $Sheet1.$B$3
 oCell = oRange.getReferredCells().getCellByPosition(0,0)
 Print oCell.getString()
End Sub

The third argument, a cell address, acts as the base address for cells referenced in a relative way. If the cell
range is not specified as an absolute address, the referenced range will be different based on where in the
spreadsheet the range is used. The relative behavior is illustrated in Listing 447, which also illustrates
another usage of a named range—defining an equation. The macro creates the named range AddLeft, which
refers to the equation A3+B3 with C3 as the reference cell. The cells A3 and B3 are the two cells directly to
the left of C3, so, the equation =AddLeft calculates the sum of the two cells directly to the left of the cell
that contains the equation. Changing the reference cell to C4, which is below A3 and B3, causes the AddLeft
equation to calculate the sum of the two cells that are to the left on the previous row.

Listing 447. Create the AddLeft named range.
Sub AddNamedFunction()
 Dim oSheet 'Sheet that contains the named range.
 Dim oCellAddress 'Address for relative references.
 Dim oRanges 'The NamedRanges property.
 Dim oRange 'Single cell range.
 Dim sName As String 'Name of the equation to create.

 sName = "AddLeft"
 oRanges = ThisComponent.NamedRanges
 If NOT oRanges.hasByName(sName) Then
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("C3")

508

 oCellAddress = oRange.getCellAddress()
 oRanges.addNewByName(sName, "A3+B3", oCellAddress, 0)
 End If
End Sub

Use the method addNewFromTitles(CellRangeAddress, Border) to create named cell ranges from titles in a
cell range. The Border value is taken from Table 210 and it specifies where the titles are located in the cell
range.

Table 210. Enumerated values defined by the com.sun.star.sheet.Border enumeration.
Value Description

com.sun.star.sheet.Border.TOP Select the top border.

com.sun.star.sheet.Border.BOTTOM Select the bottom border.

com.sun.star.sheet.Border.RIGHT Select the right border.

com.sun.star.sheet.Border.LEFT Select the left border.

The next macro creates three named ranges based on the top row of a cell range.

Listing 448. Create many named ranges.
Sub AddManyNamedRanges()
 Dim oSheet 'Sheet that contains the named range.
 Dim oAddress 'Range address.
 Dim oRanges 'The NamedRanges property.
 Dim oRange 'Single cell range.

 oRanges = ThisComponent.NamedRanges
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("A1:C20")
 oAddress = oRange.getRangeAddress()
 oRanges.addNewFromTitles(oAddress, com.sun.star.sheet.Border.TOP)
End Sub

Use the method outputList(CellAddress) to write a list of the named ranges to a sheet. The first column
contains the name of each named range, and the second column contains the content. Finally, use the
removeByName(name) method to remove a named range.

 15.6.2. Database range

Although a database range can be used as a regular named range, a database range also defines a range of
cells in a spreadsheet to be used as a database. Each row in a range corresponds to a record and each cell
corresponds to a field. You can sort, group, search, and perform calculations on the range as if it were a
database.

A database range provides behavior that is useful when performing database related activities. For example,
you can mark the first row as headings. To create, modify, or delete a database range, use Data > Define
Range to open the Define Data Range dialog.

In a macro, a database range is accesses, created, and deleted from the DatabaseRanges property. The
following macro creates a database range named “MyName” and sets the range to be used as an auto filter.

Listing 449. Create a database range and an auto filter.
Sub AddNewDatabaseRange()

509

 Dim oRange 'DatabaseRange object.
 Dim oAddr 'Cell address range for the database range.
 Dim oSheet 'First sheet, which will contain the range.
 Dim oDoc 'Reference ThisComponent with a shorter name.

 oDoc = ThisComponent
 If NOT oDoc.DatabaseRanges.hasByName("MyName") Then
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("A1:F10")
 oAddr = oRange.getRangeAddress()
 oDoc.DatabaseRanges.addNewByName("MyName", oAddr)
 End If
 oRange = oDoc.DatabaseRanges.getByName("MyName")
 oRange.AutoFilter = True
End Sub

 15.6.3. Filters

Use filters to limit the visible rows in a spreadsheet. Generic filters, common to all sorts of data
manipulations, are automatically provided by the auto filter capability. You can also define your own filters.

Listing 450. Create a simple sheet filter.
Sub SimpleSheetFilter()
 Dim oSheet ' Sheet that will contain the filter.
 Dim oFilterDesc ' Filter descriptor.
 Dim oFields(0) As New com.sun.star.sheet.TableFilterField

 oSheet = ThisComponent.getSheets().getByIndex(0)

 REM If argument is True, creates an empty filter
 REM descriptor. If argument is False, create a
 REM descriptor with the previous settings.
 oFilterDesc = oSheet.createFilterDescriptor(True)

 With oFields(0)
 REM I could use the Connection property to indicate
 REM how to connect to the previous field. This is
 REM the first field so this is not required.
 '.Connection = com.sun.star.sheet.FilterConnection.AND
 '.Connection = com.sun.star.sheet.FilterConnection.OR

 REM The Field property is the zero based column
 REM number to filter. If you have the cell, you
 REM can use .Field = oCell.CellAddress.Column.
 .Field = 5

 REM Compare using a numeric or a string?
 .IsNumeric = True

 REM The NumericValue property is used
 REM because .IsNumeric = True from above.
 .NumericValue = 80

510

 REM If IsNumeric was False, then the
 REM StringValue property would be used.
 REM .StringValue = "what ever"

 REM Valid operators include EMPTY, NOT_EMPTY, EQUAL,
 REM NOT_EQUAL, GREATER, GREATER_EQUAL, LESS,
 REM LESS_EQUAL, TOP_VALUES, TOP_PERCENT,
 REM BOTTOM_VALUES, and BOTTOM_PERCENT
 .Operator = com.sun.star.sheet.FilterOperator.GREATER_EQUAL
 End With

 REM The filter descriptor supports the following
 REM properties: IsCaseSensitive, SkipDuplicates,
 REM UseRegularExpressions,
 REM SaveOutputPosition, Orientation, ContainsHeader,
 REM CopyOutputData, OutputPosition, and MaxFieldCount.
 oFilterDesc.setFilterFields(oFields())
 oFilterDesc.ContainsHeader = True
 oSheet.filter(oFilterDesc)
End Sub

When a filter is applied to a sheet, it replaces any existing filter for the sheet. Setting an empty filter in a
sheet will therefore remove all filters for that sheet.

Listing 451. Remove the current sheet filter.
Sub RemoveSheetFilter()
 Dim oSheet ' Sheet to filter.
 Dim oFilterDesc ' Filter descriptor.

 oSheet = ThisComponent.getSheets().getByIndex(0)
 oFilterDesc = oSheet.createFilterDescriptor(True)
 oSheet.filter(oFilterDesc)
End Sub

A more advanced filter may filter more than one column.

Listing 452. A simple sheet filter using two columns.
Sub SimpleSheetFilter_2()
 Dim oSheet ' Sheet to filter.
 Dim oRange ' Range to be filtered.
 Dim oFilterDesc ' Filter descriptor.
 Dim oFields(1) As New com.sun.star.sheet.TableFilterField

 oSheet = ThisComponent.getSheets().getByIndex(0)
 oRange = oSheet.getCellRangeByName("E12:G19")

 REM If argument is True, creates an
 REM empty filter descriptor.
 oFilterDesc = oRange.createFilterDescriptor(True)

 REM Setup a field to view cells with content that
 REM start with the letter b.
 With oFields(0)
 .Field = 0 ' Filter column A.

511

 .IsNumeric = False ' Use a string, not a number.
 .StringValue = "b.*" ' Everything starting with b.
 .Operator = com.sun.star.sheet.FilterOperator.EQUAL
 End With

 REM Setup a field that requires both conditions and
 REM this new condition requires a value greater or
 REM equal to 70.
 With oFields(1)
 .Connection = com.sun.star.sheet.FilterConnection.AND
 .Field = 5 ' Filter column F.
 .IsNumeric = True ' Use a number
 .NumericValue = 70 ' Values greater than or equal to 70
 .Operator = com.sun.star.sheet.FilterOperator.GREATER_EQUAL
 End With

 oFilterDesc.setFilterFields(oFields())
 oFilterDesc.ContainsHeader = False
 oFilterDesc.UseRegularExpressions = True
 oSheet.filter(oFilterDesc)
End Sub

An advanced filter supports up to eight filter conditions, as opposed to the three supported by the simple
filter. The criteria for an advanced filter is stored in a sheet. The first step in creating an advanced filter is
entering the filter criteria into the spreadsheet.

1. Select an empty space in the Calc document. The empty space may reside in any sheet in any
location in the Calc document.

2. Duplicate the column headings from the area to be filtered into the area that will contain the filter
criteria.

3. Enter the filter criteria underneath the column headings. The criterion in each column of a row is
connected with AND. The criteria from each row are connected with OR.

Applying an advanced filter using a macro is simple. The cell range containing the filter criteria is used to
create a filter descriptor, which is then used to filter the range containing the data.

Listing 453. Use an advanced filter.
Sub UseAnAdvancedFilter()
 Dim oSheet 'A sheet from the Calc document.
 Dim oRanges 'The NamedRanges property.
 Dim oCritRange 'Range that contains the filter criteria.
 Dim oDataRange 'Range that contains the data to filter.
 Dim oFiltDesc 'Filter descriptor.

 REM Range that contains the filter criteria
 oSheet = ThisComponent.getSheets().getByIndex(1)
 oCritRange = oSheet.getCellRangeByName("A1:G3")

 REM You can also obtain the range containing the
 REM filter criteria from a named range.
 REM oRanges = ThisComponent.NamedRanges
 REM oRange = oRanges.getByName("AverageLess80")
 REM oCritRange = oRange.getReferredCells()

512

 REM The data that I want to filter
 oSheet = ThisComponent.getSheets().getByIndex(0)
 oDataRange = oSheet.getCellRangeByName("A1:G16")

 oFiltDesc = oCritRange.createFilterDescriptorByObject(oDataRange)
 oDataRange.filter(oFiltDesc)
End Sub

 15.6.4. Protecting documents and sheets

Calc documents and individual spreadsheets support the XProtectable interface. Use the methods
protect(password) and unprotect(password) to activate or disable protection. The password is passed in as a
String. The isProtected() method returns True if protection is currently active.

 15.6.5. Controlling recalculation

By default, a Calc document automatically recalculates formulas when the cells to which they refer are
modified. At times, it is useful to disable automatic recalculation. The methods in Table 211 allow you to
control recalculation in the entire document.

Table 211. Methods defined by the com.sun.star.sheet.XCalculatable interface.
Method Description

calculate() Recalculate all cells with changed content.

calculateAll() Recalculate all cells.

isAutomaticCalculationEnabled() True if automatic calculation is enabled.

enableAutomaticCalculation(Boolean) Enable or disable automatic calculation.

 15.6.6. Using Goal Seek

“Goal Seek” attempts to solve equations with one unknown variable. In other words, after defining a
formula with multiple fixed values and one variable value, Goal Seek tries to find an acceptable value for
the unknown variable.

Consider a very simple example. If you jump off a cliff, gravity will accelerate you toward the ground at 32
feet per second each second. In other words, in one second you will be traveling at 32 feet per second and in
two seconds you will be traveling at 64 feet per second. The equation is given as “velocity = acceleration *
time”. I have a constant value for the acceleration due to gravity, and I want to know how long before I am
traveling at 100 feet per second. Admittedly, this is a trivial example, but it is easy to understand.

Use the document method seekGoal(CellAddress, CellAddress, String) to perform a Goal Seek operation.
The first cell address identifies the cell that contains the formula to solve. The second cell address identifies
the cell that contains the variable that will change. Place the best guess that you can make into this cell. The
final string contains the value that you want to obtain from the formula. The macro in Listing 454 sets the
formula and then performs a Goal Seek operation.

Listing 454. Set a simple goal seek.
Sub GoalSeekExample
 Dim oSheet 'oSheet will contain the first sheet.
 Dim oGCell 'B24, gravity value of 32
 Dim oTCell 'C24, time value

513

 Dim oRCell 'Resulting equation "=B24*C24"
 Dim oGoal 'Returned goal object
 oSheet = ThisComponent.Sheets(0)
 oGCell = oSheet.getCellByPosition(1, 23)
 oGCell.setValue(32)

 oTCell = oSheet.getCellByPosition(2, 23)
 oTCell.setValue(1)

 oRCell = oSheet.getCellByPosition(0, 23)
 oRCell.setFormula("=B24 * C24")

 oGoal=ThisComponent.seekGoal(oRCell.CellAddress, oTCell.CellAddress, "100")
 MsgBox "Result = " & oGoal.Result & CHR$(10) &_
 "The result changed by " & oGoal.Divergence &_
 " in the last iteration", 0, "Goal Seek"
End Sub

The seekGoal() method returns a structure containing two floating-point Double values. The Result property
identifies the proposed solution. The Divergence property identifies the difference between the last guessed
result and the current result. If the divergence is small, the result is probably reasonably accurate. If,
however, the divergence is large, the result is probably inaccurate. I performed a test where there was no
solution. The divergence value was roughly 1.0E308.

Do not let the simplicity of the provided example fool you. I used the seekGoal() method to provide a
solution to a problem that had no closed form solution — I had to use a numerical algorithm to solve the
problem.

 15.7. Write your own Calc functions

With OOo, it’s trivial to write and use your own functions that are recognized by the Calc document. It’s as
simple as writing a macro and then addressing it directly. I wrote an example of this in Listing 455 that
returns information about the passed argument as a String. Table 212 shows the return values for different
arguments.

Listing 455. Print information about the argument.
Function WahooFunc(Optional x) As Variant
 Dim s$
 s = "I am in WahooFunc. "
 If IsMissing(x) Then
 s = s & "No argument was passed"
 ElseIf NOT IsArray(x) Then
 s = s & "Scalar argument (" & CStr(x) & ") is type " & TypeName(x)
 Else
 s = s & "Argument is an array (" & LBound(x, 1) & " To " & UBound(x, 1) &_
 ", " & LBound(x, 2) & " To " & UBound(x, 2) & ")"
 End If
 WahooFunc = s
End Function

514

Table 212. Return values for different arguments to WahooFunc (assume cell E9 contains 2).
Function Return

“=WahooFunc()” I am in WahooFunc. No argument was passed.

“=WahooFunc(E9)” I am in WahooFunc. Scalar argument (2) is type Double.

“=WahooFunc(2)” I am in WahooFunc. Scalar argument (2) is type Double.

“=WahooFunc(A11:C15)” I am in WahooFunc. Argument is an array (1 To 5, 1 To 3).

The argument that is passed to the function that you write, may be missing. If the argument is declared as
optional, use the IsMissing() method to test if a value has been passed. For example, “=WahooFunc()”.

You can directly pass a single scalar value either as a constant, or by referencing a single cell. For example,
“=WahooFunc(32)” and “=WahooFunc(E7)” both pass a scalar value to the function. The first example
passes the numeric value 32 and the second example passes the contents of cell E7.

Tip The actual type of argument that is passed to your own functions depends on how it is called
(see Table 212). When a range is used as the argument, the data is passed as a two-dimensional array that
does not use the traditional lower bound of zero.

If the argument refers to a range, a two-dimensional array is passed to the function. For example,
“=WahooFunc(E7:F32)” passes the contents of the cells in the range E7 through F32 as a two-dimensional
array. Be absolutely certain to use the functions LBound() and UBound(), because the lower bounds start at 1
rather than at the expected value of 0 (see Listing 456).

Listing 456. Add all elements together.
Function SumAll(myArray as Variant)
 Dim iRow%, iCol%
 Dim d As Double
 For iRow = LBound(myArray, 1) To UBound(myArray, 1)
 For iCol = LBound(myArray, 2) To UBound(myArray, 2)
 d = d + myArray(iRow, iCol)
 Next
 Next
 SumAll = d
End Function

The Calc function must be visible / available to the Calc document, so I store my Calc functions in the
Standard library of the document that will use the functions. Sometimes, when I write a new function, the
new function is not noticed until the document has been saved, closed, and then reopened.

Tip If Calc does not see a newly created function, save, close, and reopen the Calc document.

Warn Do not return a time or date in a Calc function, return a double instead.

Macros used as Calc functions have their values converted to a double or a string before they are stored in a
cell. The date type is converted to a string, which is not useful for date calculations. The proper way to
return a date and/or time is to convert the value to a Double and return the double. Calc will treat the value
as a date / time based on the cell formatting.

515

 15.8. Using the current controller

Each OOo document contains a controller that interacts with the user. Therefore, the current controller
knows what text is selected, the location of the current cursor, and which sheet is active.

 15.8.1. Selected cells

The document’s controller interacts with the user and therefore knows which cells are selected. In a Calc
document, a selected cell can be a few different things. The following cases are numbered to simply
reference each case; the numbering serves no other purpose.

1. One cell selected. To select an entire cell, click in a cell once and then hold down the Shift key and
click in the cell again.

2. Partial text in a single cell selected. Double-click in a single cell and then select some text.

3. Nothing appears selected. Single-click in a cell or tab between cells.

4. Multiple cells selected. Single-click in a cell and then drag the cursor.

5. Multiple disjointed selections. Select some cells. Hold down the Ctrl key and select some more.

So far, I have not been able to distinguish between the first three cases; they all look like one cell is selected.
If only one cell is selected, the current selection returned by the current controller is the sheet cell containing
the cursor. If a single cell is selected (cases 1 through 3), the selections object supports the SheetCell service
(see Listing 457).

If multiple cells are selected as a single range (case 4), the selections object is a SheetCellRange. Check to
see if the selections object supports the SheetCellRanges service. If so, then more than one cell range is
selected. Use the getCount() method of the selections object to see how many ranges are selected.

Listing 457. Determine if anything is selected.
Function CalcIsAnythingSelected(oDoc) As Boolean
 Dim oSelections

 REM Assume that nothing is selected.
 CalcIsAnythingSelected = False
 If IsNull(oDoc) Then Exit Function
 REM The current selection in the current controller.
 REM If there is no current controller, this returns NULL.
 oSelections = oDoc.getCurrentSelection()
 If IsNull(oSelections) Then Exit Function

 If oSelections.supportsService("com.sun.star.sheet.SheetCell") Then
 Print "One Cell selected = " & oSelections.getImplementationName()
 MsgBox "getString() = " & oSelections.getString()
 ElseIf oSelections.supportsService("com.sun.star.sheet.SheetCellRange") Then
 Print "One Cell Range selected = " & oSelections.getImplementationName()
 ElseIf oSelections.supportsService("com.sun.star.sheet.SheetCellRanges") Then
 Print "Multiple Cell Ranges selected = " &_
 oSelections.getImplementationName()
 Print "Count = " & oSelections.getCount()
 Else
 Print "Something else selected = " & oSelections.getImplementationName()
 End If

516

 CalcIsAnythingSelected = True
End Function

Enumerating the selected cells

Listing 458 is a utility routine that sets the text of the cells in a range to a specific value. Although Listing
458 is specifically designed to operate on a cell range, it uses methods that are also supported by a single
cell. The macro, therefore, may be used by a cell or a cell range object. The method used in Listing 458 is a
modification of an algorithm introduced to me by Sasa Kelecevic, on the OOo dev mailing list.

Listing 458. Set all text in a range to a value.
Sub SetRangeText(oRange, s As String)
 Dim nCol As Long 'Column index variable
 Dim nRow As Long 'Row index variable
 Dim oCols 'Columns in the selected range
 Dim oRows 'Rows in the selected range

 oCols = oRange.Columns : oRows = oRange.Rows
 For nCol = 0 To oCols.getCount() - 1
 For nRow = 0 To oRows.getCount() - 1
 oRange.getCellByPosition(nCol, nRow).setString(s)
 Next
 Next
End Sub

To demonstrate how to inspect all of the selected cells, the macro in Listing 459 sets the text in every
selected cell to a specific text value.

Listing 459. Set all selected cells to a value.
Sub SetSelectedCells(s As String)
 Dim oSelections 'The selections object
 Dim oCell 'If one cell is selected
 Dim oRanges 'If multiple ranges are selected, use this
 Dim i As Long 'General index variable

 REM The current selection in the current controller.
 REM If there is no current controller, this returns NULL.
 oSelections = ThisComponent.getCurrentSelection()
 If IsNull(oSelections) Then Exit Sub

 If oSelections.supportsService("com.sun.star.sheet.SheetCell") Then
 oCell = oSelections
 oCell.setString(s)

 REM For consistency, I could use the same call for a range as a cell
 REM but this is only because a cell can also return the columns and rows.
 REM SetRangeText(oSelections, s)
 ElseIf oSelections.supportsService("com.sun.star.sheet.SheetCellRange") Then
 SetRangeText(oSelections, s)
 ElseIf oSelections.supportsService("com.sun.star.sheet.SheetCellRanges") Then
 oRanges = oSelections
 For i = 0 To oRanges.getCount() - 1
 SetRangeText(oRanges.getByIndex(i), s)
 Next

517

 Else
 Print "Something else selected = " & oSelections.getImplementationName()
 End If
End Sub

 While writing the macro in Listing 459, I experienced some initially perplexing behavior. My initial
version of Listing 459 would sometimes generate an error as it attempted to enter the subroutine, depending
on the selected values. The run-time error would complain that an unsupported property or invalid value was
used. To explain the problem (and the solution), notice that there are two places in the code where I assign
oSelections to a temporary variable and then I use the variable. Listing 460 contains the small sections of
code extracted from Listing 459.

Listing 460. I assign oSelections to a temporary variable before use.
oCell = oSelections
oCell.setString(s)
.....
oRanges = oSelections
For i = 0 To oRanges.getCount() - 1
 SetRangeText(oRanges.getByIndex(i), s)
Next

If oSelections refers to a cell, it doesn’t support the object method getCount(). If oSelections refers to a
SheetCellRanges object, it doesn’t support the setString() object method. I can but assume that the OOo
Basic interpreter attempts to resolve the properties and methods that an object references when it is assigned
a value. For example, if the selections object is a cell, an error is raised because a cell doesn’t support the
getCount() method. On the other hand, if more than one cell is selected, the returned object does not support
the setString() method. Although this is not the first time that I have experienced this problem, it is the first
time that I determined the nature of the problem and how to avoid it.

Selecting text

The current controller is used to determine the current selection, and it can also be used to set the current
selection. Use the current controller’s select(obj) method to select cells in a sheet. The documentation
essentially says that if the controller recognizes and is able to select the object passed as an argument, it will.
Listing 461 demonstrates how to select cells.

Listing 461. Select B28:D33 and then select cell A1 instead.
Dim oSheet, oRange, oCell, oController
oController = ThisComponent.getCurrentController()
oSheet = ThisComponent.Sheets(3)
oRange = oSheet.getCellRangeByName("B28:D33")
oController.select(oRange)
oCell = oSheet.getCellByPosition(0, 0)
oController.select(oCell)

The active cell

The active cell contains the cursor. There is an active cell even when multiple cells are selected.
Unfortunately, OOo does not provide a method to return the active cell when more than one cell is selected.
Paolo Mantovani posted a very nice solution to this problem on the dev mailing list as shown in Listing 462.
The disadvantage to the macro in Listing 462 is that the active cell is no longer active after the macro runs.

Listing 462. Obtain the active cell.
REM Author: Paolo Mantovani

518

REM email: mantovani.paolo@tin.it
Sub RetrieveTheActiveCell()
 Dim oOldSelection 'The original selection of cell ranges
 Dim oRanges 'A blank range created by the document
 Dim oActiveCell 'The current active cell
 Dim oConv 'The cell address conversion service
 Dim oDoc
 oDoc = ThisComponent

 REM store the current selection
 oOldSelection = oDoc.CurrentSelection

 REM Create an empty SheetCellRanges service and then select it.
 REM This leaves ONLY the active cell selected.
 oRanges = oDoc.createInstance("com.sun.star.sheet.SheetCellRanges")
 oDoc.CurrentController.Select(oRanges)

 REM Get the active cell!
 oActiveCell = oDoc.CurrentSelection

 oConv = oDoc.createInstance("com.sun.star.table.CellAddressConversion")
 oConv.Address = oActiveCell.getCellAddress
 Print oConv.UserInterfaceRepresentation
 print oConv.PersistentRepresentation

 REM Restore the old selection, but lose the previously active cell
 oDoc.CurrentController.Select(oOldSelection)
End Sub

 15.8.2. General functionality

When searching for view-related functionality, the current controller is a good place to start. Table 213 and
Table 214 contain most of the methods and properties supported by the current controller that have not
already been discussed.

519

Table 213. Methods supported by the current controller not already discussed.
Methods Description

getActiveSheet() Get the active spreadsheet.

setActiveSheet(XSpreadsheet) Cause the specified sheet to become active.

getIsWindowSplit() Return True if the view is split.

getSplitHorizontal() Long Integer horizontal split position (in pixels).

getSplitVertical() Long Integer vertical split position (in pixels).

getSplitColumn() Long Integer column before which the view is split.

getSplitRow() Long Integer row before which the view is split.

splitAtPosition(x, y) Split the view at the specified position. If x=0, the split is only horizontal.
If y=0, the split is only vertical.

hasFrozenPanes() True if the view contains frozen panes.

freezeAtPosition(nCol, nRow) Freeze panes with the specified number of columns and rows.

getFirstVisibleColumn() Get the first visible column in the pane as a Long Integer.

setFirstVisibleColumn(Long) Set the first visible column in the pane.

getFirstVisibleRow() Get the first visible row in the pane as a Long Integer.

setFirstVisibleRow(Long) Set the first visible row in the pane.

getVisibleRange() Get the visible range in the pane as a CellRangeAddress.

520

Table 214. Properties supported by the current controller not already discussed.
Property Description

ShowFormulas If True, formulas are displayed instead of their results.

ShowZeroValues If True, zero values are visible.

IsValueHighlightingEnabled If True, strings, values, and formulas are displayed in different colors.

ShowNotes If True, a marker is shown for notes in cells.

HasVerticalScrollBar If True, a vertical scroll bar is used in the view.

HasHorizontalScrollBar If True, a horizontal scroll bar is used in the view.

HasSheetTabs If True, sheet tabs are used in the view.

IsOutlineSymbolsSet If True, outline symbols are displayed.

HasColumnRowHeaders If True, column and row headers are visible.

ShowGrid If True, cell grid lines are displayed.

GridColor Grid color as a Long Integer.

ShowHelpLines If True, help lines are displayed while moving drawing objects.

ShowAnchor If True, anchor symbols are displayed when drawing objects are selected.

ShowPageBreaks If True, page breaks are displayed.

SolidHandles If True, solid (colored) handles are displayed when drawing objects are selected.

ShowObjects If True, embedded objects are displayed.

ShowCharts If True, charts are displayed.

ShowDrawing If True, drawing objects are displayed.

HideSpellMarks If True, spelling marks are not displayed; this seems to be disabled.

ZoomType Document zoom type as a com.sun.star.view.DocumentZoomType with the
following values:

• OPTIMAL = 0 – Fit the current page content width (no margins).

• PAGE_WIDTH = 1 – Fit the page width at the current selection.

• ENTIRE_PAGE = 2 – Fit an entire page.

• BY_VALUE = 3 – The zoom is relative and set by ZoomValue.

• PAGE_WIDTH_EXACT = 4 – Fit the current width and fit exactly to page
end.

ZoomValue Zoom value if the ZoomType is set to BY_VALUE . ZoomType must be set
before the ZoomValue is set.

 15.9. Control Calc from Microsoft Office

It turns out that you can control OOo from within the Microsoft Office family of products. The trick is to
create a service manager, which starts OOo if it is not currently running. Accessing OOo documents from
Microsoft Office is similar to accessing OOo documents using other non-StarBasic languages. OOo Basic
provides nice shortcuts that are not available from Microsoft Office. For example, in OOo Basic, when I
want the third sheet, I simply use oDoc.Sheets(2); in Microsoft Office, however, you cannot access the
Sheets property as an array. I wrote and ran the macro in Listing 463 from Microsoft Visual Basic from
Microsoft Excel.

521

Listing 463. ControlOOo() demonstrates how to control OOo from Excel.
Sub ControlOOo()
 Rem The service manager is always the first thing to create.
 Rem If OOo is not running, it is started.
 Set oManager = CreateObject("com.sun.star.ServiceManager")

 Rem Create the desktop.
 Set oDesktop = oManager.createInstance("com.sun.star.frame.Desktop")

 Rem Open a new empty Calc document.
 Dim args()
 Dim s As String
 Set s = "private:factory/scalc"
 Set oDoc = oDesktop.loadComponentFromURL(s, "_blank", 0, args())

 Dim oSheet As Object
 Dim oSheets As Object
 Dim oCell As Object

 Set oSheets = oDoc.sheets.CreateEnumeration
 Set oSheet = oSheets.nextElement
 Set oCell = oSheet.getCellByPosition(0, 0)
 oCell.setFormula ("Hello From Excel") 'Cell A1
 oCell.CellBackColor = RGB(127, 127, 127)
End Sub

 15.10. Accessing Calc functions

You can call Calc functions from a macro.

Listing 464. Call the MIN function directly.
Sub callFunction
 Dim oFA
 oFA = createUnoService("com.sun.star.sheet.FunctionAccess")

 ' Calculate min of numbers.
 print oFA.callFunction("MIN", array(10, 23, 5, 345))
End Sub

 15.11. Finding URLs in Calc

In a Calc document, links (URLs) are stored in text fields. The following macro enumerates the text content
in cell A1 of the first sheet for URLs. Note that the presentation and the URL may be different.

Listing 465. Finds URLS in a sheet cell.
Sub FindHyperLinkInCell
 Dim oCell, oText, oParEnum, oParElement
 Dim oEnum, oElement
 oCell = ThisComponent.Sheets(0).getCellByPosition(0, 0)
 oParEnum = oCell.getText().createEnumeration()
 Do While oParEnum.hasMoreElements ()
 oParElement = oParEnum.nextElement()
 oEnum = oParElement.createEnumeration()
 Do While oEnum.hasMoreElements ()

522

 oElement = oEnum.nextElement()
 If oElement.TextPortionType = "TextField" Then
 If oElement.TextField.supportsService("com.sun.star.text.TextField.URL") Then
 'STRING Representation =
 'STRING TargetFrame =
 'STRING URL =
 Print oElement.TextField.URL
 End If
 End If
 Loop
 Loop
End Sub

 15.12. Importing and Exporting XML Files Using Calc

This section, originally written by Volker Lenhardt, discusses simple methods for importing and exporting
Extensible Markup Language (XML) files. The ideas and code are taken from a working project.

XML is a formal description of tags and how tags can be combined to form a hierarchical data structure. You
can choose the tag and attributes names as you like – within limits. HTML is XML with fewer rules – so
valid HTML need not be valid XML. Wikipedia is a good place to learn more about XML.

Warn Some methods caused OOo version 3.3 to crash; for example, getElementsByTagName crashed for some
tag names. The methods functioned correctly with LibreOffice, I have not checked them against AOO.

XML files are simple text files. If you need to regularly convert XML to Calc or Base you could write an
XSLT filter, which is not covered in this book.

Most modern programming languages have implemented two tools to import XML data: SAX (Simple API
for XML) and DOM (Document Object Model). UNO defines com.sun.star.xml.sax.XParser for SAX
processing and com.sun.star.xml.dom.DocumentBuilder for DOM processing. The main difference between
these two tools is the way that they read the data from the file. SAX reads the data continually, the Basic
code implements a listener to handle the data as it is read. DOM, on the other hand, reads all of the data into
an in memory hierarchically structured object. DOM is fast, but uses more memory, SAX can easily handle
large files. This section covers DOM, not SAX. The coverage ignores complex topics such as validation,
name spaces, and exceptions.

Tip It is very important that you are acquainted with the data structure of the XML file in question.

 15.12.1. Read an XML file

The com.sun.star.xml.dom.DocumentBuilder service has two parse methods that return the entire data tree
as a DOM object. The first parse method accepts an input stream, which may come from anywhere; for a
simple text file, SimpleFileAccess can return an input stream. The second parse method accepts the URL of
the file (see Listing 466).

Listing 466. Read an XML file.
REM Build a DOM Document tree from an XML file.
Function BuildDOMDoc(sUrl As String)
 Dim oDocBuilder

523

 Dim oDOM
 BuildDOMDoc = oDOM

 On Error Goto Catch

 oDocBuilder = createUnoService("com.sun.star.xml.dom.DocumentBuilder")

 REM oDocBuilder reads the complete XML file and returns an object
 REM containing a tree structure of all "nodes".
 oDOM = oDocBuilder.parseURI(sURL)

 REM There were no errors.
 oDOM.normalize()
 BuildDOMDoc = oDOM
 Exit Function

 Catch:
 MsgBox "Error while importing the XML data " & CHR$(10) & CHR$(10) _
 & Error$ & " " & CHR$(10) & " ", 16, "XML Import"
End Function

The XML file in Listing 467 is based on a real example. The entire document contains an outer slots tag,
which represents a database. Each record is called a slot, some are active, some are reserved, some are free.
Each slot represents a single client.

Listing 467. Sample XML file.
<slots>
 <slot status="active" ID="10317">
 <document ID="1234" title="Boom boom" />
 <validTo>12/03/2011</validTo>
 <customer name="Becker" gender="m" ID="11051" email="bb@tennis.de" />
 </slot>
 <slot status="free" ID="60072">
 </slot>
</slots>

The problem was to create a mail merge to ask active clients about to expire if they desired to prolong their
service. The macro needed to appropriately filter the data based on the status attribute and ValidTo element,
then extract the name, gender, email, ID, and document title. The elements, attributes, and text contents are
represented as “nodes” in the DOM tree; the entire document is the root node. The
com.sun.star.xml.dom.XNode API documentation describes this primary DOM datatype as follows:

“The Node interface is the primary datatype for the entire Document Object Model. It represents a single
node in the document tree. While all objects implementing the Node interface expose methods for dealing
with children, not all objects implementing the Node interface may have children. For example, Text nodes
may not have children, and adding children to such nodes results in a DOMException being raised.

The “nodeName”, “nodeValue”, and “attributes” properties provide access to commonly used data from a
node. The property returns null if there is no obvious mapping of these attributes for a specific nodeType; for
example, a comment cannot have attributes. Specific node types may contain additional more convenient
mechanisms to get and set relevant information.

524

mailto:bb@tennis.de

Table 215 shows the specialized node interfaces that are derived from XNode together with their types,
names, and values. The node type is the corresponding value from the com.sun.star.xml.dom.NodeType
enumeration.

Table 215. Specialized Nodes.
Interface Node Type Node Name Node Value

XAttr ATTRIBUTE_NODE The name of the
attribute

The value of the attribute

XCDATASection CDATA_SECTION_NODE "#cdata-section" The content of the CDATA
section

XComment COMMENT_NODE "#comment" The content of the comment

XDocument DOCUMENT_NODE "#document" Null

XDocumentFragment DOCUMENT_FRAGMENT_NODE "#document-fragment" Null

XDocumentType DOCUMENT_TYPE_NODE The document type
name

Null

XElement ELEMENT_NODE The tag name Null

XEntity ENTITY_NODE The entity name Null

XEntityReference ENTITY_REFERENCE_NODE The name of entity
referenced

Null

XNotation NOTATION_NODE The notation name Null

XProcessingInstruction PROCESSING_INSTRUCTION_NODE The target The entire content excluding
the target

XText TEXT_NODE "#text" The content of the text node

For the methods implemented with XNode see Table 216.

Table 216. Methods implemented in the com.sun.star.xml.dom.XNode interface.
Method Description

appendChild(newChild) Adds the node newChild to the end of the list of children of this node.

cloneNode(deep As boolean) Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes.
Parameter deep: True = clone node together with any children, False = clone without
children

getAttributes() Returns a NamedNodeMap containing the attributes of this node (if it is an Element) or
null otherwise.

getChildNodes() Returns a NodeList that contains all children of this node.

getFirstChild() Returns the first child of this node.

getLastChild() Returns the last child of this node.

getLocalName() Returns the local part of the qualified name of this node.

getNamespaceURI() The namespace URI of this node, or null if it is unspecified.

getNextSibling() Returns the node immediately following this node.

getNodeName() The name of this node, depending on its type; see the table above.

getNodeType() A code representing the type of the underlying object, as defined above.

getNodeValue() Returns the value of this node.

getOwnerDocument() The Document object associated with this node.

525

Method Description

getParentNode() The parent of this node.

getPrefix() The namespace prefix of this node, or null if it is unspecified.

getPreviousSibling() The node immediately preceding this node.

hasAttributes() Returns whether this node (if it is an element) has any attributes.

hasChildNodes() Returns whether this node has any children.

insertBefore(newChild, refChild) Inserts the node newChild before the existing child node refChild.

isSupported(feature, ver) Tests whether the DOM implementation implements a specific feature and that feature
is supported by this node.

normalize() Puts all Text nodes in the full depth of the sub-tree underneath this Node, including
attribute nodes, into a "normal" form where only structure (e.g., elements, comments,
processing instructions, CDATA sections, and entity references) separates Text nodes,
i.e., there are neither adjacent Text nodes nor empty Text nodes.

removeChild(oldChild) Removes the child node indicated by oldChild from the list of children, and returns it.

replaceChild(newChild, oldChild) Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node.

setNodeValue(nodeValue) The value of this node, depending on its type; see the table above.

setPrefix(prefix) The namespace prefix of this node, or null if it is unspecified.

A node list is usually returned as a com.sun.star.xml.dom.XNodeList interface. The most used methods from
the XNodeList interface are getLength(), to determine the number of listed nodes, and item(Long) to get a
single node based on its location in the list. A node list is sometimes returned as a the
com.sun.star.xml.dom.XNamedNodeMap interface, which provides access to the contained nodes by name.
The following macro demonstrates three methods for getting the value of an element attribute.

Listing 468. Three ways to get an attribute from an element.
'The long way
oAttList = oElement.getAttributes ' Get all attributes.
oAttNode = oAttList.getNamedItem("ID") ' Get the attribute node from attributes.
sAttVal = oAttNode.getValue ' Get the value from the attribute node.
'A shorter way
oAttNode = oElement.getAttributeNode("ID") ' Get the attribute node from the element.
sAttVal = oAttNode.getValue ' Get the value from the attribute node.
'The shortest way
sAttVal = oElement.getAttribute("ID") ' Get the value directly from the node.

Recursion is typically used to parse DOM documents.

oElemList = oElem.getChildNodes 'At the very start oElem is oDOM
For i = 0 To oElemList.getLength – 1
 oElem = oElemList.item(i)
 Select Case oElem.getNodeType
 Case com.sun.star.xml.dom.ELEMENT_NODE
 sName = oElem.getNodeName
 If oElem.hasAttributes Then
 oAtts = oElem.getAttributes
 For j = 0 To oAtts.getLength – 1
 sName = oAtts.item(j).getName
 sValue = oAtts.item(j).getValue

526

 'Further work to be done
 Next
 End If
 If oElem.hasChildNodes Then
 'Start the recursion here
 End If
 Case com.sun.star.xml.dom.TEXT_NODE
 sText = oElem.getNodeValue
 'Further work to be done
 'More Case statements for the node types in Table 215
 End Select
Next

TIP When you encounter a text node between different element nodes, you most probably have found ignorable
white space; so you can probably ignore it.

In the slots example, we do not need to iterate over all the nodes because we know the structure and we only
need specific nodes. Use getElementsByTagName(name) to start with a limited number of elements. Listing
469 shows how to extract the desired data into a Calc sheet. First, the XML file is created, and then it is read
into a new Calc document.

Listing 469. Parse an XML file to extract specific data into a CalcFile..
REM Import an XML file using DOM and extract specific data into a Calc file
Sub XMLImport
 Dim sURL As String 'Whole path of the XML file in URL notation
 Dim oCalcDoc 'Destination spreadsheet document
 Dim oSheet 'Destination table
 Dim oWriterDoc 'Text document to show the original XML text file
 Dim oDOM 'The DOM document tree
 Dim tDeadline as Date 'A specific date to filter the data

 REM Create an example XML file with fancy data
 sURL = GetWorkDir() & "/oome_xml_import.xml"
 MakeXMLExampleFile(sUrl)
 Wait 500 'Give the OS time to store the file to disk
 tDeadline = DateValue(CDate(Now + 20))

 REM Build the DOM tree
 oDOM = BuildDOMDoc(sUrl)
 If IsEmpty(oDOM) Then Exit Sub 'There was an error loading the XML file

 REM Copy specific data into a new Calc spreadsheet
 oCalcDoc = StarDesktop.loadComponentFromURL(_
 "private:factory/scalc", "_blank", 0, Array())
 oSheet = oCalcDoc.Sheets(0)
 GetData(oDOM, oSheet, tDeadline)

 REM Show the original XML text file in a new Writer text document
 REM LibreOffice requires that the FilterName be specified, AOO does not.
 Dim noArgs(1) As New com.sun.star.beans.PropertyValue
 noArgs(0).Name = "FilterName"
 noArgs(0).Value = "Text"
 oWriterDoc = StarDesktop.loadComponentFromURL(sUrl, "_blank", 0, noArgs())

527

End Sub

REM Read the relevant data from the DOM document
Sub GetData(oDOMDoc, oSheet, tDeadline as Date)
 Dim oVtList 'List of all validTo nodes in the DOM document
 Dim oSlotItem 'slot = parent node of the validTo node
 Dim oSlotChildList 'List of all child nodes of a slot
 Dim oSlotChild 'A specific child node of a slot
 Dim sID As string 'Value of the slot attribute "ID"
 Dim i%, j%, k%
 Dim iCustCount As Integer 'Number of custumers using a slot
 Dim aoCusts() 'Array of customer nodes within a slot
 Dim iCustLimit As Integer 'Default upper value for the array dimension
 Dim sTitle As String 'The title of the slot's document
 Dim iEntries As Integer 'The number of rows written to the sheet

 REM A slot node includes all information on the specific slot service.
 REM List all nodes named "validTo", so all slots with the "status"
 REM attribute's value "reserved" or "free" are not included.

 oVtList = oDOMDoc.getElementsByTagName("validTo")
 iCustLimit = 10 'There will seldom be more than 10 customers to a slot.

 For i = 0 To oVtList.getLength - 1
 ' Use item to get an element return by getElementsByTagName.
 ' Use getParentNode to get the parent "slot" node.
 oSlotItem = oVtList.item(i).getParentNode
 ' IsProperSlot checks to see if the node is active.
 If IsProperSlot(oSlotItem) Then
 sID = oSlotItem.getAttribute("ID")
 REM The validTo element has exactly one text node
 REM containing a date string, so getFirstChild is used to
 REM get the text element. GetNodeValue returns the text
 REM in that element, which is a date.
 If IsWithinDateTarget _
 (oVtList.item(i).getFirstChild.getNodeValue, tDeadline) > 0 Then

 ' Everything passes, so collect data.
 ' A list of child elements of the slot is created to inspect
 ' each contained element in order to extract both the document title
 ' and the customers’ data. The Select Case construction is used:
 oSlotChildList = oSlotItem.getChildNodes
 REM Iterate over the list of child nodes to collect the data.
 ReDim aoCusts(1 To iCustLimit)
 iCustCount = 0
 sTitle = ""
 For j = 0 To oSlotChildList.getLength - 1
 oSlotChild = oSlotChildList.item(j)
 Select Case oSlotChild.getNodeName
 Case "document"
 If oSlotChild.hasAttribute("title") Then
 sTitle = oSlotChild.getAttribute("title")

528

 End If
 Case "customer"
 iCustCount = iCustCount + 1
 REM Just in case there really are more customers than thought
 If iCustCount > iCustLimit Then
 ReDim Preserve aoCusts(1 To iCustCount)
 End If
 aoCusts(iCustCount) = oSlotChild
 Case Else
 End Select
 Next
 If sTitle <> "" AND iCustCount > 0 Then
 For k = 1 To iCustCount
 REM Write the data to the Calc sheet
 ' Having collected all relevant data of a slot GetData
 ' can store it in the Calc sheet calling the ImportSlot
 ' subroutine. At last, when we are through with all
 ' slots, the Calc sheet is sorted for convenience.
 ImportSlot(aoCusts(k), sID, sTitle, oSheet)
 Next
 iEntries = iEntries + iCustCount
 End If
 End If
 End If
 Next
 SortCustomers(oSheet, iEntries)
End Sub

REM Check, if the specific slot has the suiting attribute values
Function IsProperSlot(oSlot) As Boolean
 IsProperSlot = False
 If oSlot.hasAttribute("status") AND oSlot.hasAttribute("ID") Then
 If oSlot.getAttribute("status") = "active" Then
 IsProperSlot = True
 End If
 End If
End Function

REM Check, if validTo shows a date earlier than the deadline
Function IsWithinDateTarget(sDate As String, tDeadline as Date) As Integer
 Dim tValidTo As Date
 On Error Goto Catch

 REM If the OOo Basic function DateValue cannot convert the string
 REM to a date value, the runtime error 5 is thrown. In this case
 REM the return value of -1 lets the calling routine establish a
 REM device to track down erroneous database entries.
 tValidTo = DateValue(sDate)
 If tDeadline < tValidTo Then
 IsWithinDateTarget = 0
 Else

529

 IsWithinDateTarget = 1
 End If
 Exit Function

 Catch:
 IsWithinDateTarget = -1
End Function

REM Writes the relevant slot data to the Calc sheet
Sub ImportSlot(oCust, sID As String, sTitle As String, oSheet)
 REM There is one row for each document belonging to each customer.
 REM So if multiple customers share one document there are as many rows
 REM as there are customers to a document.
 Static iRow As Integer 'Row count

 If iRow = 0 Then 'The header
 oSheet.getCellByPosition(0, iRow).String = "Name"
 oSheet.getCellByPosition(1, iRow).String = "Email"
 oSheet.getCellByPosition(2, iRow).String = "Gender"
 oSheet.getCellByPosition(3, iRow).String = "ID"
 oSheet.getCellByPosition(4, iRow).String = "Title"
 End If
 iRow = iRow + 1
 If oCust.hasAttribute("name") Then
 oSheet.getCellByPosition(0, iRow).String = _
 oCust.getAttribute("name")
 End If
 If oCust.hasAttribute("email") Then
 oSheet.getCellByPosition(1, iRow).String = _
 oCust.getAttribute("email")
 End If
 If oCust.hasAttribute("gender") Then
 oSheet.getCellByPosition(2, iRow).String = _
 oCust.getAttribute("gender")
 End If
 oSheet.getCellByPosition(3, iRow).String = sID
 oSheet.getCellByPosition(4, iRow).String = sTitle

End Sub

REM Sort the sheet for convenience
Sub SortCustomers(oSheet, iRows As Integer)
 Dim oRange
 Dim aSortFields(2) As new com.sun.star.util.SortField
 Dim aSortDesc(1) As new com.sun.star.beans.PropertyValue

 REM Sort options:
 REM (1) Customer's name
 REM (2) Customer's email (in case different persons have identical names)
 REM (3) Slot ID
 With aSortFields(0): .Field = 0

530

 .SortAscending = True: End With
 With aSortFields(1): .Field = 1
 .SortAscending = True: End With
 With aSortFields(2): .Field = 2
 .SortAscending = True: End With

 With aSortDesc(0): .Name = "SortFields"
 .Value = aSortFields(): End With
 With aSortDesc(1): .Name = "ContainsHeader"
 .Value = True : End With

 oRange = oSheet.getCellRangeByPosition(0, 0, 4, iRows)
 oRange.sort(aSortDesc())
End Sub

 15.12.2. Write XML File

Two steps are used to export the Calc document to an XML file.

1. Build the DOM document tree from scratch.

2. Parse the tree and build the output simple text lines from the data. In other words, you have to add all
the elements in angle brackets, the attribute pairs, the comments regarding the rules of XML – and
format the tree output in a readable way.

As you can see from Table 215, the DOM document is a specialized node. It can use the parent XNode
methods and a couple of additional ones that are listed in Table 217.

Table 217. Methods implemented in the com.sun.star.xml.dom.XDocument interface.
Method Description (taken from the API documentation)

createAttribute(name) Creates an Attr of the given name.

createAttributeNS(namespaceURI,
qualifiedName)

Creates an attribute of the given qualified name and namespace URI.

createCDATASection(data) Creates a CDATASection node whose value is the specified string.

createComment(text) Creates a Comment node given the specified string.

createDocumentFragment() Creates an empty DocumentFragment object.

createElement(tagName) Creates an element of the type specified.

createElementNS(namespaceURI,
qualifiedName)

Creates an element of the given qualified name and namespace URI.

createEntityReference(name) Creates an EntityReference object.

createProcessingInstruction(target,
data)

Creates a ProcessingInstruction node given the specified name and data strings.

createTextNode(text) Creates a Text node given the specified string.

getDoctype() The Document Type Declaration (see DocumentType) associated with this document.

getDocumentElement() This is a convenience attribute that allows direct access to the child node that is the root
element of the document.

getElementById(elementIdstring) Returns the Element whose ID is given by elementId.

getElementsByTagName(tagname) Returns a NodeList of all the Elements with a given tag name in the order in which they
are encountered in a preorder traversal of the Document tree

531

Method Description (taken from the API documentation)

GetElementsByTagNameNS
(namespaceURI, localName)

Returns a NodeList of all the Elements with a given local name and namespace URI in
the order in which they are encountered in a preorder traversal of the Document tree.

getImplementation() The DOMImplementation object that handles this document.

importNode(importedNode, deep) Imports a node from another document to this document.

Use the DocumentBuilder service to create an empty DOM document object.

oDocBuilder = createUnoService("com.sun.star.xml.dom.DocumentBuilder")
oDOM = oDocBuilder.newDocument

Next, populate the document with child nodes. Child nodes are created and then added to the parent element.
Child nodes must be created by the document’s create methods. It does not matter when the nodes are
created, or in which order. Use appendChild to append a child to a node. Each new child is added to the end
of the list of the already added child nodes. If the child elements are to be output in sequence, you must must
take care to add them in the desired order. Use createComment to create a comment node with the comment
text string as the argument. Use createElement to create an element node with the tag name as the argument.

You must obey the XML naming rules: Names can contain letters, numbers, and other characters. Spaces are
not allowed. The first character may not be a number or punctuation. The name may not start with the string
“xml” (be it upper or lower case).

REM Child nodes added to the root node
oNComment = oDOM.createComment(sComment)
oNPlayers = oDOM.createElement("Players")
oDOM.appendChild(oNComment)
oDOM.appendChild(oNPlayers)

REM A child node added to another node
oNPlayer = oDOM.createElement("Player")
oNPlayers.appendChild(oNPlayer)

Attributes need not be created by the DOM document. You can set – that means add – them directly using
the XElement method setAttribute(name, value), because the order is not so relevant for the attributes. They
are listed in a NamedNodeMap and can be retrieved by name. The setAttribute method has two arguments,
the attribute's name and the attribute's value, both are strings:

oNPlayer.setAttribute(oSheet.getCellByPosition(iCol, 0).String, sCellContent)

Use the createTextNode method to create a text node with the text string as the argument. As a text node can
have no attributes and no child nodes there is seldom a need to reference the node by a variable:

oNName.appendChild(oDOM.createTextNode(sCellContent))

To show the whole process with a real Calc sheet I devised a list of a couple of current and former tennis
professionals (see Figure 110). This sheet is taken as the data source of the XML output.

Figure 110. Detail of the source sheet for the XML export.

532

The macro in Listing 468 reads a sheet as shown in Figure 110 and returns a DOM document tree.

Listing 470. Creation a DOM from a Calc sheet.
REM Convert a sheet data table into XML using DOM.
REM Each row is a record. The first row contains the headers.
REM Assign each column to the proper node as text or attribute.
REM This function is devised for the specific sheet data.
REM The function returns a DOM document.
Function MakeXMLFromSheet(oSheet)
 Dim oDocBuilder 'The DOM DocumentBuilder interface
 Dim oDOM 'The DOM document tree
 Dim iRow&, iCol&
 Dim sCellContent$ 'All XML values are strings
 Dim sComment$ 'A comment that is not part of the data
 Dim oNComment ' Comment node
 Dim oNPlayers ' "Players" element
 Dim oNPlayer ' "Player" element is a child of the "Players" element
 Dim oNName ' "Name" element is a child of a "Player" element
 Dim ONStats ' "Statistics" element is a child of the "Player" element
 Dim oNGSlams ' "GrandSlams" element node is a child of a "Player" element
 Dim oNGSlam ' Each Grand Slam element is a child of the "GrandSlams" element

 REM Create the empty DOM document tree.
 oDocBuilder = createUnoService("com.sun.star.xml.dom.DocumentBuilder")
 oDOM = oDocBuilder.newDocument

 REM The DOM document will hold the following tree:
 REM <!-- ... -->
 REM <Players>
 REM <Player ID="..." Gender="..." Nationality="...">
 REM <Name>The player's name</Name>
 REM <Statistics Record="..." Titles="..." HighRank="..." />
 REM <GrandSlams>
 REM <Melbourne>List of victory years</Melbourne>
 REM <Paris>...</Paris>
 REM ... (more Grand Slam nodes)
 REM </GrandSlams>
 REM </Player>
 REM ... (more Player nodes)
 REM </Players>

 sComment = "This is a list of famous tennis players who dominated" _
 & CHR$(10) & _
 " the world ATP tennis circus in the past decades."
 REM Create the comment node and the "Players" element and add them
 REM to the end of the list of children of the root node.
 oNComment = oDOM.createComment(sComment)
 oNPlayers = oDOM.createElement("Players")
 oDOM.appendChild(oNComment)
 oDOM.appendChild(oNPlayers)

 REM Access the record cells starting with row 1, as row 0 are the headers.
 iRow = 1

533

 Do While oSheet.getCellByPosition(0, iRow).Value <> 0
 REM With each new row a new "Player" element is created and added
 REM to the end of the list of children of the "Players" element.
 oNPlayer = oDOM.createElement("Player")
 oNPlayers.appendChild(oNPlayer)
 REM Create three elements and add them to the end
 REM of the list of children of the "Player" element.
 oNName = oDOM.createElement("Name")
 oNStats = oDOM.createElement("Statistics")
 oNGSlams = oDOM.createElement("GrandSlams")
 oNPlayer.appendChild(oNName)
 oNPlayer.appendChild(oNStats)
 oNPlayer.appendChild(oNGSlams)
 For iCol = 0 To 10
 sCellContent = Trim(oSheet.getCellByPosition(iCol, iRow).String)
 Select Case iCol
 Case 0, 1, 2 'The player's attributes ID, Gender, and Nationality
 REM Set the attribute with two arguments:
 REM name from the header, value from the current cell
 oNPlayer.setAttribute _
 (oSheet.getCellByPosition(iCol, 0).String, sCellContent)
 Case 3
 REM Append a new text node with the player's name as value
 REM as the only child of the "Name" element.
 oNName.appendChild(oDOM.createTextNode(sCellContent))
 Case 4, 5, 6 'The player's statistics
 REM Set the attribute with two arguments:
 REM name from the header, value from the current cell
 oNStats.setAttribute _
 (oSheet.getCellByPosition(iCol, 0).String, sCellContent)
 Case 7, 8, 9, 10 'The player's Grand Slam victories.
 REM Create a new Grand Slam element and add it to the end
 REM of the list of children of the "GrandSlams" element.
 REM The header is taken as its tag name.
 oNGSlam = oDOM.createElement _
 (oSheet.getCellByPosition(iCol, 0).String)
 oNGSlams.appendChild(oNGSlam)
 REM Append a new text node with the Grand Slam years as value
 REM as the only child of the Grand Slam element.
 oNGSlam.appendChild(oDOM.createTextNode(sCellContent))
 End Select
 Next
 iRow = iRow + 1
 Loop
 MakeXMLFromSheet = oDOM
End Function

The macro creates and adds a comment and the container element “Players” to the root node oDOM. For
each new row (record), a “Player” element is created and added to the “Players” element. Each “Player”
node contains the “Name”, “Statistics”, and “GrandSlams”child elements.

The macro then iterates over the columns. Columns 0, 1, and 2 are attributes of the “Player” element. The
attributes are set from the cell content as value and the column header as name – the headers were purposely

534

named to be valid XML names. Column 3, the person’s name, is added as a text node to the “Name”
element. Colums 4, 5, and 6 are attributes of the “Statistics” element. They are set in the same way as
columns 0, 1, and 2. Finally, columns 7 through 10 contain the years of victory in the four Grand Slam
events. For each of the locations a new element is created using the header as its tag name and added to the
“GrandSlams” element. The current cell content is added as a text node to this new Grand Slam element.

Table 218. Methods implemented in the com.sun.star.xml.dom.XElement interface.
Method Description (taken from the API documentation)

getAttribute(name) Retrieves an attribute value by name.

getAttributeNode(name) Retrieves an attribute node by name.

getAttributeNodeNS(namespaceURI,
name)

Retrieves an Attr node by local name and namespace URI.

getAttributeNS(namespaceURI,
name)

Retrieves an attribute value by local name and namespace URI.

getElementsByTagName(name) Returns a NodeList of all descendant Elements with a given tag name, in the order in
which they are encountered in a preorder traversal of this Element tree.

getElementsByTagNameNS(namespa
ceURI, name)

Returns a NodeList of all the descendant Elements with a given local name and
namespace URI in the order in which they are encountered in a preorder traversal of
this Element tree.

getTagName() The name of the element.

hasAttribute(name) Returns true when an attribute with a given name is specified on this element or has a
default value, false otherwise.

hasAttributeNS(namespaceURI,
name)

Returns true when an attribute with a given local name and namespace URI is
specified on this element or has a default value, false otherwise.

removeAttribute(name) Removes an attribute by name.

removeAttributeNode(oldAttr) Removes the specified attribute node.

removeAttributeNS(namespaceURI,
name)

Removes an attribute by local name and namespace URI.

setAttribute(name, value) Adds a new attribute.

setAttributeNode(newAttr) Adds a new attribute node.

setAttributeNodeNS(newAttr) Adds a new attribute.

setAttributeNS(namespaceURI,
qualifiedName, value)

Adds a new attribute.

Table 218 shows the methods that are implemented by the XElement interface. Every XElement is also an
XNode so the methods in Table 216 are also implemented.

The following code snippet demonstrates how to iterate through child nodes and identify the specific node
types:

Listing 471. Processing child nodes.
If oNode.hasChildNodes Then
 oChildren = oNode.getChildNodes
 For i = 0 To oChildren.getLength – 1
 oChild = oChildren.item(i)
 If oChild.getNodeType = com.sun.star.xml.dom.NodeType.COMMENT_NODE Then
 'Comment nodes can contain text, but not attributes or child nodes.
 sCommentText = oChild.getNodeValue

535

 Elseif Child.getNodeType = com.sun.star.xml.dom.NodeType.ELEMENT_NODE Then
 …
 Elseif Child.getNodeType = com.sun.star.xml.dom.NodeType.TEXT_NODE Then
 'Comment nodes can contain text, but not attributes or child nodes.
 sText = oChild.getNodeValue

Element nodes can contain attributes. Comments and text nodes cannot have attributes. Use getAttributes to
access the attribute nodes as a NamedNodeMap. Null is returned if no attributes are present. The following
code iterates through the attributes, getting the attribute name and value.

Listing 472. Iterate through each attribute for an element.
oAttList = oElement.getAttributes
If Not IsNull(oAttList) Then
 For i = 0 To oAttList.getLength – 1
 oAtt = oAttList.item(i)
 sValue = oAtt.getNodeValue
 sName = oAtt.getNodeName

Element nodes can contain child nodes: multiple comments, multiple elements or one single text node. So
the code inspects these child nodes recursively. The subroutine PrintDom is called for each element level.

Listing 473. Macro to write a DOM document as an XML text file.
REM Export the contents of a Calc sheet into an XML file.
Sub ExportSheetToXML
 REM Typically this subroutine will be very short:
 'Dim sURL
 'sURL = ChooseAFileName 'Function stored in this file's UNO module
 'WriteDomToFile(MakeXMLFromSheet(ThisComponent.Sheets(0)), sURL)
 REM But for this example a new Calc document is created first,
 REM some data are written into sheet 0,
 REM and at the end the stored XML file is opened for inspection.

 Dim oCalcDoc 'The source Calc spreadsheet document
 Dim oSheet 'The source sheet
 Dim sURL As String 'The URL of the output file

 sURL = GetWorkDir() & "/oome_xml_export.xml"
 oCalcDoc = StarDesktop.loadComponentFromURL(_
 "private:factory/scalc", "_blank", 0, Array())
 oSheet = oCalcDoc.Sheets(0)
 REM Fill the sheet with fancy data.
 CreateExampleSheet(oSheet)
 REM The following subroutine has to be devised using the specific sheet data.
 REM Typically it is placed in the document library.
 WriteDomToFile(MakeXMLFromSheet(oSheet), sURL)
 Wait 500 'Give the OS time to store the file to disk
 REM Load the XML file in a Writer document.
 REM LibreOffice requires that the FilterName be specified, AOO does not.
 Dim noArgs(1) As New com.sun.star.beans.PropertyValue
 noArgs(0).Name = "FilterName"
 noArgs(0).Value = "Text"
 StarDesktop.loadComponentFromURL(sUrl, "_blank", 0, noArgs())
End Sub

536

REM Writes the structure of the current DOM document
REM into a valid and nicely formatted XML text file.
REM This subroutine and the called subroutines and functions are not
REM document specific and needn't be part of the document library.
REM They can be stored in the "My Macros" library.
Sub WriteDomToFile(oDOM, sFilePath As String)
 Dim oSimpleFileAccess 'SimpleFileAccess service
 Dim oOutputStream 'Stream returned from SimpleFileAccess
 Dim oTextOutput 'TextOutputStream service
 Dim oNodes 'List of child nodes of the root node
 Dim i%
 Dim iIndentLevel As Integer 'Indentation level
 Dim iIndentSpaces As Integer 'Number of spaces added to each indentation level

 On Error Goto Catch

 iIndentSpaces = 2
 REM Set the output stream
 sFilePath = ConvertToURL(sFilePath)
 oSimpleFileAccess = createUnoService("com.sun.star.ucb.SimpleFileAccess")
 With oSimpleFileAccess
 If .exists(sFilePath) Then .kill(sFilePath)
 oOutputStream = .openFileWrite(sFilePath)
 End With

 oTextOutput = createUnoService("com.sun.star.io.TextOutputStream")
 With oTextOutput
 .OutputStream = oOutputStream
 .setEncoding("UTF-8")
 REM The first line is a processing instruction. It usually isn't part of
 REM the DOM tree. So we write it separately.
 .WriteString("<?xml version=""1.0"" encoding=""UTF-8""?>" & CHR$(10))

 REM A DOM tree can consist of zero, one or more child nodes on the
 REM root level. The child nodes are treated hierarchically.
 If oDOM.hasChildNodes Then
 oNodes = oDOM.getChildNodes
 For i = 0 To oNodes.getLength - 1
 PrintDom(oNodes.item(i), oTextOutput, iIndentLevel, iIndentSpaces)
 Next
 End If
 .closeOutput
 End With
 oOutputStream.closeOutput

 Exit Sub

 Catch:
 Print "Error " & Err & " (" & Error(Err) & ")"
End Sub

537

REM Writes the elements of a DOM tree recursively line after line into a
REM text file. Mark to start with iLevel 0.
REM Indents lower levels by accumulating iIndent spaces, except for text nodes:
REM they are written in the same line directly after the element start tag
REM and are directly followed by the element end tag.
REM It is assumed that there are either one text node or one or more other
REM child nodes to an element, if any.
Sub PrintDom(oNode, oStream, iLevel As Integer, iIndent As Integer)
 Dim oElementChildren
 Dim oChild
 Dim sLine As String
 Dim sAtt As String
 Dim sIndent As String
 Dim i%, iLen%
 Dim sNodeName As String

 sNodeName = oNode.getNodeName
 sIndent = String(iLevel * iIndent, " ")

 REM Only comments and elements are treated.
 If oNode.getNodeType = com.sun.star.xml.dom.NodeType.COMMENT_NODE Then
 REM XML comment
 sLine = sIndent & "<!-- " & oNode.getNodeValue & " -->"
 oStream.writeString(sLine & CHR$(10))
 Elseif oNode.getNodeType = _
 com.sun.star.xml.dom.NodeType.ELEMENT_NODE Then
 REM XML element
 sAtt = AttString(oNode.getAttributes)
 REM Check, if the element has data. Otherwise the element is skipped.
 If oNode.hasChildNodes OR sAtt <> "" Then
 oElementChildren = oNode.getChildNodes
 If HasContent(oElementChildren) Then
 sLine = sIndent & "<" & sNodeName & sAtt & ">" 'Start tag line
 iLen = oElementChildren.getLength
 If iLen = 1 Then
 REM Test for text node, assuming that there are no other
 REM sibling nodes besides a text node.
 oChild = oElementChildren.item(0)
 If oChild.getNodeType = com.sun.star.xml.dom.NodeType.TEXT_NODE Then
 sLine = sLine & oChild.getNodeValue & "</" & sNodeName & ">"
 REM Write the line: start tag plus text value plus end tag.
 oStream.writeString(sLine & CHR$(10))
 Exit Sub
 End If
 End If
 REM At this point there are child elements other than text nodes.
 REM Write the start tag line.
 oStream.writeString(sLine & CHR$(10))
 For i = 0 To iLen - 1
 REM Start the recursion, increment the indentation level
 PrintDom(oElementChildren.item(i), oStream, iLevel + 1, iIndent)
 Next
 sLine = sIndent & "</" & sNodeName & ">" 'End tag line

538

 REM Write the end tag line.
 oStream.writeString(sLine & CHR$(10))
 Else
 REM There are no child elements to be written.
 REM If there are attributes, the short notation is used.
 REM If there are not even attributes, no element tag is written.
 If sAtt <> "" Then
 sLine = sIndent & "<" & sNodeName & sAtt & " />"
 REM Write the element in a short notation line.
 oStream.writeString(sLine & CHR$(10))
 End If
 End If
 End If
 End If
End Sub

REM Returns a string of all the attributes of an element.
Function AttString(oAttList) As String
 Dim oAtt 'A single attribute node
 Dim sValue As String 'A single attribute's value
 Dim sAtts As String 'The string containing all attributes
 Dim i%

 If Not IsNull(oAttList) Then
 For i = 0 To oAttList.getLength - 1
 oAtt = oAttList.item(i)
 sValue = oAtt.getNodeValue
 If sValue <> "" Then
 sAtts = sAtts & " " & oAtt.getNodeName & "=""" & sValue & """"
 End If
 Next
 End If
 AttString = sAtts
End Function

REM Checks recursively, if there is some child node with content, be it text,
REM comment or attribute value other than "". Returns True, if some content
REM is found in the tree, otherwise False.
REM It is called by PrintDom, before the actual element start tag is written,
REM so PrintDom can abstain from printing an empty element.
Function HasContent(oElementList) As Boolean
 Dim oChild 'A single child node of oElementList
 Dim oAttributes 'The attributes of oChild
 Dim oChildren 'The child nodes of oChild
 Dim i%, j%

 For i = 0 To oElementList.getLength - 1
 oChild = oElementList.item(i)
 If oChild.hasAttributes Then
 oAttributes = oChild.getAttributes
 For j = 0 To oAttributes.getLength - 1

539

 If oAttributes.item(j).getNodeValue <> "" Then
 HasContent = True
 Exit Function
 End If
 Next
 End If
 If oChild.getNodeType = com.sun.star.xml.dom.NodeType.TEXT_NODE Then
 If oChild.getNodeValue <> "" Then
 HasContent = True
 Exit Function
 End If
 Elseif oChild.getNodeType = com.sun.star.xml.dom.NodeType.COMMENT_NODE Then
 If oChild.getNodeValue <> "" Then
 HasContent = True
 Exit Function
 End If
 Else
 oChildren = oChild.getChildNodes()
 If oChildren.getLength <> 0 Then
 REM Start the recursion
 If HasContent(oChildren) Then
 HasContent = True
 Exit Function
 End If
 End If
 End If
 Next
 HasContent = False
End Function

The WriteDomToFile subroutine takes two arguments, the DOM document and the file URL. An output
stream is obtained from the SimpleFileAccess, which is then used by a TextOutputStream to write a UTF-8
encoded text file one line at a time.

1. The first line of an XML file is the xml processing instruction that is not part of the DOM document.

2. The macro iterates over root nodes children and prints each using PrintDom. PrintDom calls itself to
print children of the node with which it was called.

3. PrintDom accepts four arguments: the current node, the output stream, the indentation level, and the
number of spaces used for indentation. The first level is not indented, for each lower level – that is
for each consecutive call of PrintDom – two spaces are added.

4. If the current node is a comment, PrintDom writes the text of the comment in the XML comment
notation: <!-- Text -->. Line feed characters within the text break the output into new lines. PrintDom
terminates.

5. For element nodes, PrintDom uses the AttString function to print attributes.

Special attention is made to print the XML in a “pretty” way; for example, if possible, a node is printed as
<Name/> rather than <Name></Name>.

540

 15.13. Charts

Many things can be done with charts, but only a small portion of the capabilities are shown here in an
attempt to provide an overview of what can be accomplished.

Although a chart is a document (it has its own document model), charts are always embedded in other OOo
documents. Objects that support embedded charts (Calc sheets) implement the getCharts method as defined
by the XTtableChartsSupplier interface, which returns a TableCharts service.

ThisComponent.Sheets(0).getCharts()

Table 219. Methods implemented in the com.sun.star.table.XTableCharts interface.
Method Description

addNewByName (name, size, data, bCol, bRow) Create and add the named chart.

createEnumeration() Create an enumeration.

getByIndex(i) Get chart by index.

getByName(name) Get chart by name.

getCount() Number of charts.

getElementNames() Array of chart names.

hasByName (name) Determine if a named chart exists.

hasElements () Determine if any charts exist.

removeByName (name) Delete a named chart.

Sample data is needed to discuss charts.

Listing 474. Create sample chart data.
Function CreateCalcForChart
 Dim oCalcDoc 'The source Calc spreadsheet document
 Dim oSheet 'The source sheet
 Dim sDataRng$ 'Where is the data

 oCalcDoc = StarDesktop.loadComponentFromURL("private:factory/scalc", "_blank", 0, Array())
 oSheet = oCalcDoc.Sheets(0)
 sDataRng = "A1:D6"
 Dim oData
 oData = Array(Array("A", "B", "C", "D"), _
 Array(3, 1, 5, 4), _
 Array(2, 2, 4, 1), _
 Array(1, 3, 3, 0), _
 Array(2, 4, 2, 1), _
 Array(3, 5, 1, 4))
 oSheet.getCellRangeByName(sDataRng).setDataArray(oData)
 CreateCalcForChart = oCalcDoc
End Function

The sample data is shown below:

541

Table 220. Sample data for charts.
A B C D

1 A B C D

2 3 1 5 4

3 2 2 4 1

4 1 3 3 0

5 2 4 2 1

6 3 5 1 4

Consider the simple example below that creates a simple chart. A Calc document is created with simple data
(see Listing 474 and Table 220). If the chart does not exist, it is created 10 cm (about 4 inches) from the left
edge and 1 cm from the top edge. The graph is 10 cm x 10 cm in size.An array of cell range addresses is
passed as the third argument to addNewByName to define the data that is charted.

Listing 475. Create a simple chart.
Sub CreateCalcWithSimpleChart
 Dim oSheet 'Sheet containing the chart
 Dim oRect 'How big is the chart
 Dim oCharts 'Charts in the sheet
 Dim oChart 'Created chart
 Dim oAddress 'Address of data to plot
 Dim sName$ 'Chart name
 Dim oChartDoc 'Embedded chart object
 Dim oTitle 'Chart title object
 Dim oDiagram 'Inserted diagram (data).
 Dim sDataRng$ 'Where is the data
 Dim oCalcDoc

 oCalcDoc = CreateCalcForChart()

 sName = "ADP_Chart"
 sDataRng = "A1:D6"

 oSheet = oCalcDoc.sheets(0)
 oAddress = oSheet.getCellRangeByName(sDataRng).getRangeAddress()
 oCharts = oSheet.getCharts()
 If NOT oCharts.hasByName(sName) Then
 oRect = createObject("com.sun.star.awt.Rectangle")
 oRect.X = 10000
 oRect.Y = 1000
 oRect.width = 10000
 oRect.Height= 10000

 ' The rectangle identifies the dimensions in 1/100 mm.
 ' The address is the location of the data.
 ' True indicates that column headings should be used.
 ' False indicates that Row headings should not be used.
 oCharts.addNewByName(sName, oRect, Array(oAddress), True, False)

542

 End If

 oChart = oCharts.getByName(sName)
 oChart.setRanges(Array(oAddress))
 oChartDoc = oChart.getEmbeddedObject()
 'oChartDoc.attachData(oAddress)
 oTitle = oChartDoc.getTitle()
 oTitle.String = "Andy - " & Now

 ' Create a diagram.
 oDiagram = oChartDoc.createInstance("com.sun.star.chart.LineDiagram")
 oChartDoc.setDiagram(oDiagram)
 oDiagram = oChartDoc.getDiagram()
 oDiagram.DataCaption = com.sun.star.chart.ChartDataCaption.VALUE
 oDiagram.DataRowSource = com.sun.star.chart.ChartDataRowSource.COLUMNS
End Sub

Figure 111. Simple chart created by Listing 475.

The chart can be modified after it is in the document. The following snippet changes the already inserted
chart and uses three ranges that need not be contiguous.

543

Listing 476. Modify an existing chart.
 sName = "ADP_Chart"
 sDataRng = "A1:D6"

 oSheet = ThisComponent.sheets(0)
 oCharts = oSheet.getCharts()
 If oCharts.hasByName(sName) Then
 oChart = oCharts.getByName(sName)
 oData = Array(oSheet.getCellRangeByName("A1:A6").getRangeAddress(), _
 oSheet.getCellRangeByName("C1:C6").getRangeAddress(), _
 oSheet.getCellRangeByName("D1:D6").getRangeAddress())
 oChart.setRanges(oData)
 End If

Figure 112. Modify the chart.
The chart supports the com.sun.star.table.TableChart service. The primary methods of interest are shown in
Table 221. A TableChart object also implements methods to add and remove listeners.

544

Table 221. Main methods to control a TableChart.
Method Description

getEmbeddedObject() Get the chart model.

getHasColumnHeaders() Are the cells of the topmost row of the source data used as column headers.

getHasRowHeaders() Are the cells of the leftmost column of the source data used as row headers.

getName() Get the chart name.

getRanges() Get an array of ranges used in the chart.

setHasColumnHeaders(b) Set if the cells of the topmost row of the source data are used as column headers.

setHasRowHeaders (b) Set if the cells of the leftmost column of the source data are used as row headers.

setName (name) Set the chart name.

setRanges (ranges) Set the ranges used in the report.

The chart model has significant complexity – you do remember that it is an embedded document. There are
multiple methods for dealing with chart titles. The chart title object supports backgrounds, bitmaps, text
rotation, paragraph styles, and an array of formatted text objects that represent the text of the title. In our
example, the title has a single text element, which can be changed as follows:

Listing 477. Set the chart title using getTitleObject().
oChartDoc = oChart.getEmbeddedObject()
Dim txtArray
txtArray = oChartDoc.getTitleObject().getText()
 (0).setString("New Title Text")

Formatted strings support properties related to formatting such as CharColor, CharEmphasis,
CharFontName, and CharFontStyleName. I recommend object inspection to see what is supported. The chart
doc also supports the getTitle() method which encapsulates the title as a single string and supports similar
text formatting characteristics. The object returned by getTitle implements the XShape interface, so it can be
used to change the position and size.

Listing 478. Set the chart title using getTitle().
oChartDoc.getTitle().String = "one two three"

The subtitle, available using getSubtitle(), is also a com.sun.star.comp.chart.Title service, so, all methods
that apply to the title, also apply to the subtitle.

Listing 479. Set the chart subtitle.
oChartDoc.getSubTitle().String = "I am the subtitle"

Use getLegend() to get the legend (com.sun.star.comp.chart.Legend), which you can use to change the font,
size, position, and other formatting characteristics. The legend object does not allow you to change the text
of the legend, however.

Changing the chart type involves asking the chart document for an appropriate diagram type, and then
setting it (see Listing 475). Note that the TypesDocCanCreate macro in Listing 214 can also be used here.

Listing 480. List services the chart document can create.
Dim oWriteDoc
Dim oText
Dim sn
oWriteDoc = StarDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, Array())
oText = oWriteDoc.getText()

545

sn = oChartDoc.getAvailableServiceNames()
MsgBox Join(sn, CHR$(10))
oText.insertString (oText.End, Join(sn, CHR$(10)), False)

The list returned by Apache OpenOffice 3.4 is as follows:

1. com.sun.star.chart.AreaDiagram

2. com.sun.star.chart.BarDiagram

3. com.sun.star.chart.BubbleDiagram

4. com.sun.star.chart.DonutDiagram

5. com.sun.star.chart.FilledNetDiagram

6. com.sun.star.chart.LineDiagram

7. com.sun.star.chart.NetDiagram

8. com.sun.star.chart.PieDiagram

9. com.sun.star.chart.StockDiagram

10. com.sun.star.chart.XYDiagram

11. com.sun.star.document.ExportGraphicObjectResolver

12. com.sun.star.document.ImportGraphicObjectResolver

13. com.sun.star.drawing.BitmapTable

14. com.sun.star.drawing.DashTable

15. com.sun.star.drawing.GradientTable

16. com.sun.star.drawing.HatchTable

17. com.sun.star.drawing.MarkerTable

18. com.sun.star.drawing.TransparencyGradientTable

19. com.sun.star.xml.NamespaceMap

The first 10 items are chart types. Changing the diagram type is trivial.

Listing 481. Set chart type to PieDiagram.
oChartDoc = oChart.getEmbeddedObject()
oDiagram = oChartDoc.createInstance("com.sun.star.chart.PieDiagram")
oChartDoc.setDiagram(oDiagram)

Use getArea() to get the com.sun.star.comp.chart.Area for the chart. Use the Area object to set visual
characteristics such as colors, size, and position.

The actual plot is contained in the diagram, available using getDiagram(). To get a feel for some of the
properties supported by the diagram object, look at Table 222. Numerous other properties and methods are
also supported, but they are omitted due to space constraints. Inspect the object to find properties related to
axis, colors, bitmaps, and grids.

546

Table 222. Properties used to set error bars.
Property Description

ConstantErrorLow Lower limit of the error range of a data row.

ConstantErrorHigh Upper limit of the error range of a data row.

ErrorBarStyle Use com.sun.star.chart.ErrorBarStyle constants to set the error bar style. Use: NONE,
VARIANCE, STANDARD_DEVIATION, ABSOLUTE, RELATIVE, ERROR_MARGIN,
STANDARD_ERROR, or FROM_DATA.

PercentageError Percentage used to display error bars.

ErrorMargin Percentage for the margin of errors.

ErrorIndicator Use com.sun.star.chart.ChartErrorIndicatorType enum to specify how the error is indicated.
Valid values include NONE, TOP_AND_BOTTOM, UPPER, or LOWER.

ErrorBarRangePositive Cell range string for positive error bars – assuming the ErrorBarStyle is set to FROM_DATA.

ErrorBarRangeNegative Cell range string for negative error bars – assuming the ErrorBarStyle is set to FROM_DATA.

MeanValue Set to true to display the mean value for a data row as a line.

RegressionCurves Use com.sun.star.chart.ChartRegressionCurveType enum to specify the type of regression for
the data row values. Valid values include: NONE, LINEAR, LOGARITHM, EXPONENTIAL,
or POWER.

DataCaption Use com.sun.star.chart.ChartDataCaption constants to determine how points are captioned. Valid
values include NONE, VALUE, PERCENT, TEXT, or SYMBOL. The chart in Figure 112 is set
to VALUE, so the numeric values are shown at each data point.

DataRowSource Use com.sun.star.chart.ChartDataRowSource enum values to to determine if data is in rows or
columns. Valid values include ROWS, or COLUMNS.

 15.14. Conclusion

Calc documents are feature-rich and they support a wide variety of capabilities. In my opinion, Calc
documents provide more functionality than any other document type supported by OOo. This chapter,
therefore, is only the beginning of the wonderful things that you can do using Calc documents.

547

 16. Draw and Impress Documents
This chapter introduces methods to manipulate and modify the content contained in Draw and Impress
documents. Although the drawing functionality is the same in Draw and Impress, Impress contains extra
functionality to facilitate presentations.

Draw and Impress are vector-oriented graphical applications. They can also display bitmap images, but their
strength is not in photo editing. Vector-oriented applications represent many graphical objects as objects
rather than as bit-mapped images. For example, lines, circles, rectangles, and text are each represented as
special objects. One advantage of vector graphics is that you can independently manipulate and transform
multiple overlapping elements without worrying about resolution and pixels.

Photo-editing graphics packages typically represent and manipulate images as bitmaps. A bitmap
representing an image is characterized by the width and height of the image in pixels. Each pixel represents
a single, colored dot in the image. The drawing capability in OpenOffice.org, however, is focused on vector
operations.

Every Draw document supports the com.sun.star.drawing.DrawingDocument service and every Impress
document supports the com.sun.star.presentation.PresentationDocument service. When I write a macro that
must be user friendly and requires a specific document type, I verify that the document is the correct type by
using the object method supportsService (see Listing 482).

Listing 482. Check for an Impress document before checking for a Draw document.
REM If it really matters, you should check the document type
REM to avoid a run-time error.
sDraw$ = "com.sun.star.drawing.DrawingDocument"
sImpress$ = "com.sun.star.presentation.PresentationDocument"
If ThisComponent.SupportsService(sImpress$) Then
 MsgBox "The current document is an Impress document", 0, "Impress Document"
ElseIf ThisComponent.SupportsService(sDraw$) Then
 MsgBox "The current document is a Draw document", 0, "Draw Document"
Else
 MsgBox "The current document is not the correct type", 48, "Error"
 Exit Sub
End If

Warn The PresentationDocument service implements the DrawingDocument service. This means that every
presentation document looks like a drawing document. To distinguish between the two document types,
you must first check for a presentation (Impress) document and then check for a drawing document.

The simple function below returns a new document, this is used in other macros for this chapter.

Listing 483. Create a new document.
REM Create a new empty document
REM consider document types of
REM scalc, swriter, sdraw, smath, and simpress
Function LoadEmptyDocument(docType$)
 Dim noArgs() 'An empty array for the arguments
 Dim sURL As String 'URL of the document to load
 sURL = "private:factory/" & docType
 LoadEmptyDocument = StarDesktop.LoadComponentFromUrl(sURL, "_blank", 0, noArgs())
End Function

548

 16.1. Draw pages

The primary function of Draw and Impress documents is to contain graphical data, which is stored in draw
pages. The primary draw-page functionality is implemented by a GenericDrawPage. There are two types of
draw pages—the MasterPage and the DrawPage. Both draw-page types implement the GenericDrawPage
and are therefore able to hold and manipulate the same content.

A master page acts as a common background for zero or more draw pages. Each draw page may link to one
master page. Each master page is constrained as follows:

• A master page, unlike a regular draw page, may not link to a master page.

• A master page may not be removed from a document if any draw page links to it.

• Modifications made to a master page are immediately visible on every draw page that uses that
master page.

The method getMasterPages() returns the document’s collection of master pages. The method
getDrawPages() returns the document’s collection of draw pages. Both methods return the same object type;
they differ only in how their contents are used (see Table 223).

Table 223. Methods supported by the com.sun.star.drawing.XDrawPages interface.
Method Description

duplicate(DrawPage) Duplicate the DrawPage and return the new DrawPage.

getByIndex(Long) Get the specified draw page.

getByName(String) Get the specified draw page.

getCount() Return the number of contained objects as a Long Integer.

hasByName(String) Return True if the named page exists.

hasElements() Return True if there are draw pages to return.

insertNewByIndex(Long) Create and insert a new draw page at the specified index.

remove(DrawPage) Remove a specific draw page.

Each draw page has a name, which you can access by using the methods getName() and setName(). A draw
page that is not a master supports the methods getMasterPage() and setMasterPage() to get and set the
master page. Listing 484 demonstrates enumerating the document’s draw pages and their corresponding
master pages.

Listing 484. Print information related to draw pages and master pages.
Sub getPages()
 Dim s$
 Dim oDoc

 oDoc = LoadEmptyDocument("simpress")
 s = s & getPagesInfo(oDoc.getDrawPages(), "Draw Pages")
 s = s & CHR$(10)
 s = s & getPagesInfo(oDoc.getMasterPages(), "Master Pages")
 MsgBox s, 0, "Pages"
End Sub

Function getPagesInfo(oDPages, sType$) As String
 Dim i%, s$

549

 Dim oDPage, oMPage
 s = s & "*** There are " & oDPages.getCount() & " " & sType & CHR$(10)
 For i = 0 To oDPages.getCount()-1
 oDPage = oDPages.getByIndex(i)
 s = s & "Page " & i & " = '" & oDPage.getName() & "'"
 If NOT oDPage.supportsService("com.sun.star.drawing.MasterPage") Then
 oMPage = oDPage.getMasterPage()
 s = s & " master = "
 If NOT IsNull(oMPage) AND NOT IsEmpty(oMPage) Then
 s = s & "'" & oMPage.getName() & "'"
 End If
 End If
 s = s & CHR$(10)
 Next
 getPagesInfo = s
End Function

Although you can get a draw page based on its name, you can have more than one draw page with the same
name. If multiple draw pages use the same name and you retrieve the draw page based on the name, it is not
specified which draw page is returned. The macro in Listing 485, which searches for a draw page with a
specific name, is used in numerous places in this chapter.

Listing 485. Create a new page by name, avoiding multiple names.
Function createDrawPage(oDoc, sName$, bForceNew As boolean) As Variant
 Dim oPages 'All of the draw pages
 Dim oPage 'A single draw page
 Dim i% 'General index variable
 oPages = oDoc.getDrawPages()
 If oPages.hasByName(sName) Then
 REM If we require a new page then delete
 REM the page.
 If bForceNew Then
 oPages.remove(oPages.getByName(sName))
 Else
 REM Did not request a new page so return the found page
 REM and then get out of the function.
 createDrawPage = oPages.getByName(sName)
 Exit Function
 End If
 End If

 REM Did not find the page, or found the page and removed it.
 REM Create a new page, set the name, and return the page.
 oPages.insertNewByIndex(oPages.getCount())
 oPage = oPages.getByIndex(oPages.getCount()-1)
 oPage.setName(sName)
 createDrawPage = oPage
End Function

 16.1.1. Generic draw page

Both regular and master draw pages support the GenericDrawPage service. As its name implies, the
GenericDrawPage service provides the primary generic drawing functionality. Writer and Calc documents

550

provide specific styles for formatting entire pages. Draw pages, however, use the properties shown in Table
224.

Table 224. Properties defined by the com.sun.star.drawing.GenericDrawPage service.
Property Description

BorderBottom Bottom border in 1/100 mm, represented as a Long Integer.

BorderLeft Left border in 1/100 mm, represented as a Long Integer.

BorderRight Right border in 1/100 mm, represented as a Long Integer.

BorderTop Top border in 1/100 mm, represented as a Long Integer.

Height Height in 1/100 mm, represented as a Long Integer.

IsBackgroundDark This is True if the averaged background fill color’s luminance is below a specified threshold
value.

NavigationOrder Provides index access in navigation order for the top level shapes inside the page. By default
this is equal to the index access of the slide itself, making the z-order the default navigation
order for top level shapes.

Number Draw page number as a Short Integer. This read-only value labels the first page 1.

Orientation Page orientation as a com.sun.star.view.PaperOrientation enumeration. Two values are
supported—PORTRAIT and LANDSCAPE.

UserDefinedAttributes User-defined XML attributes.

Width Width in 1/100 mm, represented as a Long Integer.

The primary purpose of a draw page is to contain shapes. The methods addShape(Shape) and
removeShape(Shape) add and remove a shape from a document. Before a shape can be added to a draw
page, it must be created by the document. Each line produced by Listing 486 and shown in Figure 113 is a
separate, unrelated shape. You can independently manipulate each shapes.

Listing 486. Draw 20 lines in a Draw or Impress document.
Function draw20Lines()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oPoint 'Initial start point of the line
 Dim oSize 'Width and height of the line
 Dim i% 'Index variable
 Dim n% 'Number of iterations to perform
 Dim nShift%'Shift the graphic down
 Dim oDoc

 oDoc = LoadEmptyDocument("sdraw")
 draw20Lines = oDoc
 oPage = createDrawPage(oDoc, "Test Draw", True)
 nShift = oPage.Height / 4

 n = 20
 For i = 0 To n
 oShape = oDoc.createInstance("com.sun.star.drawing.LineShape")
 oShape.LineColor = RGB(255, 0, i+20)
 oShape.LineWidth = 20
 oPoint = oShape.Position
 oPoint.X = oPage.Width / 4

551

 oPoint.Y = i * oPage.Height / n / 4 + nShift
 oShape.Position = oPoint
 oSize = oShape.Size
 oSize.Height = (oPage.Height - 2 * i * oPage.Height / n) / 4
 oSize.Width = oPage.Width / 2
 oShape.Size = oSize
 oPage.add(oShape)
 Next
End Function

Figure 113. Twenty lines in a Draw document.
The macro in Listing 486 works with Draw and Impress. The 20 red lines are drawn on a page named “Test
Draw”. If the page does not exist, it is created.

 16.1.2. Combining shapes

The macro in Listing 486 creates 20 independent lines. You can group shapes together and then manipulate
them as a single shape. The method group(XShapes) accepts a collection of shapes and turns them into a
single group; an XShapeObject is returned. The macro in Listing 487 starts by calling Listing 486 and then it
adds all of the lines to a single group.

Listing 487. Group many shapes into a single shape.
Sub groupShapes
 Dim oPage 'Page on which to draw
 Dim oShapes 'Shapes to group
 Dim i% 'Index variable
 Dim oDoc

 REM Create the shapes!
 oDoc = draw20Lines()
 oPage = oDoc.getDrawPages().getByName("Test Draw")

 REM Create a shape collection object to group the shapes
 oShapes = createUnoService("com.sun.star.drawing.ShapeCollection")
 For i = 0 To oPage.getCount() - 1
 oShapes.add(oPage.getByIndex(i))

552

 Next
 oPage.group(oShapes)
End Sub

When several shapes are grouped together using the group() method, the entire group is added as a single
shape into the draw page, which you can retrieve by using oPage.getByIndex(). It’s no longer possible to
select a single line and independently manipulate it. To convert a group of shapes back to independent
shapes, use the ungroup(XShapeObject) method. The ungroup() method removes the objects from the group
and adds them back to the draw page as individual objects (see Listing 488).

Listing 488. Convert a grouped shape back into multiple shapes.
Sub unGroupShapes
 Dim oPage 'Page on which to draw
 Dim oShape 'Single shape
 Dim i% 'Index variable

 oPage = ThisComponent.getDrawPages().getByName("Test Draw")
 For i = 0 To oPage.getCount() - 1
 oShape = oPage.getByIndex(i)
 If oShape.supportsService("com.sun.star.drawing.GroupShape") Then
 oPage.ungroup(oShape)
 End If
 Next
End Sub

Although shapes that are grouped together are manipulated as one shape, they are really a collection of
shapes. The combine(XShapes) method, on the other hand, converts each shape into a PolyPolygonShape
and then combines them into one PolyPolygonShape. The new shape is added to the draw page, and the
original shapes are removed and deleted. The split(XShape) method converts the shape to a
PolyPolygonShape (if it is not already) and then the shape is split into several shapes of type
PolyPolygonShape. The new shapes are added to the draw page and the original shape is removed and
deleted.

Listing 489. Combine all shapes into a ShapeCollection.
Sub combineShapes
 Dim oPage, oShapes, i%, oDoc

 REM Create the shapes!
 oDoc = draw20Lines()
 oPage = oDoc.getDrawPages().getByName("Test Draw")

 oShapes = createUnoService("com.sun.star.drawing.ShapeCollection")
 For i = 0 To oPage.getCount() - 1
 oShapes.add(oPage.getByIndex(i))
 Next
 oPage.combine(oShapes)
End Sub

Combining a shape does not change how the shape appears so the output of Listing 489 is the same as
Listing 486. Binding a shape, as shown in Listing 490, however, connects the lines together with a Bezier
curve.

Listing 490. Bind shapes together.
Sub bindShapes()

553

 Dim oPage, oShapes, i%

 REM Create the shapes!
 draw20Lines()
 oPage = ThisComponent.getDrawPages().getByName("Test Draw")

 oShapes = createUnoService("com.sun.star.drawing.ShapeCollection")
 For i = 0 To oPage.getCount()-1
 oShapes.add(oPage.getByIndex(i))
 Next
 oPage.bind(oShapes)
End Sub

Figure 114. Using bind connects the lines with Bezier curves.
The unbind(XShape) method converts the shape to a PolyPolygonShape (if it is not already) and then each
line segment is converted to a new PolyPolygonShape. The original shape is removed from the draw page
and deleted. The shape produced by Listing 490, combines 21 lines into a one shape. Using unbind on the
single shape does not change what the user sees, but each line is now its own shape, so there are 41 shapes
rather than just one; the original 21 shapes and 20 lines connecting the original 21.

 16.2. Shapes

Graphical content is expressed as a shape object. Shape objects are created by the document and then added
to the draw page. To quickly find out what objects a document can create, use the TypesDocCanCreate
macro in Listing 214 with a Draw document to see the objects that a Draw document can create. Filter the
list a little more if you only want to see the shape types.

Listing 491. Shape services supported by Draw.
Sub SupportedDrawDocShapes
 Dim oDrawDoc
 ' Create a temporary draw document.
 oDrawDoc = LoadEmptyDocument("sdraw")
 ' Generate the list

554

 TypesDocCanCreate(oDrawDoc, "shape")
 ' Close the temporary draw document.
 oDrawDoc.Close(true)
End Sub

Use the same method to find shapes supported by Impress.

Listing 492. Shape services supported by Impress.
Sub SupportedImpressDocShapes
 Dim oDoc
 ' Create a temporary Impress document.
 oDoc = LoadEmptyDocument("simpress")
 ' Generate the list
 TypesDocCanCreate(oDoc, "shape")
 ' Close the temporary Impress document.
 oDoc.Close(true)
End Sub

The general drawing shapes are shown in Table 225. The shapes specific to a presentation document are
shown in Table 226. Many of the shapes are either not published, or not documented. If a service or interface
is not “published”, the developers expect the service or interface to change in the future, be removed, or to
be unsuitable for public use for some reason.If a service is not documented, then no documentation is easily
available, so it is probably not published. Use objects that are not documented or published at your own risk,
they may change in the future. Sadly, even the documented shapes may not be well documented.

Tip If a service or interface is not “published”, the developers expect the service or interface to change in the
future, be removed, or to be unsuitable for public use for some reason.

Some shape types are not created directly by the document; for example the PolyPolygonBezierShape.
Sadly, these types are also poorly documented. Some of the types may be created indirectly. As a test, I used
an Impress document to create an instance of CalcShape, but the returned object did not support the
CalcShape service. Inserting the created service in the Impress document caused the shape to become an
OLE2Shape service – and it still did not support the CalcShape service.

Table 225. Draw shapes (com.sun.star.drawing).
Shape Type Description

AppletShape Encapsulate a Java Applet.

CaptionShape Rectangular drawing shape with an additional set of lines. It can be used as a
description for a fixed point inside a drawing.

ClosedBezierShape A series of Bezier shapes that are closed.

ClosedFreeHandShape Closed Freehand shape drawn using the GUI.

ConnectorShape Used to connect shapes or glue points.

ControlShape A shape that displays a control such as a button.

CustomShape Create a custom shape; but it is not published.

EllipseShape Draw a circle, an ellipse, or an arc.

FrameShape Undocumented, but seems to be used by other things as a frame.

GraphicObjectShape Display a graphic object such as a bitmap image. There are separate types for
presentation documents and drawing documents.

GroupShape Represent multiple shapes as a single shape.

555

Shape Type Description

LineShape A single line.

MeasureShape A shape used for measuring in a diagram.

MediaShape Undocumented.

OLE2Shape Display an OLE object in a Draw document.

OpenBezierShape A series of Bezier lines.

OpenFreeHandShape Open Freehand shape drawn using the GUI.

PageShape Display a preview of another page in a Draw document.

PluginShape Represent a media type that is not directly supported.

PolyLinePathShape Undocumented.

PolyLineShape A series of connected straight lines.

PolyPolygonBezierShape Undocumented.

PolyPolygonPathShape Undocumented.

PolyPolygonShape A series of straight lines with the first and last points connected.

RectangleShape Draw rectangles.

Shape3DCubeObject Undocumented.

Shape3DExtrudeObject Undocumented.

Shape3DLatheObject Undocumented.

Shape3DPolygonObject Undocumented.

Shape3DSceneObject Undocumented.

Shape3DSphereObject Undocumented.

TableShape Table object in a Draw document.

TextShape Box designed to hold text.

556

Table 226. Impress shapes (com.sun.star.presentation).
Shape Type Description

CalcShape Calc sheet in an Impress document.

ChartShape Chart shape in an Impress document.

DateTimeShape Not published.

FooterShape Not published.

GraphicObjectShape Display a graphic object such as a bitmap image in an Impress document.

HandoutShape A drawing document PageShape for handouts in an Impress document.

HeaderShape Not published.

MediaShape Undocumented.

NotesShape A TextShape for notes in an Impress document.

OLE2Shape Display an OLE object in an Impress document.

OrgChartShape Not documented.

OutlinerShape A TextShape for outlines in an Impress document.

PageShape Display a preview of another page in an Impress document.

SlideNumberShape Not published.

SubtitleShape A TextShape for subtitles in an Impress document.

TableShape Table object in an Impress document.

TitleTextShape A TextShape for titles in an Impress document.

 16.2.1. Common attributes

A shape’s position is stored in a com.sun.star.awt.Point structure, which contains two Long Integer values, X
and Y, representing the upper-left corner in 1/100 mm. A shape’s size is stored in a com.sun.star.awt.Size
structure, which contains two Long Integer values, Width and Height, in 1/100 mm.

Table 227. Methods supported by Shape objects.
Method Description

getPosition() Get the shape’s current position in 1/100 mm.

setPosition(Point) Set the shape’s current position in 1/100 mm.

getSize() Get the shape’s current size in 1/100 mm.

setSize(Size) Set the shape’s current size in 1/100 mm.

getGluePoints() Get an object that provides indexed access to a set of glue points used internally by the object.
Each glue point is a com.sun.star.drawing.GluePoint2 structure (see Table 241).

getShapeType() String representing the shape’s type.

Macros that deal with shape objects frequently require the Size and Point structures. The two methods in
Listing 493 make it easier to create and set these structures.

Listing 493. Create and return a Point or Size structure.
Function CreatePoint(ByVal x As Long,ByVal y As Long) As com.sun.star.awt.Point
 Dim oPoint
 oPoint = createUnoStruct("com.sun.star.awt.Point")

557

 oPoint.X = x : oPoint.Y = y
 CreatePoint = oPoint
End Function

Function CreateSize(ByVal x As Long,ByVal y As Long) As com.sun.star.awt.Size
 Dim oSize
 oSize = createUnoStruct("com.sun.star.awt.Size")
 oSize.Width = x : oSize.Height = y
 CreateSize = oSize
End Function

Interfaces define methods and they may be derived from other interfaces. Services, on the other hand,
implement interfaces and other services. Services also define properties. Some services are defined strictly
to define a group of related properties. The properties defined by the Shape service are general and
applicable to most shape types (see Table 228).

Table 228. Properties defined by the com.sun.star.drawing.Shape service.
Property Description

ZOrder Long Integer representing the ZOrder of this shape. This controls the drawing order of objects,
effectively moving an object forward or backward.

LayerID Short Integer identifying the layer that contains the shape.

LayerName Name of the layer that contains the shape.

Printable If True, the shape is included in printed output.

MoveProtect If True, the shape cannot be moved interactively by the user.

Name Shape name as a String.

SizeProtect If True, the user may not change the shape’s size.

Style Shape’s style as a com.sun.star.style.XStyle object.

Transformation Transformation matrix of type com.sun.star.drawing.HomogenMatrix3 that can contain
translation, rotation, shearing, and scaling.

OOo defines separate services that encapsulate properties and methods specific to lines, text, shadows, shape
rotation, and filling area. Not all shape types support all of these services. For example, it makes no sense
for a line shape to support the properties and methods related to filling areas. The services of interest for the
common properties:

• com.sun.star.drawing.Text

• com.sun.star.drawing.LineProperties

• com.sun.star.drawing.FillProperties

• com.sun.star.drawing.ShadowProperties

• com.sun.star.drawing.RotationDescriptor

I used a macro to quickly determine which shapes support which common service. First, a list of services
where the service name contains the word shape; for example, “com.sun.star.presentation.TableShape”.

Listing 494. Return a filtered list of services supported by an object.
Function GetListCanCreate(oObj, nameFilter$)
 Dim allNames ' List of all the names.

558

 Dim s$
 Dim i%

 s = ""
 allNames = oObj.getAvailableServiceNames()

 For i = LBound(allNames) To UBound(allNames)
 If (InStr(allNames(i), nameFilter) > 0) Then
 If Len(s) > 0 Then
 s = s & "," & allNames(i)
 Else
 s = allNames(i)
 End If
 End If
 Next
 GetListCanCreate = Split(s, ",")
End Function

The following macro creates an Impress document. The impress document is asked which services it can
create that contain the word “Shape”. Each shape is then inspected to see if it supports the categories of
interest. Sadly, none of the categories of interest are supported by the shape until after the shape is inserted
into the document. Each shape, therefore, is added to the Impress document, inspected to see what services it
supports, and then that shape is disposed.

TIP When a shape is created, it is not fully fleshed out and available until after it has been inserted into a
document.

Listing 495. Categorize shape types.
Sub CategorizeShapeTypes
 Dim oSize as New com.sun.star.awt.Size
 Dim oPos as New com.sun.star.awt.Point

 Dim Categories ' Service names of interest
 Dim iRow% ' Iterate over data rows.
 DIm iName% ' Iterate over supported service names.

 Dim oShape ' Created shapes.
 Dim oPage ' Draw page where shapes are inserted.

 Dim oCalc ' Calc document to hold results.
 Dim oImpress ' Impress document on which to test.
 Dim oData ' Holds temporary Cell data.
 Dim oCellRange ' Range to hold the results in Calc.
 Dim shapeNames ' List of supported shape names.
 Dim oSheet ' Calc sheet containing results.
 Dim oRow ' One row from the oData array.

 REM Load an Impress document and a Calc document.
 oImpress = LoadEmptyDocument("simpress")
 oCalc = LoadEmptyDocument("scalc")

 REM Get the list of supported shape names.
 shapeNames = GetListCanCreate(oImpress, "shape")

559

 Rem Make each shape the same size and position.
 oSize.Width = 6000
 oSize.Height = 6100
 oPos.X = 6000
 oPos.Y = 5000

 REM First draw page to contain the created shapes.
 oPage = oImpress.DrawPages.getByIndex(0)

 REM Categories of inerest.
 Categories = Array("com.sun.star.drawing.Text", _
 "com.sun.star.drawing.LineProperties", _
 "com.sun.star.drawing.FillProperties", _
 "com.sun.star.drawing.ShadowProperties", _
 "com.sun.star.drawing.RotationDescriptor")

 REM Get the cell range that will hold the results.
 oSheet = oCalc.getSheets().getByIndex(0)
 oCellRange = oSheet.getCellRangeByPosition(0, 0, _
 UBound(Categories) - LBound(Categories) + 1, _
 UBound(shapeNames) - LBound(shapeNames) + 1)

 oData = oCellRange.getDataArray()

 REM Set the row title
 oRow = oData(0)
 For iRow = 1 To UBound(oRow)
 oRow(iRow) = Categories(iRow - 1)
 Next

 REM For each shape name
 For iName = 0 To UBound(shapeNames)
 REM Get the row for this shape name
 oRow = oData(iName + 1)
 oRow(0) = shapeNames(iName)

 REM Create the shape, add it to the draw page.
 oShape = oImpress.CreateInstance(shapeNames(iName))
 oPage.Add(oShape)
 oShape.setSize(oSize)
 oShape.setPosition(oPos)

 REM Find out which services are supported by the current shape.
 For iRow = LBound(Categories) To UBound(Categories)
 If oShape.supportsService(Categories(iRow)) Then
 oRow(iRow + 1) = "X"
 End If
 Next

 REM Get rid of the created shape.
 oShape.dispose()
 Next

560

 REM Set the results in the Calc document.
 oCellRange.setDataArray(oData)
End Sub

The Calc document created by Listing 495 is not sorted, and the full service names are used. The data is
summarized here in two tables. , The com.sun.star.drawing shapes are shown in Table 229, and the
com.sun.star.presentation shapes are in Table 230.

561

Table 229. Which Drawing shapes support which service.
Shape Text Line

Properties
Fill
Properties

Shadow
Properties

Rotation
Descriptor

AppletShape

CaptionShape X X X X X

ClosedBezierShape X X X X X

ClosedFreeHandShape X X X X X

ConnectorShape X X X X

ControlShape

CustomShape X X X

EllipseShape X X X X X

FrameShape

GraphicObjectShape X X X

GroupShape

LineShape X X X X

MeasureShape X X X X

MediaShape

OLE2Shape

OpenBezierShape X X X X X

OpenFreeHandShape X X X X X

PageShape

PluginShape

PolyLinePathShape X X X X

PolyLineShape X X X X

PolyPolygonPathShape X X X X X

PolyPolygonShape X X X X X

RectangleShape X X X X X

Shape3DCubeObject

Shape3DExtrudeObject

Shape3DLatheObject

Shape3DPolygonObject

Shape3DSceneObject

Shape3DSphereObject

TableShape

TextShape X X X X X

562

Table 230. Which Impress shapes support which service.
Shape Text Line

Properties
Fill
Properties

Shadow
Properties

Rotation
Descriptor

CalcShape

ChartShape

DateTimeShape X X X X X

FooterShape X X X X X

GraphicObjectShape X X X

HandoutShape

HeaderShape X X X X X

MediaShape

NotesShape X X X X X

OLE2Shape

OrgChartShape

OutlinerShape X X X X X

PageShape

SlideNumberShape X X X X X

SubtitleShape X X X X X

TableShape

TitleTextShape X X X X X

Drawing text service

Any shape that supports the com.sun.star.drawing.Text service has the ability to contain text. The drawing
text service supports the standard com.sun.star.text.XText interface and a special set of drawing text
properties. Besides character and paragraph properties, the drawing text properties service defines properties
specifically designed for shape objects (see Table 231).

Table 231. Properties defined by the com.sun.star.drawing.TextProperties service.
Property Description

IsNumbering If True, numbering is ON for the text in this shape.

NumberingRules Describes the numbering levels as a sequence of com.sun.star.style.NumberingRule.

TextAnimationAmount Number of pixels the text is moved in each animation step.

TextAnimationCount Number of times the text animation is repeated.

TextAnimationDelay Delay, in thousandths of a second, between each animation step.

TextAnimationDirection Enumerated value of type com.sun.star.drawing.TextAnimationDirection: LEFT, RIGHT,
UP, and DOWN.

563

Property Description

TextAnimationKind Enumerated value of type com.sun.star.drawing.TextAnimationKind:

• NONE – No animation.

• BLINK – Continuously switch the text between visible and invisible.

• SCROLL – Scroll the text.

• ALTERNATE – Scroll the text from one side to the other and back.

• SLIDE – Scroll the text from one side to the final position and stop.

TextAnimationStartInside If True, the text is visible at the start of the animation.

TextAnimationStopInside If True, the text is visible at the end of the animation.

TextAutoGrowHeight If True, the shape height changes automatically when text is added or removed.

TextAutoGrowWidth If True, the shape width changes automatically when text is added or removed.

TextContourFrame If True, the text is aligned with the left edge of the shape.

TextFitToSize Enumerated value of type com.sun.star.drawing.TextFitToSizeType:

• NONE – The text size is defined by the font properties.

• PROPORTIONAL – Scale the text if the shape is scaled.

• ALLLINES – Like PROPORTIONAL, but the width of each row is also scaled.

• RESIZEATTR – If the shape is scaled, scale the font attributes.

TextHorizontalAdjust Enumerated value of type com.sun.star.drawing.TextHorizontalAdjust:

• LEFT – The left edge of the text is adjusted to the left edge of the shape.

• CENTER – The text is centered inside the shape.

• RIGHT – The right edge of the text is adjusted to the right edge of the shape.

• BLOCK – The text extends from the left to the right edge of the shape.

TextLeftDistance Distance from the left edge of the shape to the text as a Long Integer.

TextLowerDistance Distance from the lower edge of the shape to the text as a Long Integer.

TextMaximumFrameHeight Limit a shape’s height as it grows automatically as you enter text.

TextMaximumFrameWidth Limit a shape’s width as it grows automatically as you enter text.

TextMinimumFrameHeight Limit a shape’s minimum height as it grows automatically as you enter text.

TextMinimumFrameWidth Limit a shape’s minimum width as it grows automatically as you enter text.

TextRightDistance Distance from the right edge of the shape to the text as a Long Integer.

TextUpperDistance Distance from the upper edge of the shape to the text as a Long Integer.

TextVerticalAdjust Enumerated value of type com.sun.star.drawing.TextVerticalAdjust:

• TOP – The top edge of the text is adjusted to the top edge of the shape.

• CENTER – The text is centered inside the shape.

• BOTTOM – The bottom edge of the text is adjusted to the bottom edge of the shape.

• BLOCK – The text extends from the top to the bottom edge of the shape.

TextWritingMode Enumerated value of type com.sun.star.text.TextWritingMode:

• LR_TB – Text is written left to right and top to bottom.

• RL_TB – Text is written right to left and top to bottom.

• TB_RL – Text is written top to bottom and lines are placed right to left.

564

MeasureShape

The default behavior of a MeasureShape (see Figure 115) is to display the actual length of the shape. The
macro in Listing 496 creates two measure shapes and changes the text of one of them to “Width”. To help
illustrate setting the properties in Table 231, the TextAnimationKind property is set to SCROLL so that the
text continuously scrolls from right to left; or at least it would if it were in an Impress document.

Listing 496. Draw a MeasureShape.
Sub drawMeasureShape()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oStart As new com.sun.star.awt.Point
 Dim oEnd As new com.sun.star.awt.Point
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.MeasureShape")
 oPage.add(oShape)

 REM The following values MUST be set AFTER the object is inserted.
 oStart.X = oPage.Width / 4 : oEnd.X = oPage.Width / 2
 oStart.Y = oPage.Height/4 : oEnd.Y = oPage.Height/4
 oShape.StartPosition = oStart
 oShape.EndPosition = oEnd
 oShape.setString("Width")
 oShape.TextAnimationKind = com.sun.star.drawing.TextAnimationKind.SCROLL

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.MeasureShape")
 oPage.add(oShape)
 oStart.X = oPage.Width / 5 : oEnd.X = oPage.Width / 5
 oStart.Y = oPage.Height/4 : oEnd.Y = oPage.Height/2.5
 oShape.StartPosition = oStart
 oShape.EndPosition = oEnd
End Sub

565

Figure 115. By default, measure shapes show the actual size—you can override this.

Drawing line properties

Shapes that support the com.sun.star.drawing.LineProperties service can influence how lines are drawn.
Most shapes support line properties because most shapes contain lines of some sort. The specific properties
dealing with line endpoints and start points are supported only by shapes with open ends.

Table 232. Properties defined by the com.sun.star.drawing.LineProperties service.
Property Description

LineColor Line color as a Long Integer.

LineDash Enumerated value of type com.sun.star.drawing.LineDash that defines how dashed lines are drawn.

• Style – Enumerated value of type com.sun.star.drawing.DashStyle: RECT, ROUND,
RECTRELATIVE, and ROUNDRELATIVE.

• Dots – Number of dots in this LineDash as a Long Integer.

• DotLen – Length of a dot as a Long Integer.

• Dashes – Number of dashes as a Short Integer.

• DashLen – Length of a single dash as a Long Integer.

• Distance – Distance between the dots as a Long Integer.

LineEnd Line end in the form of a PolyPolygonBezierCoords.

LineEndCenter If True, the line ends in the center of the polygon.

LineEndName Name of the line end point’s PolyPolygonBezierCoords.

LineEndWidth Width of the line end polygon.

LineJoint Enumerated value of type com.sun.star.drawing.LineJoint:

• NONE – The joint between lines is not connected.

• MIDDLE – The middle value between joints is used.

• BEVEL – The edges are joined by lines.

• MITER – Lines join at intersections.

• ROUND – Lines are joined with an arc.

LineStart Line start in the form of a PolyPolygonBezierCoords .

566

Property Description

LineStartCenter If True, the line starts from the center of the polygon.

LineStartName Name of the line start point’s PolyPolygonBezierCoords.

LineStartWidth Width of the line start polygon.

LineStyle Enumerated value of type com.sun.star.drawing.LineStyle: NONE (the line is hidden), SOLID, and
DASH.

LineTransparence Line transparency percentage as a Short Integer.

LineWidth Line width in 1/100 mm as a Long Integer.

Filling space with a ClosedBezierShape

Shapes that support the com.sun.star.drawing.FillProperties service are able to control how open area in the
shape is filled. In general, if the shape is closed, it can be filled.

Table 233. Properties defined by the com.sun.star.drawing.FillProperties service.
Property Description

FillBackground If True, the transparent background of a hatch-filled area is drawn in the current
background color.

FillBitmap If the FillStyle is BITMAP, this is the bitmap used.

FillBitmapLogicalSize Specifies if the size is given in percentage or as an absolute value.

FillBitmapMode com.sun.star.drawing.BitmapMode enum:

• REAPEAT Repeate over the fill area.

• STRETCH Stretch to fill the area.

• NO_REPEAT One copy in the original size.

FillBitmapName If the FillStyle is BITMAP, this is the name of the fill bitmap style used.

FillBitmapOffsetX The horizontal offset where the tile starts. It is given as a percentage in relation to
the width of the bitmap.

FillBitmapOffsetY The vertical offset where the tile starts. It is given as a percentage in relation to
the height of the bitmap.

FillBitmapPositionOffsetX Every second line of tiles is moved the given percentage of the width of the
bitmap.

FillBitmapPositionOffsetY Every second row of tiles is moved the given percentage of the height of the
bitmap.

FillBitmapRectanglePoint The RectanglePoint specifies the position inside the bitmap to use as the top-left
position for rendering.

FillBitmapSizeX The width of the tile for filling.

FillBitmapSizeY The height of the tile for filling.

FillBitmapURL If the FillStyle is BITMAP, this is a URL to the bitmap used.

FillColor Color to use if the FillStyle is SOLID.

FillGradient If the FillStyle is GRADIENT, this describes the gradient used (see Table 234).

FillGradientName If the FillStyle is GRADIENT, this is the name of the fill gradient style used.

FillHatch If the FillStyle is HATCH, this describes the hatch used.

FillHatchName If the FillStyle is GRADIENT, this is the name of the fill hatch style used.

567

Property Description

FillStyle com.sun.star.drawing.FillStyle enum:

• NONE Do not fill.

• SOLID Solid color.

• GRADIENT Use a gradient.

• HATCH Fill with a hatch.

• BITMAP Use a bitmap such as a JPG.

FillTransparence Transparency percentage if the FillStyle is SOLID.

FillTransparenceGradient Defines the gradient with a com.sun.star.awt.Gradient structure (see Table 234).

FillTransparenceGradientName Name of the gradient style to use; empty is okay.

Gradients are defined as follows:

Table 234. com.sun.star.awt.Gradient structure.
Property Description

Style Gradient style using an com.sun.star.awt.GradientStyle enum:

• LINEAR Linear gradient.

• AXIAL Axial gradient.

• RADIAL Radial gradient.

• ELLIPTICAL Gradient in the shape of an elipse.

• SQUARE Gradient in the shape of a square.

• RECT Gradient in the shape of a rectangle.

StartColor Gradient start color.

EndColor Gradient end color.

Angle Gradient angle in 1/10 degree.

Border Per cent of the total width where just the start color is used.

XOffset X-coordinate, where the gradient begins.

YOffset Y-coordinate, where the gradient begins.

StartIntensity Intensity at the start point of the gradient.

EndIntensity Intensity at the end point of the gradient.

StepCount Number of steps of change color.

The macro in Listing 497 draws a closed Bezier shape. The fill style is set to use a gradient, which means
that the darkness of the shape changes over the shape. The resulting figure contains narrow bands of each
color or intensity. You can smooth the appearance of the gradient by using the FillTransparenceGradient
property as mentioned in Table 233.

Listing 497. Draw a ClosedBezierShape with a gradient.
Sub DrawClosedBezierShape
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oCoords 'Coordinates of the polygon to insert
 Dim oDrawDoc 'Temporary draw document.

568

 oDrawDoc = LoadEmptyDocument("sdraw")

 oCoords = createUnoStruct("com.sun.star.drawing.PolyPolygonBezierCoords")

 REM Fill in the actual coordinates. The first and last points
 REM are normal points and the middle points are Bezier control points.
 oCoords.Coordinates = Array(_
 Array(_
 CreatePoint(1000, 1000),_
 CreatePoint(3000, 4000),_
 CreatePoint(3000, 4000),_
 CreatePoint(5000, 1000)_
)_
)
 oCoords.Flags = Array(_
 Array(_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.NORMAL _
)_
)

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.ClosedBezierShape")
 oPage.add(oShape)
 oShape.FillStyle = com.sun.star.drawing.FillStyle.GRADIENT
 oShape.PolyPolygonBezier = oCoords
End Sub

Sub drawRectangleWithShadow()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(4000, 1000))
 oShape.setString("box 1")
 oShape.Shadow = True

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(6000, 1000))
 oShape.setSize(createSize(4000, 1000))
 oShape.setString("box 2")
 oShape.Shadow = True
 oShape.ShadowXDistance = -150
 oShape.CornerRadius = 100

569

End Sub

Figure 116. Bezier shape using a gradient fill.

Shadows and a RectangleShape

Shapes that support the ShadowProperties service can be drawn with a shadow. You can set the shadow
location and color by using the properties in Table 235.

Table 235. Properties defined by the com.sun.star.drawing.ShadowProperties service.
Property Description

Shadow If True, the shape has a shadow.

ShadowColor Color of the shadow as a Long Integer.

ShadowTransparence Shadow transparency as a percentage.

ShadowXDistance Horizontal distance of the left edge of the shape to the shadow.

ShadowYDistance Vertical distance of the top edge of the shape to the shadow.

A common method for drawing shadows is to draw the shape at an offset location using a shadow color, and
then draw the shape normally (see Figure 117). With this in mind, consider the properties ShadowXDistance
and ShadowYDistance as the distance that the “shadow object” is shifted when it is drawn. The default
values for ShadowXDistance and ShadowYDistance are positive, which shifts the shadow right and down. A
negative shadow distance shifts the shadow left and up. The macro in Listing 498 draws two boxes; the first
box uses a standard shadow that is shifted right and down, and the second box has the shadow shifted left
and down (see Figure 117).

Listing 498. Draw rectangles with text, rounded corners, and drop shadows.
Sub drawRectangleWithShadow()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(4000, 1000))
 oShape.setString("box 1")
 oShape.Shadow = True

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(6000, 1000))

570

 oShape.setSize(createSize(4000, 1000))
 oShape.setString("box 2")
 oShape.Shadow = True
 oShape.ShadowXDistance = -150
 oShape.CornerRadius = 100
End Sub

Figure 117. Notice the different shadows and that box 2 has rounded corners.

Rotation and shearing

The com.sun.star.drawing.RotationDescriptor provides the ability to rotate and shear a shape. Shear stretches
a shape and would, for example, change a rectangle into a parallelogram. The RotateAngle property is a
Long Integer measured in 1/100 degrees. The shape is rotated counterclockwise around the center of the
shape’s bounding box. The ShearAngle property is also a Long Integer measured in 1/100 degrees, but the
shape is sheared clockwise around the center of the bounding box.

The macro in Listing 499 rotates a rectangle 20 degrees counterclockwise and shears a rectangle 25 degrees
clockwise. This code also draws a normal rectangle with no rotation or shear to help you visualize the effects
(see Figure 118).

Listing 499. Rotate and shear rectangles with text.
Sub drawRotateRectangle()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(4000, 1500))
 oShape.setString("box 1")
 oShape.RotateAngle = 2000 '20 degrees

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(4000, 1500))
 oShape.FillStyle = com.sun.star.drawing.FillStyle.NONE
 oShape.LineStyle = com.sun.star.drawing.LineStyle.DASH

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(6000, 1000))

571

 oShape.setSize(createSize(4000, 1500))
 oShape.setString("box 2")
 oShape.ShearAngle = 2500 '25 degrees

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(createPoint(6000, 1000))
 oShape.setSize(createSize(4000, 1500))
 oShape.FillStyle = com.sun.star.drawing.FillStyle.NONE
 oShape.LineStyle = com.sun.star.drawing.LineStyle.DASH
End Sub

Figure 118. The rectangles with dashed lines are the original rectangles.

 16.2.2. Shape types

OOo supports many different shape types, which build on each other. Most of the shape types are obvious
from their names. For example, a LineShape is a line. I was initially confused, however, by the gratuitous
use of the word “Poly” in shape names such as PolyLineShape and PolyPolygonShape. The prefix “Poly”
comes from the Greek and it means “many.” So in OOo, a Polygon is a figure containing many angles, a
PolyLineShape contains many line shapes, and a PolyPolygonShape contains many polygon shapes.

Simple lines

The purpose of the LineShape service is to draw a simple line. A LineShape requires an initial position and a
size. The macro in Listing 500 draws a line from the point (1000, 1000) to the point (1999, 1999). The
endpoint of the line is set by setting the shape’s size.

Listing 500. Draw a line.
Sub SimpleLine
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.LineShape")
 oPage.add(oShape)
 oShape.setPosition(CreatePoint(1000, 1000))
 oShape.setSize(CreateSize(1000, 1000))
End Sub

572

Although I have never seen it used, the LineShape service supports the service PolyPolygonDescriptor (see
Table 236). The implication is that internally simple lines are represented as an open polygon that contains
one line. The PolyPolygonDescriptor is used in other services as well.

Table 236. Properties in the com.sun.star.drawing.PolyPolygonDescriptor service.
Property Description

PolygonKind This read-only property identifies the polygon type (see Table 237).

PolyPolygon Reference points for this polygon. This is an array of arrays. Each contained array is
an array of com.sun.star.awt.Point structures. These points are used to draw the
polygon and may have been transformed by a rotation or other transformation.

Geometry These are the PolyPolygon points with no transformations.

The PolygonKind enumeration identifies the polygon type (see Table 237). The PolygonKind is a read-only
property in the PolyPolygonDescriptor service (see Table 236). In other words, you can see what the type is,
but you can’t set it.

Table 237. Values defined by the com.sun.star.drawing.PolygonKind enumeration.
Value Description

LINE Identifies a LineShape.

POLY Identifies a PolyPolygonShape.

PLIN Identifies a PolyLineShape.

PATHLINE Identifies an OpenBezierShape.

PATHFILL Identifies a ClosedBezierShape.

FREELINE Identifies an OpenFreeHandShape.

FREEFILL Identifies a ClosedFreeHandShape.

PATHPOLY Identifies a PolyPolygonPathShape.

PATHPLIN Identifies a PolyLinePathShape.

The PolyPolygon property in Table 236 allows you to inspect the actual points used in the creation of the
line. The code in Listing 501 assumes that oShape contains a LineShape object and it displays the two points
in the line.

Listing 501. Inspect the points used in a LineShape.
 x = oShape.PolyPolygon(0)
 MsgBox "" & x(0).X & " and " & x(0).Y
 MsgBox "" & x(1).X & " and " & x(1).Y

PolyLineShape

The LineShape service defines a single line, and the PolyLineShape service defines a series of lines. A
LineShape is defined by setting its position and size. A PolyLineShape, however, is defined by the
PolyPolygonDescriptor (see Table 236). Although it’s easy to create a PolyLineShape when you know how,
it isn’t widely understood.

TIP The PolyPolygon property is an array of arrays that contain points.

573

The lines in the PolyLineShape are defined by the PolyPolygon property, which is an array that contains one
or more arrays of points. Each array of points is drawn as a series of connected lines, but each array is not
specifically connected to the other. The macro in Listing 502 generates two arrays of points (oPoints_1 and
oPoints_2) and then the arrays are stored in another array.

Listing 502. Draw a simple PolyLineShape.
Sub SimplePolyLineShape
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oPoints_1 'First set of points to plot
 Dim oPoints_2 'Second set of points to plot
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPoints_1 = Array(_
 CreatePoint(1000, 1000),_
 CreatePoint(3000, 2000),_
 CreatePoint(1000, 2000),_
 CreatePoint(3000, 1000)_
)

 oPoints_2 = Array(_
 CreatePoint(4000, 1200),_
 CreatePoint(4000, 2000),_
 CreatePoint(5000, 2000),_
 CreatePoint(5000, 1200)_
)

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.PolyLineShape")
 oPage.add(oShape)
 oShape.PolyPolygon = Array(oPoints_1, oPoints_2)
 oShape.LineWidth = 50
End Sub

Figure 119. A single PolyLineShape produces two shapes that are not connected.

TIP The shape is added to the draw page before points are assigned to the PolyPolygon property.

The PolyPolygon property is an array of arrays. You can run the macro in Listing 502 with only one set of
points, but the single array of points must still reside inside a second array.

Listing 503. The PolyPolygon property is an array of arrays of points.
 oShape.PolyPolygon = Array(oPoints_1)

574

PolyPolygonShape

The PolyPolygonShape service defines a series of closed polygons that are not connected (see Figure 120).
This service is essentially a closed-shape version of the PolyLineShape. Because it produces closed shapes,
the PolyPolygonShape service supports fill properties.

The macro in Listing 504 uses the same set of points as the macro in Listing 502, but I moved things around
to demonstrate different methods for creating an array of arrays of points. Both macros, however, create the
shape and add it to the draw page before setting the properties.

Listing 504. Draw a simply PolyPolygonShape that is filled.
Sub SimplePolyPolygonShapeFilled
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.PolyPolygonShape")
 oPage.add(oShape)
 oShape.PolyPolygon = Array(_
 Array(CreatePoint(1000, 1000),_
 CreatePoint(3000, 2000),_
 CreatePoint(1000, 2000),_
 CreatePoint(3000, 1000)_
),_
 Array(CreatePoint(4000, 1200),_
 CreatePoint(4000, 2000),_
 CreatePoint(5000, 2000),_
 CreatePoint(5000, 1200)_
)_
)

 oShape.LineWidth = 50
End Sub

Figure 120. The PolyPolygonShape produces a closed-shape version of the PolyLineShape.

RectangleShape and TextShape

Externally, the RectangleShape and the TextShape are virtually identical. The two shape types support the
same set of services (except for the defining service, of course) and they can be configured to produce the
same output. The primary difference between the two shape types is their default values while producing
output. In principle, properties can be adjusted from default values, so that each type could produce either
output. The macro in Listing 505 creates a rectangle shape and a text shape next to each other (see Figure
121).

Listing 505. Draw a rectangle and a text object.
Sub SimpleRectangleShape2
 Dim oPage 'Page on which to draw

575

 Dim oShape 'Shape to insert
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)

 oShape.setPosition(createPoint(1000, 1000))
 oShape.setSize(createSize(6000, 1000))
 oShape.setString("rectangle")
 oShape.Shadow = True

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.TextShape")
 oPage.add(oShape)

 oShape.setPosition(createPoint(8000, 1000))
 oShape.setSize(createSize(10000, 1000))
 oShape.setString("text")
 oShape.Shadow = True
End Sub

Figure 121. Two shapes that are drawn in the same way—but with different, nearly identical shape types
that have different default values—produce different output.

The RectangleShape and the TextShape types both support the CornerRadius property. The corner radius is a
Long Integer that indicates the radius of the circle used to produce the corners. This is demonstrated in
Figure 117 as produced by Listing 498.

EllipseShape

A mathematician would say that an ellipse is a closed curve that is formed from two points (called the foci)
in which the sum of the distances from any point on the curve to the two points is a constant. If the two foci
are at the same point, the ellipse is a circle. In simpler terms, an ellipse is a circle or a squashed circle.

While drawing a rectangle, the position identifies the upper-left corner of the rectangle and then the size
defines the width and height. If the same point and size is used to draw an ellipse, the ellipse will be
contained inside the rectangle and will just barely touch the four sides of the rectangle. Mathematically, the
sides of the rectangle are tangent to the ellipse at its principal axes, the maximum and minimum distances
across the ellipse. The macro in Listing 506 starts by drawing four ellipse shapes. The final ellipse is rotated
30 degrees. The macro then draws a rectangle using the same position, size, and rotation as the last ellipse
(see Figure 122). The final rectangle helps to illustrate the relationship between a rectangle and an ellipse.

Listing 506. Draw ellipse shapes.
Sub SimpleEllipseShapes
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim i% 'Loop variable.
 Dim x 'One location point.

576

 Dim nLocs 'Locations array.
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 nLocs = Array(_
 Array(CreatePoint(1000, 1000), createSize(1000, 1000)),_
 Array(CreatePoint(3000, 1000), createSize(1000, 1500)),_
 Array(CreatePoint(5000, 1000), createSize(1500, 1000)),_
 Array(CreatePoint(7000, 1000), createSize(1500, 1000))_
)

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 For i = LBound(nLocs) To UBound(nLocs)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.EllipseShape")
 oPage.add(oShape)
 x = nLocs(i)
 oShape.setPosition(x(0))
 oShape.setSize(x(1))
 oShape.setString(i)
 Next
 oShape.RotateAngle = 3000

 REM Now draw a rectangle the same size as the last ellipse.
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape")
 oPage.add(oShape)
 oShape.setPosition(x(0))
 oShape.setSize(x(1))
 oShape.RotateAngle = 3000
 oShape.FillStyle = com.sun.star.drawing.FillStyle.NONE
End Sub

Figure 122. The size parameters determine shape; other parameters set position and orientation.
The EllipseShape service contains a property of type CircleKind that determines whether the entire ellipse
should be drawn, or only a portion of it (see Table 238). In other words, you can draw an arc. The properties
CircleStartAngle and CircleEndAngle define where the arc starts and ends. Each ellipse in Figure 122 uses a
FULL CircleKind.

Table 238. Values defined by the com.sun.star.drawing.CircleKind enumeration.
Value Description

com.sun.star.drawing.CircleKind.FULL A full ellipse.

com.sun.star.drawing.CircleKind.SECTION An ellipse with a cut connected by two lines.

com.sun.star.drawing.CircleKind.CUT An ellipse with a cut connected by one line.

com.sun.star.drawing.CircleKind.ARC An ellipse with an open cut.

577

Warn Both AOO and LO incorrectly swapped the meaning for SECTION and CUT.

The four different circle kinds are drawn by Listing 507 and shown in Figure 123.

Listing 507. Draw Arcs.
Sub ArcEllipseShapes
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim i%
 Dim x
 Dim nLocs
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 nLocs = Array(_
 com.sun.star.drawing.CircleKind.FULL,_
 com.sun.star.drawing.CircleKind.SECTION,_
 com.sun.star.drawing.CircleKind.CUT,_
 com.sun.star.drawing.CircleKind.ARC,_
)

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 For i = LBound(nLocs) To UBound(nLocs)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.EllipseShape")
 oPage.add(oShape)
 oShape.setPosition(CreatePoint((i+1)*2000, 1000))
 oShape.setSize(CreateSize(1000,700))
 oShape.setString(i)
 oShape.CircleStartAngle = 9000
 oShape.CircleEndAngle = 36000
 oShape.CircleKind = nLocs(i)
End Sub

Figure 123. Each supported CircleKind drawn in order.

Bezier curves

A Bezier curve is a smooth curve controlled by multiple points. Bezier curves connect the first and last
points, but are only influenced by the other points. Mathematicians like Bezier curves because they are
invariant under any affine mapping (any arbitrary combination of translation or rotation). Computer graphics
professionals like Bezier curves because they are easy to manipulate and transform.

Bezier curves are controlled by a PolyPolygonBezierDescriptor (see Table 239), which is almost identical to
the PolyPolygonDescriptor described in Table 236. The difference between the two descriptors is that each
point in the Bezier curve is categorized based on how the point affects the curve.

578

Table 239. Properties in the com.sun.star.drawing.PolyPolygonBezierDescriptor service.
Property Description

PolygonKind This read-only property identifies the polygon type (see Table 237).

PolyPolygonBezier Reference points for this Bezier curve. This is a PolyPolygonBezierCoords structure.
The structure contains an array of points and an array of flags to categorize each point
as to its function in the curve.

Geometry This is the PolyPolygonBezierCoords with no transformations.

The PolyPolygonBezier property (see Table 239) is a PolyPolygonBezierCoords structure that contains two
properties, Coordinates and Flags. The Coordinates property is an array of arrays of points that represent the
control points for the Bezier curve. The Flags property is an array of arrays of PolygonFlags (see Table 240)
that identifies how the corresponding point affects the curve.

Table 240. Values in the com.sun.star.drawing.PolygonFlags enumeration.
Value Description

NORMAL The curve travels through normal points.

SMOOTH The point is smooth through the point.

CONTROL Influence the curve.

SYMMETRIC The point is symmetric through the point.

The macro in Listing 508 draws a small circle at each point in the Coordinates array. Drawing each point
helps to visualize and understand how the different points affect the shape of a Bezier curve.

Listing 508. Draw a circle at each point in an array.
Sub DrawControlPoints(oCoords, oPage, oDoc, nWidth As Long)
 Dim oPoints 'One subarray of points
 Dim oPoint 'One point
 Dim oFlags 'One subarray of flags
 Dim oShape 'The circle to draw
 Dim nShape% 'Index into the oCoords arrays
 Dim i% 'General index variable

 For nShape = LBound(oCoords.Coordinates) To UBound (oCoords.Coordinates)
 oPoints = oCoords.Coordinates(nShape)
 oFlags = oCoords.Flags(nShape)
 For i = LBound(oPoints) To UBound(oPoints)
 oShape = oDoc.createInstance("com.sun.star.drawing.EllipseShape")
 oPage.add(oShape)
 oPoint = oPoints(i)
 REM To center the circle, I need to set the position
 REM as half width back and half width up.
 oShape.setPosition(CreatePoint(oPoint.X-nWidth/2, oPoint.Y-nWidth/2))
 oShape.setSize(CreateSize(nWidth, nWidth)
 Next
 Next
End Sub

579

Listing 509 draws two disconnected Bezier curves (see Figure 124). The second curve places two control
points at the same location. The DrawControlPoints macro in Listing 508 is used to draw the control points
along with the Bezier curve.

Listing 509. Draw an Open Bezier Curve.
Sub DrawOpenBezierCurves()
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim i%
 Dim oCoords 'Coordinates of the polygon to insert
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 oCoords = createUnoStruct("com.sun.star.drawing.PolyPolygonBezierCoords")

 REM Fill in the actual coordinates. The first and last points
 REM are normal points and the middle points are Bezier control points.
 oCoords.Coordinates = Array(_
 Array(_
 CreatePoint(1000, 1000),_
 CreatePoint(2000, 3000),_
 CreatePoint(3000, 0500),_
 CreatePoint(4000, 1000),_
),_
 Array(_
 CreatePoint(5000, 1000),_
 CreatePoint(6500, 0200),_
 CreatePoint(6500, 0200),_
 CreatePoint(8000, 1000),_
),_
)
 oCoords.Flags = Array(_
 Array(_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
),_
 Array(_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.CONTROL,_
 com.sun.star.drawing.PolygonFlags.NORMAL,_
)_
)

 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.OpenBezierShape")
 oPage.add(oShape)
 oShape.PolyPolygonBezier = oCoords
 DrawControlPoints(oCoords, oPage, oDrawDoc, 100)
End Sub

580

Figure 124. Notice how the control points influence the curve.
Not all combinations of points and flags are valid. A complete discussion of what constitutes a valid
combination of points and flags is beyond the scope of this book. A run-time error occurs if you use an
incorrect number of points or an unsupported sequence of control flags.

ConnectorShape

Use the ConnectorShape to provide a connection between two shapes. A “glue point” is a position inside a
shape where the endpoint of a ConnectorShape can connect. Each glue point is defined by the GluePoint2
structure (see Table 241).

Table 241. Properties in the com.sun.star.drawing.GluePoint2 structure.
Property Description

Position Glue-point position as a point structure.

IsRelative If True, Position is given in 1/100 percent.

PositionAlignment com.sun.star.drawing.Alignment enumerated value that specifies how the point is moved if the
shape is resized. Valid values include: TOP_LEFT, TOP, TOP_RIGHT, LEFT, CENTER, RIGHT,
BOTTOM_LEFT, BOTTOM, and BOTTOM_RIGHT.

Escape com.sun.star.drawing.EscapeDirection enumerated value that specifies the escape direction for a
glue point. Valid values include: SMART, LEFT, RIGHT, UP, DOWN, HORIZONTAL, and
VERTICAL.

IsUserDefined If False, this is a default glue point.

Each shape contains a default glue point at the top, right, bottom, and left of the shape. You can access a
shape’s glue points by using the getGluePoints() method (see Table 227). The index of the default glue
points are 0 (top), 1 (right), 2 (bottom), and 3 (left). You also can add new glue points to a shape’s default
glue points (see Listing 511).

Connector shapes contain StartPosition and EndPosition properties, which identify the connector’s start and
end positions. The start and end positions are used only if the corresponding properties StartShape and
EndShape are empty. If the StartShape and EndShape properties are not empty, the connector shape connects
to a glue point in the corresponding shape. Connector shapes reference other shapes’ glue points by index
using the StartGluePointIndex and EndGluePointIndex properties.

Table 242. Properties in the com.sun.star.drawing.ConnectorShape service.
Property Description

StartShape Start shape, or empty if the start point is not connected to a shape.

StartGluePointIndex Index of the glue point in the start shape.

StartPosition Start point position in 1/100 mm. You can set the position only if the start point is not
connected, but you can always read the point.

EndShape End shape, or empty if the start point is not connected to a shape.

581

Property Description

EndPosition End point position in 1/100 mm. You can set the position only if the end point is not connected,
but you can always read the point.

EndGluePointIndex Index of the glue point in the end shape.

EdgeLine1Delta Distance of line 1.

EdgeLine2Delta Distance of line 2.

EdgeLine3Delta Distance of line 3.

EdgeKind Type of connector (see Table 243).

Four connector types are supported (see Table 243). The connector type determines how the line is drawn
between the two points. The STANDARD type prefers to use three lines to connect the shapes, but it will
use more lines if required.

Table 243. Properties in the com.sun.star.drawing.ConnectorType enumeration.
Value Description

STANDARD The ConnectorShape is drawn with three lines, with the middle line perpendicular to the other two.

CURVE The ConnectorShape is drawn as a curve.

LINE The ConnectorShape is drawn as one straight line.

LINES The ConnectorShape is drawn with three lines.

The macro in Listing 510 draws four rectangles and then connects the rectangles using a ConnectorShape.
Although the macro specifies the initial glue point, the end glue point is automatically chosen by OOo. If the
macro did not explicitly set the initial glue point, it also would be automatically chosen. When a glue point
is automatically chosen, it is done intelligently, as you can see in Figure 125.

Listing 510. Illustrate four connector types.
Sub DrawConnectorShapeNormal
 DrawConnectorShape(False, False)
End Sub

Sub DrawConnectorShape(doCustom As Boolean, useArrows as Boolean)
 Dim oPage 'Page on which to draw
 Dim oShapes 'Shapes to insert
 Dim oShape 'Shape to insert
 Dim nConTypes 'Array of connection types
 Dim i%
 Dim oGlue 'Custom Glue Shape
 Dim oStyles
 Dim oDrawDoc 'Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 nConTypes = Array(_
 com.sun.star.drawing.ConnectorType.STANDARD,_
 com.sun.star.drawing.ConnectorType.CURVE,_
 com.sun.star.drawing.ConnectorType.LINE,_
 com.sun.star.drawing.ConnectorType.LINES,_

582

)

 oShapes = Array(_
 oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
 oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
 oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
 oDrawDoc.createInstance("com.sun.star.drawing.RectangleShape"),_
)

 REM Create the draw page and then add the shapes before manipulating them.
 oPage = createDrawPage(oDrawDoc, "Test Draw", True)
 For i = 0 To 3
 oPage.add(oShapes(i))
 oShapes(i).setSize(createSize(1300, 1000))
 Next

 oShapes(0).setPosition(createPoint(3000, 3500))
 oShapes(1).setPosition(createPoint(6000, 3000))
 oShapes(2).setPosition(createPoint(9000, 2500))
 oShapes(3).setPosition(createPoint(6000, 4500))

 For i = 0 To 3
 oShapes(i).setString(i)
 oShape = oDrawDoc.createInstance("com.sun.star.drawing.ConnectorShape")
 oPage.add(oShape)
 oShape.StartShape = oShapes(i)
 oShape.StartGluePointIndex = i
 oShape.EndShape = oShapes((i + 1) MOD 4)
 oShape.EdgeKind = nConTypes(i)

 If doCustom Then
 Rem Now create a glue point in the center of the shape.
 oGlue = createUnoStruct("com.sun.star.drawing.GluePoint2")
 oGlue.IsRelative = False
 oGlue.Escape = com.sun.star.drawing.EscapeDirection.SMART
 oGlue.PositionAlignment = com.sun.star.drawing.Alignment.CENTER
 oGlue.IsUserDefined = True
 oGlue.Position.X = oShapes(i).getPosition().X + 650
 oGlue.Position.Y = oShapes(i).getPosition().Y + 500
 oShape.StartGluePointIndex = oShapes(i).getGluePoints().insert(oGlue)
 End If

 If useArrows Then
 oStyles = oDrawDoc.getStyleFamilies().getByName("graphics")
 oShape.Style = oStyles.getByName("objectwitharrow")
 End If

 Next
End Sub

583

Figure 125. Notice the different connector types.

TIP Many of a shape’s properties are reset when the shape is added to a draw page. Therefore, you should set
most properties after adding the shape to the draw page. It is also important to set properties in the correct
order because setting some properties resets other properties. For example, setting a connector’s StartShape
resets the StartGluePointIndex.

Creating your own glue points

If you want to attach a connector to a shape at a location of your choosing, you must create a GluePoint2
structure and add it to the shape. Immediately after setting the EdgeKind property, create a glue point located
at the center of the rectangle and then uses this point as the start point. Table 241 contains a description of
the GluePoint2 structure.

Listing 511. Draw a connector shape from the center of the shape.
Sub DrawConnectorShapeCenter
 DrawConnectorShape(True, False)
End Sub

Figure 126. Custom glue points: Connectors start in the middle of the rectangles.

Adding arrows by using styles

You can set many properties for a shape by creating a style. If you frequently use certain fill styles and
shadow styles, create a special style so you can quickly change the objects if required. Listing 512 displays
the style families and the graphics styles supported by a draw document.

Listing 512. Print the supported graphics styles.
Sub PrintGraphicsStyles
 Dim oStyles
 Dim oStyleFamilies
 Dim oDrawDoc 'Temporary draw document.

584

 oDrawDoc = LoadEmptyDocument("sdraw")

 oStyleFamilies = oDrawDoc.getStyleFamilies()
 MsgBox Join(oStyleFamilies.getElementNames(), CHR$(10)), 0, "Families"

 oStyles = oDrawDoc.getStyleFamilies().getByName("graphics")
 MsgBox Join(oStyles.getElementNames(), CHR$(10)), 0, "Graphics Styles"
 oDrawDoc.Close(True)
End Sub

Figure 127. Graphics styles supported by Draw documents.
You can add arrows to a shape by setting the shape’s style to “objectwitharrow”. If you don’t like the default
values in the “objectwitharrow” style, which produces very wide lines (see Figure 128), you can create your
own style and use that instead.

Listing 513. Draw connectors with arrows.
Sub ConnectorWithArrows
 DrawConnectorShape(False, True)
End Sub

585

Figure 128. The default arrow style draws an arrow from the end shape to the start shape.

Insert a TableShape

The following macro inserts a TableShape into the first draw page and sets a value into a single cell. Finally,
one cell is set to contain a graphic as the background fill style.

Listing 514. Insert a table into a Draw or Impress document.
Sub DrawTableShape
 Dim oSize as New com.sun.star.awt.Size
 Dim oPos as New com.sun.star.awt.Point
 Dim oPage ' Draw page to contain the shape.
 Dim oTable ' Table to insert.
 Dim oCell ' A cell that will contain a value.
 Dim oDrawDoc ' Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 ' Set a size and table position.
 oSize.Width = 6000 : oSize.Height = 6100
 oPos.X = 6000 : oPos.Y = 5000

 ' Get the first draw page
 oPage = oDrawDoc.DrawPages.getByIndex(0)
 oTable = oDrawDoc.createInstance("com.sun.star.drawing.TableShape")
 oPage.add(oTable)

 ' Set the number of rows and columns to 5
 oTable.Model.Rows.InsertByIndex(1,4)
 oTable.Model.Columns.InsertByIndex(1,4)
 oTable.setSize(oSize)
 oTable.setPosition(oPos)

 ' Get the cell in the first column and second row and set to contain the text X.
 oCell = oTable.Model.getCellByPosition(0,1)
 oCell.getText().setString("X")

 ' Get the cell in the third row and column.
 oCell = oTable.Model.getCellByPosition(2,2)

 ' Fill the cell with a bitmap of an image.
 oCell.FillStyle = com.sun.star.drawing.FillStyle.BITMAP
 oCell.FillBitmapURL = _

586

 "http://www.openoffice.org/images/AOO_logos/OOo_Website_v2_copy.png"
End Sub

 16.3. Forms

When a control is inserted into a document, it is stored in a form. Forms are contained in draw pages, which
implement the com.sun.star.form.XFormsSupplier interface. The visible portion of the control—what you
see—is stored in a draw page and it is represented by a ControlShape. The data model for the control is
stored in a form and it is referenced by the ControlShape. The method getForms() returns an object that
contains the forms for the draw page (see Table 244).

Table 244. Some methods supported by the com.sun.star.form.Forms service.
Method Description

createEnumeration() Create an enumeration of the forms.

getByIndex(Long) Get a form by index.

getByName(String) Get a form by name.

getCount() Get the number of forms.

hasByName(String) Return True if the form with the specified name exists.

hasElements() Return True if the page contains at least one form.

insertByIndex(Long, Form) Insert a form by index.

insertByName(String, Form) Insert a form by name.

removeByIndex(Long) Remove a form by index.

removeByName(String) Remove the named form.

replaceByIndex(Long, Form) Replace a form by index.

replaceByName(String, Form) Replace a form by name.

The purpose of Listing 515 is to demonstrate how to add a form to a draw page. Forms are not interesting
unless they contain a control, so Listing 515 adds a drop-down list box with some values to select. When I
tested using AOO, the form was left in design mode, and you must exit design mode before you can test the
control.

Listing 515. Add a form with a control to the first draw page.
 Dim oPage 'Page on which to draw
 Dim oShape 'Shape to insert
 Dim oForm 'Individual form
 Dim oControlModel 'Model for a control
 Dim s (0 To 5) As String
 Dim oDrawDoc ' Temporary draw document.

 oDrawDoc = LoadEmptyDocument("sdraw")

 REM Data for the combo box!
 s(0) = "Zero" : s(1) = "One" : s(2) = "Two"
 s(3) = "Three" : s(4) = "Four" : s(5) = "Five"

 oPage = oDrawDoc.DrawPages.getByIndex(0)

 REM Create a shape for the control.

587

 oShape = oDrawDoc.createInstance("com.sun.star.drawing.ControlShape")
 oShape.Position = createPoint(3000, 4500)
 oShape.Size = createSize(2500, 800)

 REM Create a combo box model.
 oControlModel = oDrawDoc.createInstance("com.sun.star.form.component.ComboBox")
 oControlModel.Name = "NumberSelection"
 oControlModel.Text = "Zero"
 oControlModel.Dropdown = True
 oControlModel.StringItemList = s()

 REM Set the shape's control model!
 oShape.Control = oControlModel

 oForm = oDrawDoc.createInstance("com.sun.star.form.component.Form")
 oForm.Name = "NumberForm"
 oPage.Forms.insertByIndex(0, oForm)

 REM Add the control model to the first form in the collection.
 oForm.insertByIndex(0, oControlModel)
 oPage.add(oShape)
End Sub

Regular forms, as created by Listing 515, group form components together. A DataForm, however, can
connect to a database and display the results of SQL queries. An HTMLForm, on the other hand, contains
controls specific to HTML pages.

Table 245. Control component that can be added to forms.
Component Description

CheckBox Check box control.

ComboBox Provides text input or selection from a list of text values.

CommandButton A clickable button.

CurrencyField An edit field with a currency value.

DatabaseCheckBox A data-aware check box that can be bound to a database field.

DatabaseComboBox A data-aware combo box that can be bound to a database field.

DatabaseCurrencyField A data-aware edit field with a currency value that can be bound to a database field.

DatabaseDateField A data-aware date field that can be bound to a database field.

DatabaseFormattedField A data-aware formatted field that can be bound to a database field.

DatabaseImageControl A field for displaying images stored in a database.

DatabaseListBox A data-aware list box that can be bound to a database field.

DatabaseNumericField A data-aware numeric field that can be bound to a database field.

DatabasePatternField A data-aware pattern field that can be bound to a database field.

DatabaseRadioButton A data-aware radio button that can be bound to a database field.

DatabaseTextField A data-aware text field that can be bound to a database field.

DatabaseTimeField A data-aware time field that can be bound to a database field.

DateField An edit field with a date value.

FileControl An edit field for a file name.

588

Component Description

FixedText Display text that cannot be edited by the user.

FormattedField An edit field that contains formatted text.

GridControl Display data in a table-like way.

GroupBox A control that can visually group controls.

HiddenControl A control that is hidden.

ImageButton A clickable button which is represented by an image.

ListBox A control with multiple values from which to choose.

NumericField An edit field with a numeric value.

PatternField An edit field with text that matches a pattern.

RadioButton A radio button.

TextField A text-edit field that supports single-line and multi-line data.

TimeField An edit field with a time value.

 16.4. Presentations

The Presentation service contains properties (see Table 246) and methods that control a specific
presentation. You can create multiple presentation objects for different types of presentations. For example,
you might have one presentation that runs continuously at a trade show and one that requires manual
intervention—for example, for a client sales visit. The document’s getPresentation() method returns a new
presentation object. After setting a presentation’s properties as shown in Table 246, the methods start() and
end() are used to start and stop a presentation. The method rehearseTimings() starts a presentation while
displaying a running clock to help you determine the running time of your presentation.

Table 246. Properties defined by the the com.sun.star.presentation.Presentation service.
Property Description

AllowAnimations If True, animations are enabled.

CustomShow Name of a customized show to use for this presentation; an empty value is allowed.

FirstPage Name of the first page in the presentation; an empty value is allowed.

IsAlwaysOnTop If True, the presentation window is always the top window.

IsAutomatic If True, page changes happen automatically.

IsEndless If True, the presentation repeats endlessly.

IsFullScreen If True, the presentation runs in full-screen mode.

IsLivePresentation If True, the presentation runs in live mode.

IsMouseVisible If True, the mouse is visible during the presentation.

Pause Long Integer duration that the black screen is displayed after the presentation is finished.

StartWithNavigator If True, the Navigator opens at the start of the presentation.

UsePen If True, a pen appears during the presentation so that you can draw on the screen.

Listing 516. Start the current presentation.
Sub SimplePresentation()
 Dim oPres
 oPres = ThisComponent.getPresentation()

589

 oPres.UsePen = True
 REM This will start the presentation.
 REM Be ready to press the space bar to move through the slides.
 oPres.Start()
End Sub

A custom presentation can show the presentation’s pages in any order. Pages can be shown multiple times or
not at all. The getCustomPresentations() method returns a custom presentations object that contains all
custom presentations (see Table 247).

Table 247. Some methods supported by the XCustomPresentationSupplier interface.
Method Description

createInstance() Create a custom presentation.

getByName(String) Get a custom presentation by name.

getElementNames() Array of custom presentation names.

hasByName(String) Return True if the custom presentation with the specified name exists.

hasElements() Return True if the page contains at least one custom presentation.

insertByName(String, CustomPresentation) Insert a custom presentation by name.

removeByName(String) Remove the named custom presentation.

replaceByName(String, CustomPresentation) Replace a custom presentation by name.

A custom presentation is a container for draw pages that supports the XNamed and XIndexedAccess
interfaces. Create the custom presentation, add the draw pages in the order that you want them to appear, and
then save the custom presentation. A custom presentation is displayed in exactly the same way that regular
presentations are displayed, using a Presentation object, but the CustomShow attribute is set to reference the
custom presentation.

Listing 517. Creating a custom presentation.
Sub CustomPresentation()
 Dim oPres 'Presentations, both customer and regular
 Dim oPages 'Draw pages

 oPres = ThisComponent.getCustomPresentations().createInstance()
 If NOT ThisComponent.getCustomPresentations().hasByName("custom") Then
 oPages = ThisComponent.getDrawPages()

 REM Display pages 0, 2, 1, 0
 oPres.insertByIndex(0, oPages.getByIndex(0))
 oPres.insertByIndex(1, oPages.getByIndex(2))
 oPres.insertByIndex(2, oPages.getByIndex(1))
 oPres.insertByIndex(3, oPages.getByIndex(0))
 ThisComponent.getCustomPresentations().insertByName("custom", oPres)
 End If

 REM Now, run the customer presentation.
 oPres = ThisComponent.getPresentation()
 oPres.CustomShow = "custom"
 oPres.Start()
End Sub

590

 16.4.1. Presentation draw pages

Draw pages in a presentation document are slightly different from those in a drawing document. The
properties in Table 248 dictate how and when page transitions occur while showing presentations.

Table 248. Properties defined by the com.sun.star.presentation.DrawPage service.
Property Description

Change Long Integer that specifies what causes a page change.

• 0 – A mouse-click triggers the next animation or page change.

• 1 – The page change is automatic.

• 2 – Object effects run automatically, but the user must click on the page to change it.

Duration Long Integer time in seconds the page is shown if the Change property is set to 1.

Effect Effect used to fade in or out (see Table 249).

Layout Index of the presentation layout page if this is not zero.

Speed Speed of the fade-in effect using the com.sun.star.presentation.AnimationSpeed enumeration:
SLOW, MEDIUM, or FAST.

Page transitions are governed by the Effect property of the presentation draw page (see Table 249).

Table 249. Values defined by the com.sun.star.presentation.FadeEffect enumeration.
Values Values Values

NONE

DISSOLVE

RANDOM

VERTICAL_STRIPES

VERTICAL_CHECKERBOARD

VERTICAL_LINES

HORIZONTAL_STRIPES

HORIZONTAL_CHECKERBOARD

HORIZONTAL_LINES

FADE_FROM_LEFT

FADE_FROM_TOP

FADE_FROM_RIGHT

FADE_FROM_BOTTOM

FADE_FROM_UPPERLEFT

FADE_FROM_UPPERRIGHT

FADE_FROM_LOWERLEFT

FADE_FROM_LOWERRIGHT

MOVE_FROM_LEFT

MOVE_FROM_TOP

MOVE_FROM_RIGHT

MOVE_FROM_BOTTOM

MOVE_FROM_UPPERLEFT

MOVE_FROM_UPPERRIGHT

MOVE_FROM_LOWERRIGHT

MOVE_FROM_LOWERLEFT

UNCOVER_TO_LEFT

UNCOVER_TO_UPPERLEFT

UNCOVER_TO_TOP

UNCOVER_TO_UPPERRIGHT

UNCOVER_TO_RIGHT

UNCOVER_TO_LOWERRIGHT

UNCOVER_TO_BOTTOM

UNCOVER_TO_LOWERLEFT

FADE_TO_CENTER

FADE_FROM_CENTER

CLOCKWISE

COUNTERCLOCKWISE

ROLL_FROM_LEFT

ROLL_FROM_TOP

ROLL_FROM_RIGHT

ROLL_FROM_BOTTOM

CLOSE_VERTICAL

CLOSE_HORIZONTAL

OPEN_VERTICAL

OPEN_HORIZONTAL

STRETCH_FROM_LEFT

STRETCH_FROM_TOP

STRETCH_FROM_RIGHT

STRETCH_FROM_BOTTOM

WAVYLINE_FROM_LEFT

WAVYLINE_FROM_TOP

WAVYLINE_FROM_RIGHT

WAVYLINE_FROM_BOTTOM

SPIRALIN_LEFT

SPIRALIN_RIGHT

SPIRALOUT_LEFT

SPIRALOUT_RIGHT

The following macro sets the transitions on all draw pages to RANDOM.

Listing 518. Set Transition Effects to RANDOM.
Sub SetTransitionEffects()

591

 Dim oPages 'Draw pages
 Dim i%

 oPages = ThisComponent.getDrawPages()
 For i = 0 To oPages.getCount() - 1
 With oPages.getByIndex(i)
 .Effect = com.sun.star.presentation.FadeEffect.RANDOM
 .Change = 1
 .Duration = 2
 .Speed = com.sun.star.presentation.AnimationSpeed.FAST
 End With
 Next
End Sub

 16.4.2. Presentation shapes

Shapes contained in Impress documents differ from shapes in Draw documents in that they support the
com.sun.star.presentation.Shape service. The presentation Shape service provides properties that define
special behavior to enhance presentations (see Table 250).

Table 250. Properties defined by the com.sun.star.presentation.Shape service.
Property Description

Bookmark Generic URL string used if the OnClick property requires a URL.

DimColor Color for dimming this shape if DimPrevious is True and DimHide is False.

DimHide If True and DimPrevious is True, the shape is hidden.

DimPrevious If True, the shape is dimmed after executing its animation effect.

Effect Animation effect for this shape (see Table 251).

IsEmptyPresentationObject True if this is the default presentation shape and it is empty.

IsPresentationObject True if this is a presentation object.

OnClick Specify an action if the user clicks the shape (see Table 252).

PlayFull If True, the sound of this shape is played in full.

PresentationOrder Long Integer representing the order in which the shapes are animated.

Sound URL string for a sound file that is played while the shape’s animation is running.

SoundOn If True, sound is played during the animation.

Speed Speed of the fade-in effect using the com.sun.star.presentation.AnimationSpeed
enumeration: SLOW, MEDIUM, or FAST.

TextEffect Animation effect for the text inside this shape (see Table 251).

Verb Long Integer “ole2” verb if the ClickAction is VERB.

The animation effects supported by shapes (see Table 249) are similar to, but more plentiful than, the
animation effects supported by draw pages (see Table 251).

592

Table 251. Values defined by the com.sun.star.presentation.AnimationEffect enumeration.
Property Property Property

NONE

RANDOM

PATH

DISSOLVE

APPEAR

HIDE

CLOCKWISE

COUNTERCLOCKWISE

MOVE_FROM_LEFT

MOVE_FROM_TOP

MOVE_FROM_RIGHT

MOVE_FROM_BOTTOM

MOVE_FROM_UPPERLEFT

MOVE_FROM_UPPERRIGHT

MOVE_FROM_LOWERRIGHT

MOVE_FROM_LOWERLEFT

MOVE_TO_LEFT

MOVE_TO_TOP

MOVE_TO_RIGHT

MOVE_TO_BOTTOM

MOVE_TO_UPPERLEFT

MOVE_TO_UPPERRIGHT

MOVE_TO_LOWERRIGHT

MOVE_TO_LOWERLEFT

MOVE_SHORT_TO_LEFT

MOVE_SHORT_TO_TOP

MOVE_SHORT_TO_RIGHT

MOVE_SHORT_TO_BOTTOM

MOVE_SHORT_TO_UPPERLEFT

MOVE_SHORT_TO_UPPERRIGHT

MOVE_SHORT_TO_LOWERRIGHT

MOVE_SHORT_TO_LOWERLEFT

MOVE_SHORT_FROM_LEFT

MOVE_SHORT_FROM_TOP

MOVE_SHORT_FROM_RIGHT

MOVE_SHORT_FROM_BOTTOM

MOVE_SHORT_FROM_UPPERLEFT

MOVE_SHORT_FROM_UPPERRIGHT

MOVE_SHORT_FROM_LOWERRIGHT

MOVE_SHORT_FROM_LOWERLEFT

LASER_FROM_LEFT

LASER_FROM_TOP

LASER_FROM_RIGHT

LASER_FROM_BOTTOM

LASER_FROM_UPPERLEFT

LASER_FROM_UPPERRIGHT

LASER_FROM_LOWERLEFT

LASER_FROM_LOWERRIGHT

STRETCH_FROM_LEFT

STRETCH_FROM_UPPERLEFT

STRETCH_FROM_TOP

STRETCH_FROM_UPPERRIGHT

STRETCH_FROM_RIGHT

STRETCH_FROM_LOWERRIGHT

STRETCH_FROM_BOTTOM

STRETCH_FROM_LOWERLEFT

ZOOM_IN_FROM_LEFT

ZOOM_IN_FROM_TOP

ZOOM_IN_FROM_RIGHT

ZOOM_IN_FROM_BOTTOM

ZOOM_IN_FROM_CENTER

ZOOM_IN_FROM_UPPERLEFT

ZOOM_IN_FROM_UPPERRIGHT

ZOOM_IN_FROM_LOWERRIGHT

ZOOM_IN_FROM_LOWERLEFT

ZOOM_OUT_FROM_LEFT

ZOOM_OUT_FROM_TOP

ZOOM_OUT_FROM_RIGHT

ZOOM_OUT_FROM_BOTTOM

ZOOM_OUT_FROM_CENTER

ZOOM_OUT_FROM_UPPERLEFT

ZOOM_OUT_FROM_UPPERRIGHT

ZOOM_OUT_FROM_LOWERRIGHT

ZOOM_OUT_FROM_LOWERLEFT

FADE_FROM_LEFT

FADE_FROM_TOP

FADE_FROM_RIGHT

FADE_FROM_BOTTOM

FADE_FROM_CENTER

FADE_FROM_UPPERLEFT

FADE_FROM_UPPERRIGHT

FADE_FROM_LOWERLEFT

FADE_FROM_LOWERRIGHT

FADE_TO_CENTER

ZOOM_IN

ZOOM_IN_SMALL

ZOOM_IN_SPIRAL

ZOOM_OUT

ZOOM_OUT_SMALL

ZOOM_OUT_SPIRAL

VERTICAL_CHECKERBOARD

HORIZONTAL_CHECKERBOARD

HORIZONTAL_ROTATE

VERTICAL_ROTATE

HORIZONTAL_STRETCH

VERTICAL_STRETCH

VERTICAL_STRIPES

HORIZONTAL_STRIPES

VERTICAL_LINES

HORIZONTAL_LINES

WAVYLINE_FROM_LEFT

WAVYLINE_FROM_TOP

WAVYLINE_FROM_RIGHT

WAVYLINE_FROM_BOTTOM

SPIRALIN_LEFT

SPIRALIN_RIGHT

SPIRALOUT_LEFT

SPIRALOUT_RIGHT

CLOSE_VERTICAL

CLOSE_HORIZONTAL

OPEN_VERTICAL

OPEN_HORIZONTAL

Shapes contained in presentation documents support special actions by setting the shape’s OnClick property.

593

Table 252. Values defined by the com.sun.star.presentation.ClickAction enumeration.
Property Description

NONE No action is performed.

PREVPAGE Jump to the previous page.

NEXTPAGE Jump to the next page.

FIRSTPAGE Jump to the first page.

LASTPAGE Jump to the last page.

BOOKMARK Jump to a bookmark specified by the Bookmark property in Table 250.

DOCUMENT Jump to another document specified by the Bookmark property in Table 250.

INVISIBLE The object becomes invisible.

SOUND Play a sound specified by the Bookmark property in Table 250.

VERB An OLE verb is performed as specified by the Verb property in Table 250. An OLE object
supports actions called verbs. An OLE object that displays a video clip might support the
verb “play,” for example.

VANISH The object vanishes.

PROGRAM Execute another program specified by the Bookmark property in Table 250.

MACRO Execute a Star Basic macro specified by the Bookmark property in Table 250.

STOPPRESENTATION Stop the presentation.

 16.5. Conclusion

Impress and Draw documents contain numerous features supporting drawing and graphics in documents.
Both types of documents have many drawing and graphical presentation features in common, and Impress
documents facilitate the construction of graphic presentations with support for manual or automatic page
presentation. Although these documents support the display of bit-mapped images, their strength is vector
drawings rather than photographic images. The results possible with Impress and Draw documents range
from simple to quite complex. Consider this chapter as only a starting point for your explorations on the
capabilities of these two document types.

594

 17. Library Management
This chapter discusses how and where macro libraries are stored, along with methods you can use to
manipulate them. This chapter also covers the subtleties of the macro organizer as well as using the UNO
API to manipulate libraries and modules.

This chapter assumes a basic understanding of library containers, libraries, and modules. If the following
summary is not familiar, review the material presented in Chapter 2, “Getting Started.”

• A library container contains zero or more libraries.

• Each library contains zero or more modules and dialogs.

• Each module contains zero or more macros.

• The application is a library container. Libraries stored in the application are globally available to all
macros.

• Every document is a library container.

• The library named Standard is special; it always exists and cannot be overwritten. I recommend
against using the Standard library.

• Always give meaningful names to the libraries and modules that you create. For example, Library1
and Module4 are not meaningful names, although AXONInvoiceForm1 might be more descriptive
and helpful.

 17.1. Accessing libraries using OOo Basic

I packaged some of the macros that I use into an application-level library with the name “Pitonyak.” The
next day, I started OpenOffice.org, and to my surprise, I was not able to use any macros in my new library. It
turns out that libraries must be loaded before they are available.

TIP A library must be loaded before it is available.

To manually load a library, open the Macro Organizer dialog (Tools | Macros | Macro) and double-click the
library that you want to load. You can also access libraries by using a macro. OOo Basic provides the
variable GlobalScope to manipulate application-level libraries (see Listing 519).

Listing 519. Use GlobalScope to load application-level libraries.
GlobalScope.BasicLibraries.loadLibrary("Pitonyak")

TIP The GlobalScope variable does not support the “dbg” properties. In other words, you cannot inspect the
GlobalScope variable.

Libraries contain two things—dialogs and macros. The GlobalScope variable has two properties—
BasicLibraries and DialogLibraries—that provide access to the Basic and dialog library containers in the
application library container. The BasicLibraries and DialogLibraries properties both support the same set of
interfaces for accessing the contained library containers (see Table 253).

595

Table 253. Methods supported by library container objects.
Method Description

createLibrary(Name) Create a new library with the given name.

createLibraryLink(Name, Url, ReadOnly) Create a link to an “external” library. The Name and URL are both strings.
If the ReadOnly flag is True, the library cannot be modified.

removeLibrary(Name) Remove the named library. If the library is a link, only the link is removed,
not the actual library.

isLibraryLoaded(Name) True if the library is loaded, False otherwise.

loadLibrary(Name) Load a library if it is not already loaded.

isLibraryLink(Name) True if the library is a link to another library.

getLibraryLinkURL(Name) Return the URL of a linked library. An error occurs if the library is not a
link.

isLibraryReadOnly(Name) Return True if the library is read-only.

setLibraryReadOnly(Name, ReadOnly) Set the named library to read-only if ReadOnly is True.

renameLibrary(Name, NewName) Rename a library. If the library is linked, only the link is renamed.

changeLibraryPassword(Name, Pass,
NewPass)

Change a library’s password.

getByName(Name) Get the named library.

getElementNames() Get an array of library names.

hasByName(Name) True, if the named library exists.

hasElements() True, if at least one library exists.

isLibraryPasswordProtected(Name) True, if the library is password protected.

isLibraryPasswordVerified(Name) True, if the password has already been used to unlock a library.

verifyLibraryPassword(Name, Pass) Unlock a password-protected library.

TIP The GlobalScope variable is not available outside of OOo Basic. It is, however, possible to create and use
the undocumented UNO service com.sun.star.script.ApplicationScriptLibraryContainer to access the global
Basic libraries.

The contained libraries are stored as XML strings inside named containers. Table 254 contains the methods
supported by library objects.

Table 254. Methods supported by library objects.
Method Description

getByName(Name) Get the named module as a String.

getElementNames() Get an array of module names.

hasByName(Name) True, if the library contains the named module.

hasElements() True, if the library contains at least one module.

insertByName(Name, Module) Insert the named module into the library.

removeByName(Name) Remove the named module.

replaceByName(Name, Module) Replace the named module.

596

When you use the macro organizer to create a library, it automatically creates both a dialog library and a
Basic library. The newly created Basic library contains the module named “Module1,” which contains an
empty subroutine named “Main.” The following steps illustrate the process:

1. Open the Macro dialog using Tools | Macros | Organize Macros | OpenOffice.org Basic.
2. Click the Organizer button to open the Basic Macro Organizer dialog. The organizer dialog can

also be opened using Tools | Macros | Organize Dialogs.
3. Click the Libraries tab.
4. Click the New button and give the library the name “TestLib” (see Figure 129).
5. Click OK to close the New Library dialog.
6. Click the Close button on the Basic Macro Organizer dialog.
7. Click the Close button on the Basic Macros dialog.

Figure 129. Creating a new library in the application library container.
To see the contents of the TestLib library, enter and run the macro in Listing 520. As seen in Figure 130,
TestLib contains a Module1 with a single subroutine.

Listing 520. Print Module1 in the newly created TestLib library.
Sub PrintTestLib
 If GlobalScope.BasicLibraries.hasByName("TestLib") Then
 Dim oLib
 oLib = GlobalScope.BasicLibraries.getByName("TestLib")
 MsgBox oLib.getByName("Module1"), 0, "Module1 in TestLib"
 Else
 MsgBox "Library 'TestLib' does not exist"
 End If

597

End Sub

Figure 130. Module1 is automatically created by the dialog organizer.
You can use the code in Listing 521 to verify that both a Basic and a dialog library exist. Although the dialog
library exists, it does not contain any dialogs. If the TestLib library does not exist, the returned library is null.

Listing 521. Obtain the Basic and the dialog library.
oLib = GlobalScope.BasicLibraries.getByName("TestLib")
oLib = GlobalScope.DialogLibraries.getByName("TestLib")

TIP Libraries created using the methods in Table 254 do not automatically create both a dialog and a macro
library.

Libraries created using the UNO API in Table 254 cause only one library to be created. The macro in Listing
522 creates a dialog library and a corresponding Basic library, adds Module1 to the code library, and adds a
subroutine to Module1. See Figure 131.

Listing 522. Create A Global Library.
Sub CreateAGlobalLib
 Dim oLib
 Dim s$
 If GlobalScope.BasicLibraries.hasByName("TestLib") Then
 GlobalScope.BasicLibraries.removeLibrary("TestLib")
 GlobalScope.DialogLibraries.removeLibrary("TestLib")
 MsgBox "Deleted TestLib"
 Else
 GlobalScope.BasicLibraries.createLibrary("TestLib")
 GlobalScope.DialogLibraries.createLibrary("TestLib")
 oLib = GlobalScope.BasicLibraries.getByName("TestLib")
 s = "Sub Main" & CHR$(10) &_
 " x = x + 1" & CHR$(10) &_
 "End Sub"
 oLib.insertByName("Module1", s)
 s = "=== Basic Libs ===" & CHR$(10)
 oLib = GlobalScope.BasicLibraries.getByName("TestLib")
 s = s & Join(oLib.getElementNames(), CHR$(10))
 oLib = GlobalScope.DialogLibraries.getByName("TestLib")
 s = s & CHR$(10) & CHR$(10) & "=== Dialog Libs ===" & CHR$(10)
 s = s & Join(oLib.getElementNames(), CHR$(10))
 MsgBox s, 0, "Modules in the TestLib Library"
 oLib = GlobalScope.BasicLibraries.getByName("TestLib")
 MsgBox oLib.getByName("Module1"), 0, "Module1 in TestLib"
 End If
End Sub

598

Figure 131. Although the dialog library exists, it contains no dialogs.

 17.2. Libraries contained in a document

OOo Basic defines the variables BasicLibraries and DialogLibraries to access libraries contained in a
document. The behavior is the same as their GlobalScope counterparts except that they access the library
container for the current document. Modify Listing 522 by removing all references to GlobalScope, and the
macro acts on the current document.

Although the BasicLibraries and DialogLibraries variables provided by OOo Basic provide an excellent
method of accessing dialogs and libraries contained in a document, you may find code that uses the
deprecated method getLibraryContainer(). Each document supports the method getLibraryContainer(). The
returned object supports the method getModuleContainer(), which returns the contained Basic modules, and
the method getDialogContainer(), which in my testing always returns a null object. Table 255 shows how to
obtain a module using old and new methods.

Table 255. Obtain the module aMod from the library TestLib contained in a document.
Using BasicLibraries Using oDoc.getLibraryContainer()

oLibs = BasicLibraries
If oLibs.hasByName("TestLib") Then
 oLib = oLibs.getByName("TestLib")
 If oLib.hasByName("AMod") Then
 oMod = oLib.getByName("AMod")
 End If
End If

oLibs = oDoc.getLibraryContainer()
If oLibs.hasByName("TestLib") Then
 oLib = oLibs.getByName("TestLib")
 oMods = oLib.getModuleContainer()
 If NOT IsNull(oMods) Then
 If oMods.hasByName("AMod") Then
 oMod = oMods.getByName("AMod")
 End If
 End If
End If

TIP The BasicLibraries and DialogLibraries variables are only available if the currently running subroutine is
contained in the document. Unfortunately, this leaves no way to obtain a dialog from a document except
from code contained in the document. Write a dialog creation function that is contained in the document
containing the dialog in question.

 17.3. Writing an installer

I make no attempt at writing a full-fledged installer, but I do provide some clues here as to how to do it. The
macro in Listing 523 copies a single library, whose name may be changed when it is copied. The process is
simple and straightforward. The modules in the source library are copied one at a time into the destination
library. The final argument determines if the destination library is cleared before the copy begins. If the
destination library is not cleared first and it contains modules that do not exist in the source library, those
modules will still exist in the destination library after the library is copied.

599

Listing 523. Copy a library.
REM sSrcLib is the name of the source library contained in oSrcLibs
REM sDestLib is the name of the destination library contained in oDestLibs
REM oSrcLibs is the source library container
REM oDestLibs is the destination library container
REM if bClearDest is True, then the destination library is cleared
Sub AddOneLib(sSrcLib$, sDestLib$, oSrcLibs, oDestLibs, bClearDest As Boolean)
 Dim oSrcLib 'The source library to copy
 Dim oDestLib 'The destination library to receive the modules in oSrcLib
 Dim sNames
 Dim i%

 REM If there is no destination library then simply return
 If IsNull(oDestLibs) OR IsEmpty(oDestLibs) Then
 Exit Sub
 End If

 REM Clear the destination library if requested
 If bClearDest AND oDestLibs.hasByName(sDestLib) Then
 oDestLibs.removeLibrary(sDestLib)
 End If

 REM If there is no source library, then there is nothing else to do
 If IsNull(oSrcLibs) OR IsEmpty(oSrcLibs) Then
 Exit Sub
 End If

 REM If the source library does not exist, then there is nothing else to do
 If NOT oSrcLibs.hasByName(sSrcLib) Then
 Exit Sub
 End If

 REM If the destination library does not exist, then create it
 If NOT oDestLibs.hasByName(sDestLib) Then
 oDestLibs.createLibrary(sDestLib)
 End If

 REM This is where the real fun begins!
 REM It may seem obvious, but the libraries must be loaded first.
 REM Common mistake to not load the libraries first!
 oSrcLibs.loadLibrary(sSrcLib)
 oDestLibs.loadLibrary(sDestLib)

 REM Get the source and destination libraries
 REM Get all of the contained modules that should be copied
 oSrcLib = oSrcLibs.getByName(sSrcLib)
 oDestLib = oDestLibs.getByName(sDestLib)
 sNames = oSrcLib.getElementNames()

 REM For each module, either add it or replace it
 For i = LBound(sNames) To UBound(sNames)
 If oDestLib.hasByName(sNames(i)) Then
 oDestLib.replaceByName(sNames(i), oSrcLib.getByName(sNames(i)))

600

 Else
 oDestLib.insertByName(sNames(i), oSrcLib.getByName(sNames(i)))
 End If
 Next
End Sub

Assume that you want to copy a specific library from the application into a document so that you can send it
to a friend. The fastest method is to simply use the macro organizer and append the library from the
application into the document. Sure, you can write a macro, but some things are done faster manually. If, on
the other hand, you need to copy libraries frequently, it makes sense to write a macro to do the work. The
macro in Listing 524 accepts the name of a library contained in the application and then copies the library
into the current document. Both the code library and the dialog library are copied. The analogous macro to
copy a library from the document back to the application is trivial and nearly identical to Listing 524.

Listing 524. Add a global library to to the current document.
Sub AppLibToDocLib(sLibName$)
 Dim oGlobalLib
 oGlobalLib = GlobalScope.BasicLibraries
 AddOneLib(sLibName, sLibName, oGlobalLib, BasicLibraries, True)
 oGlobalLib = GlobalScope.DialogLibraries
 AddOneLib(sLibName, sLibName, oGlobalLib, DialogLibraries, True)
End Sub

 17.4. Conclusion

Although sometimes it’s quicker to manipulate libraries by hand, it’s easy to manipulate and copy them
using macros. The methods outlined in this chapter will allow you to perform most of the operations that
you need for libraries.

601

 18. Dialogs and Controls
This chapter discusses how to create and use dialogs and the controls that they contain. It focuses on the
Basic IDE as the primary method of creating dialogs. This chapter covers each of the different controls and
provides examples for most of the control types. It also includes a method to build dialogs and controls at
run time, rather than using the Basic IDE.

In computer terms, a window is an area shown on the computer screen in which information is displayed. In
most applications, it isn’t always easy to tell the difference between a dialog and a window. Although the
word “dialog” has multiple definitions, the definition usually specifies an exchange of information between
two entities—usually people. In OpenOffice, a dialog is a window that is displayed to interact with a user.

A “modal window” blocks its parent application (or window) from further activity until the window has
completed executing its code and has been closed successfully. In other words, when you open a “modal”
window, it has the focus; you can't just move it out of the way and use the window underneath it. If a
window is modal, it’s usually considered to be a dialog.

TIP While a modal dialog is displayed, you can access the dialog but not the document window. Dialogs are
almost always modal, and general application windows, such as those displaying documents under user
control, are almost never modal

The Find & Replace dialog in a Writer document is an example of a non-modal dialog. After opening the
Find & Replace dialog, you can still access and edit the document. Another criterion for a window being
classified as a dialog is based on function. The primary display window for a program is typically not a
dialog. The information displayed or requested in a dialog is usually secondary compared to the function of
the program. For example, configuration information and error notices are frequently displayed in a dialog,
but the primary text of a Writer document is not. Although the difference between a window and a dialog is
somewhat arbitrary, you can create and use your own dialogs in Basic, but you can’t open and start a general
application window. This is reasonable, because the usual purpose of a dialog is to communicate some
details relevant to the configuration of an application, object, or document that is already active.

 18.1. My first dialog

To create a dialog in the IDE, you must first create an empty dialog. You can use one of two methods to add
an empty dialog to a library. The first method is to use the Macro Organizer dialog. The advantage of using
the Macro Organizer is that you can immediately provide a meaningful name for the dialog.

You can also create dialogs and modules directly in the Basic IDE by right-clicking the Module tab. The tabs
shown at the bottom of the Basic IDE identify the opened modules and dialogs. Place the cursor on any tab,
right-click and select Insert | BASIC Dialog (see Figure 132).

A new dialog is created with the name Dialog1. Right-click the Dialog1 tab and choose Rename to change
the name of the dialog from Dialog1 to HelloDlg. An empty dialog appears in the middle of the IDE page.
This dialog, which is currently empty, is the one that will be displayed when you are finished. To select the
dialog, click in its lower right corner. After you’ve selected the dialog, you can use the mouse to change its
size or location. If you had selected the dialog by clicking anywhere in it, the more common activity of
selecting controls contained in the dialog would be more difficult.

TIP When something is selected, green boxes appear around the selected item. The green boxes are called
handles.

602

Figure 132. Right-click the module tab and select Insert | BASIC Dialog.
Click the Controls Dialog icon in the toolbar to open the Controls toolbar (see Figure 133). The Controls
toolbar is non-modal, so you can leave it open and still manipulate the dialog. Click the lower right Test
Mode button to open a copy of the dialog in test mode. This allows you to see how the dialog looks. To close
the dialog after opening it in test mode, click the Close icon in the upper right corner of the dialog.

TIP The Controls toolbar is sometimes referred to as the “design tools window” or “Toolbox”, differs in
appearance and what it contains between LO and AOO.

Most of the icons in the Controls toolbar are used to add controls to your dialog. If you click any of the
control icons in the Controls toolbar, the cursor changes from an arrow-shaped selection cursor to a cross-
shaped cursor. You can click the Select icon to change the cursor back to the selection shape rather than
insert a new control.

Table 256. Dialog controls.
AOO LO Description

Select

Manage Language

Test mode on / off.

603

Click In A Tab

Properties

Button

Image control

Check box

Radio button

Label field

Text box

List box

Combo box

Vertical scroll bar

Horizontal scroll bar

Goup box

Progress bar

Horizontal line

Vertical line

Date field

Time field

Numeric field

Currency field

Formatted field

Pattern field

File selection

Tree control

Spin button is missing (by default) on the Toolbox bar in AOO and
it is not usable in an AOO dialog anyway (I think).

604

TIP Other controls do exist, but they are not shown in the Toolbox bar by default; for example, database
controls such as a Table control. Just as well since they are not usable in a dialog.

Figure 133. Click the lower right corner to enable the green handles.

 18.1.1. The Properties dialog

Much of what a dialog or control does is controlled by properties, which you can set at both run time and
design time. To set properties at design time, first select the object. After the object is selected, either right-
click the object and select Properties, or click the Properties button in the Controls dialog (see Figure 134).

The Name property (see Figure 134) sets the name used to retrieve the control from the dialog. For a dialog,
there is no reason to change the name, because the dialog is not retrieved in the same way that a control is
retrieved. The Title property exists for dialogs (and only for dialogs), and it sets the value of the dialog’s title
—I set the title for my example dialog to “Hello World.” Although the Properties dialog supports setting the
position and size, this is usually done using the mouse.

605

Figure 134. Set the properties for the dialog.

TIP The properties shown in the Properties dialog change based on the selected object

Use the following steps to set up the dialog in this example.

1. Use View > Toolbars > Form Controls to open the Controls toolbar.

2. Select the dialog by clicking the lower right corner of the dialog (see Figure 133).

3. Click the Properties icon on the Controls toolbar to open the Properties dialog (see Figure 134).

4. Set the dialog’s name to HelloDlg—I like to name things.

606

5. Set the dialog’s title to “Hello World.” When the cursor leaves the Title property field, the title is
displayed in the dialog’s title bar.

6. Make certain that the Properties dialog is not covering the Hello World dialog.

7. Click the Button icon in the Controls toolbar to add a button to the Hello World dialog. When the cursor
moves over the dialog, it changes from the selection arrow to a cross. Position the cursor where you
want the button, and then click the mouse button and drag to define the appropriate size.

8. When the button is created, it defaults to the name CommandButton1. Use the Properties dialog to
change the button’s name to OKButton and the button’s label to “OK”.

9. Use the Properties dialog to change the button type to OK so that the button will automatically close the
dialog. If you don’t do this, the button will do nothing unless a handler is registered for the button—
event handlers are set from the Events tab in the Properties dialog.

10. In the “Help text” field, enter the text “Click Here” so that some help text is displayed when the cursor
rests over the button.

TIP OpenOffice.org includes numerous excellent examples of dialog and control manipulation in the module
named ModuleControls contained in the Tools library.

 18.1.2. Starting a dialog from a macro

Dialogs can be stored in the document or in a global library (see Chapter 16, “Library Management”).
Regardless of where the dialog is stored, it must be loaded before it can be used. Remember that you can
access the dialog libraries stored in the current document by using DialogLibraries, and the libraries stored
in the application by using GlobalScope.DialogLibraries. Use the following sequence of steps to load,
create, and execute a dialog:

1. Use the loadLibrary() method to load the library containing the dialog. Although you can skip this step if
the library is already loaded, it is probably not prudent to assume this.

2. Use the getByName() method to retrieve the library from DialogLibraries.

3. Use the method getByName() to retrieve the dialog from the retrieved library.

4. Create the dialog using CreateUnoDialog().

5. Execute the dialog.

Listing 525 loads and executes a dialog stored in the current document.

Listing 525. Load and run the test dialog.
Dim oHelloDlg 'The run-time dialog that is created
Sub RunHelloDlg
 Dim oLib 'Library that contains the dialog
 Dim oLibDlg 'Dialog as stored in the library

 REM First, load the library.
 REM If the dialog is stored in an application-level library rather than
 REM in the document, then GlobalScope.DialogLibraries must be used.
 DialogLibraries.loadLibrary("OOME_30")

607

 REM Obtain the entire library now that it has been loaded.
 oLib = DialogLibraries.getByName("OOME_30")

 REM Obtain the dialog as stored in the library.
 REM I usually think of this as the definition of the dialog.
 oLibDlg = oLib.getByName("HelloDlg")

 REM Create a dialog that can be used.
 oHelloDlg = CreateUnoDialog(oLibDlg)

 REM Now start the dialog.
 REM The execute() method is really a function that returns 1 if OK
 REM is used to close the dialog and 0 if Cancel is used to close the
 REM dialog. Clicking the Close button in the upper right corner
 REM of the dialog is considered the same as clicking Cancel.
 oHelloDlg.execute()
End Sub

TIP The variable that contains the dialog is declared outside of the subroutine that creates the dialog so that the
dialog can be accessed in event handlers, which are implemented as subroutines.

 18.1.3. Assign an event handler

Controls and dialogs can call external event handlers. You can assign individual subroutines as event
handlers by using the Events tab of the Properties dialog (see Figure 135). A quick look at the title shows
that the events in Figure 135 are for a command button. The supported events can change based on the
selected object.

Figure 135. Events for a command button.

608

You can use an event handler to close the Hello World dialog. Use the Properties dialog to change the Button
type from OK to default; the dialog will no longer close on its own. You might want to do this, for example,
if you want to validate input before closing a dialog. Now, write the event handler that will close the dialog
(see Listing 526).

Listing 526. Close the hello dialog.
Sub ExitHelloDlg
 oHelloDlg.endExecute()
End Sub

To assign the “Execuate action” event to call the ExitHelloDlg macro, open the Properties dialog for the
button and click the Events tab. Click the three dots to the right of the desired event (see Figure 135) to open
the Assign action dialog (see Figure 136).

Warn I have seen different behaviors depending on the OOo variant and version. In LO 4.0.2.2, if I click the dots
for Execute action (see Figure 135) and then assign a macro to Item Status changed (see Figure 136),
nothing was assigned. In other versions (not LO) I have assigned multiple actions and different actions and
they worked.

Figure 136. Assign macros to event handlers.

609

Warn To assign an event handler, you must click the Assign button and not the OK button. The only purpose for
the OK button is to close the Assign Macro dialog. It is a common and frustrating mistake to select an
event handler for an event, and then click OK rather than Assign.

Highlight event and click the Macro button to open the Macro Selector dialog.

TIP If the dialog will be used with an XDialogEventHandler, then use the Component button in the Assign
action dialog (see Figure 136) and enter the name of the method to call.

Figure 137. Assign macros to event handlers.
Use the Library tree control to select the macro library container (My Macros, application macros, or a
document), the library, and module. Finally, select the desired macro in the Library Name list box.

610

 18.2. Dialog and control paradigm

To understand how controls work, it is important that you understand the difference between a model, a
view, and a controller. The model-view-control paradigm, sometimes referred to as MVC, is very widely
used and accepted in the computer science community.

The model describes a control’s appearance, data, and behavior. The model does not interact with a user and
it is not able to display itself. When an object supports the MVC paradigm, the changes should be made to
the object’s model and then these changes will automatically be propagated to the views by the controller.
Only one model can exist for an object.

The view is what the user sees. Although there can be only one model for an object, multiple views may
exist to display an object.

The controller is what interacts with the user. When the user tells the controller to perform some action, a
change is made to the model, and then the view is updated.

Note An OpenOffice.org document is distinguished from a non-document desktop component, such as the Basic
IDE or the Help window, by the fact that it has a data model. In other words, OOo uses the MVC paradigm
for documents.

The controls that are displayed in dialogs generally contain access methods in the view portion that update
and affect the model. I recommend that you use the model rather than the view methods unless you have a
compelling reason to do otherwise; I am told that it can lead to some inconsistencies. Apparently this
problem is more pronounced with controls embedded in forms than in dialogs, but I have never observed the
inconsistencies directly.

 18.2.1. Dialog and control similarities

In some respects, a dialog is also a control. Dialogs support the MVC paradigm and share many similarities
with controls. For example, dialogs support the UnoControl service, which is common to all controls. UNO
controls support the XComponent interface, which is also supported by numerous other objects in
OpenOffice.org (see Table 257).

Table 257. Methods defined by the com.sun.star.lang.XComponent interface.
Method Description

dispose() The object’s owner calls this method to free all the object’s
resources. You won’t usually call this method.

addEventListener(XEventListener) Add an event listener to the object.

removeEventListener(XEventListener) Remove an event listener from the object’s listener list.

The XControl interface identifies an object as a control. All objects that support the UnoControl service also
support the XControl interface. For Basic programmers, the most interesting method is probably getModel()
because it returns the control’s data model (see Table 258).

611

Table 258. Methods defined by the com.sun.star.awt.XControl interface.
Method Description

setContext(XInterface) Set the control’s context.

getContext() Get the control’s context.

createPeer(XToolkit, XWindowPeer) Create a child window. If the peer is null, the desktop is the parent. This
method is used to create a window to display a dialog that was created in a
macro rather than in the IDE (see Listing 551).

getPeer() Return the previously created or set peer XWindowPeer.

setModel(XControlModel) Set the model’s control; return True if successful.

getModel() Return the control’s XModel.

getView() Return the control’s XView.

setDesignMode(Boolean) Turn the design mode on and off.

isDesignMode() Return True if the control is in design mode; otherwise return False.

isTransparent() Return True if the control is transparent; otherwise return False.

When you set a position and a size by using a single method (see Table 260), the PosSize constant group is
used to control which portions are actually updated (see Table 259).

Table 259. Constants defined by the com.sun.star.awt.PosSize constant group.
Constant Name Description

1 X Flag the X coordinate.

2 Y Flag the Y coordinate.

4 WIDTH Flag the width.

8 HEIGHT Flag the height.

3 POS Flag the X and Y coordinates.

12 SIZE Flag the width and height.

15 POSSIZE Flag everything.

A window is a rectangular region on an output device defined primarily by its position and size. The
constants in Table 259 are used in the setPosSize() method shown in Table 260 to set the position and size.
The XWindow interface defines the basic operations for a window component. The methods to get and set
the position are demonstrated in Listing 543.

Table 260. Methods defined by the com.sun.star.awt.XWindow interface.
Method Description

setPosSize (x, y, width, height, PosSize) Set the window’s outer bounds (see Table 259).

getPosSize() Return the window’s outer bounds as a rectangle.

setVisible(Boolean) Show or hide the window.

setEnable(Boolean) Enable or disable the window.

setFocus() Focus this window.

addWindowListener(listener) Add the XWindowListener.

612

Method Description

removeWindowListener(listener) Remove the XWindowListener from the listener list.

addFocusListener(listener) Add the XFocusListener.

removeFocusListener(listener) Remove the XFocusListener from the listener list.

addKeyListener(listener) Add the XKeyListener.

removeKeyListener(listener) Remove the XKeyListener from the listener list.

addMouseListener(listener) Add the XMouseListener.

removeMouseListener(listener) Remove the XMouseListener from the listener list.

addMouseMotionListener(listener) Add the XMouseMotionListener.

removeMouseMotionListener(listener) Remove the XMouseMotionListener from the listener list.

addPaintListener(listener) Add the XPaintListener.

removePaintListener(listener) Remove the XPaintListener from the listener list.

The XView interface defines the methods required to display an object (see Table 261). These methods are
used primarily by advanced users and are included here only for completeness.

Table 261. Methods defined by the com.sun.star.awt.XView interface.
Method Description

setGraphics(XGraphics) Set the output device.

getGraphics() Return the XGraphics output device.

getSize() Returns the size of the object in device units.

draw(x, y) Draws the object at the specified position.

setZoom(x, y) Set the zoom factor of the control’s contents.

 18.2.2. Dialog-specific methods

The methods defined in Table 257 through Table 261 are common to all control types. As expected,
however, dialogs support methods and properties that are specific to dialogs (see Table 262).

Table 262. Methods defined by the com.sun.star.awt.XDialog interface.
Method Description

setTitle() Set the dialog’s title.

getTitle() Get the dialog’s title.

execute() Display the dialog.

endExecute() Hide the dialog and cause the execute() method to return.

All controls act as a window: They are rectangular in shape, can receive focus, be enabled and disabled, and
have listeners (see Table 260). Top-level windows add extra functionality because they are not contained in
another window (see Table 263).

613

Table 263. Methods defined by the com.sun.star.awt.XTopWindow interface.
Method Description

addTopWindowListener(XTopWindowListener) Add a listener for this window.

removeTopWindowListener(XTopWindowListener) Remove a listener so that it no longer receives
events from this window.

toFront() Move this window in front of all other windows.

toBack() Move this window behind all other windows.

setMenuBar(XMenuBar) Set a menu bar for this window.

The primary function of a dialog is to contain controls. The methods in Table 264 allow a dialog to add,
remove, and get controls contained in a dialog. It is very common to extract a control from a dialog to read
or set its value.

Table 264. Methods defined by the com.sun.star.awt.XControlContainer interface.
Method Description

setStatusText(String) Set the text in the container’s status bar.

getControls() Return all controls as an array of type XControl.

getControl(name) Return the XControl with the specified name.

addControl(name, XControl) Add the XControl to the container.

removeControl(XControl) Remove the XControl from the container.

Controls are usually not added to or removed from the dialog. If you create a dialog using a macro, rather
than designing the dialog in the IDE, you add control models to the dialog’s model, rather than adding
controls directly to the dialog. As usual, the work is done in the model and the changes are reflected in the
view. The most-used method in Table 264 is getControl(name).

 18.2.3. The dialog model

You can obtain a control’s model by using the method getModel() defined in Table 258. Dialogs support the
UnoControlDialogModel service (see Table 265) that defines many of the properties that you can set from
the Basic IDE (see Figure 134). You can set some properties directly from the dialog object—the setTitle()
method in Table 262, for example—but it is better to modify the model directly.

Table 265. Properties defined by the com.sun.star.awt.UnoControlDialogModel service.
Property Description

BackgroundColor Dialog’s background color as a Long Integer.

Closeable If True, the dialog is closeable.

Enabled If True, the dialog is enabled.

FontDescriptor Structure that defines and describes the font for the text in the dialog’s caption
bar.

FontEmphasisMark Constant that defines the type/position of the emphasis mark for text in dialog’s
caption bar.

FontRelief Constant that specifies if the dialog’s caption bar contains embossed or engraved
text.

614

Property Description

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

Moveable If True, the dialog is moveable.

Sizeable If True, the dialog is sizeable.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

Title Text string displayed in the dialog’s caption bar.

Controls that can be inserted into an UNO control dialog support the properties defined by the
UnoControlDialogElement service (see Table 266).

Table 266. Properties in the com.sun.star.awt.UnoControlDialogElement service.
Property Description

Height Control’s height.

Name Control’s name.

PositionX Control’s horizontal position.

PositionY Control’s vertical position.

Step Control’s step.

TabIndex Control’s tab index.

Tag Control’s tag.

Width Control’s width.

It is possible to create controls and dialogs by using a macro rather than designing them in the Basic IDE. The
dialog’s model supports the createInstance() method defined by the com.sun.star.lang.XMultiServiceFactory
interface. When a macro creates a control to be inserted into a dialog, that control should be created by the
dialog’s model. A control that is created from the global service manager will not have the properties shown
in Table 266. Creating controls by using a macro is an advanced topic that is discussed later in this chapter.
The macro in Listing 527 shows the objects that a dialog model can create (see Figure 138).

Listing 527. What services can the dialog model create?
Sub ShowDialogServices
 Dim oLib 'Library that contains the dialog
 Dim oLibDlg 'Dialog as stored in the library

 DialogLibraries.loadLibrary("OOME_30")
 oLib = DialogLibraries.getByName("OOME_30")
 oLibDlg = oLib.getByName("HelloDlg")
 oHelloDlg = CreateUnoDialog(oLibDlg)
 MsgBox Join(oHelloDlg.getModel().getAvailableServiceNames(), CHR$(10))
End Sub

615

Figure 138. Services that the dialog model in AOO 3.4.1 can create.

 18.3. Controls

You can obtain a control directly from a dialog by calling the getControl() method. You can obtain a
control’s model by calling the getModel() method on the control, or by calling getByName() on the model of
the object in which it is contained. In other words, you can get a control’s model from the dialog’s model.
The code in Listing 528 demonstrates the options available.

TIP You can insert controls into dialogs and forms, but not all controls work in dialogs. Some controls require a
data source, but a dialog is not able to contain a data source. This chapter deals only with controls that can
be inserted into a dialog.

Listing 528. Get the button or the button’s model.
oHelloDlg.getControl("OKButton") 'Get the UnoControlButton
oHelloDlg.getControl("OKButton").getModel() 'Get the UnoControlButtonModel
oHelloDlg.getModel().getByName("OKButton") 'Get the UnoControlButtonModel

616

The control types that can be inserted into a dialog are defined in the com.sun.star.awt module (see Table
267 and Figure 138). Notice the similarity between the service name of the control and the service name of
the control’s model.

Table 267. Controls and their models defined in the com.sun.star.awt module.
Control Model Description

TreeControl TreeControlModel

UnoControlButton UnoControlButtonModel Button

UnoControlCheckBox UnoControlCheckBoxModel Check box

UnoControlComboBox UnoControlComboBoxModel Combo box

UnoControlCurrencyField UnoControlCurrencyFieldModel Currency field

UnoControlDateField UnoControlDateFieldModel Date field

UnoControlDialog UnoControlDialogModel Dialog

UnoControlEdit UnoControlEditModel Text edit field

UnoControlFileControl UnoControlFileControlModel Select a file

UnoControlFixedLine UnoControlFixedLineModel Fixed line

UnoControlFixedText UnoControlFixedTextModel Display fixed

UnoControlFormattedField UnoControlFormattedFieldModel Formatted field

UnoControlGroupBox UnoControlGroupBoxModel Group box

UnoControlImageControl UnoControlImageControlModel Display an image

UnoControlListBox UnoControlListBoxModel List box

UnoControlNumericField UnoControlNumericFieldModel Numeric field

UnoControlPatternField UnoControlPatternFieldModel Pattern field

UnoControlProgressBar UnoControlProgressBarModel Progress bar

UnoControlRadioButton UnoControlRadioButtonModel Radio button

UnoControlRoadmap UnoControlRoadmapModel Roadmap control

UnoControlScrollBar UnoControlScrollBarModel Scroll bar

UnoControlTimeField UnoControlTimeFieldModel Time field

Note To assist in the demonstration of the different dialog controls, create a dialog called OOMESample. As the
control types are discussed, I will direct you to add controls to the OOMESample dialog. See Figure 139
for the final dialog. Start by creating the OOMESample dialog and making it large enough to fill most of
the screen. ?? How BIG ??

 18.3.1. Control button

A control button is a standard button that causes something to happen when it is “pressed.” A button’s type is
controlled by the PushButtonType property in a button’s model. A button can be set to automatically close or
cancel a dialog without writing an event handler; a default event handler is provided automatically for these
predefined actions (see Table 268).

617

Table 268. Values defined by the com.sun.star.awt.PushButtonType enumeration.
Enumeration Description

STANDARD The default value. You must write your own event handler.

OK Act like an OK button by closing the dialog and returning 1 from the execute()
function.

CANCEL Act like a Cancel button by closing the dialog and returning 0 from the execute()
function.

HELP Act like a Help button and open the help URL.

A control button can display a text label set by the Label property or a graphic image set by the ImageURL
property. If the button displays an image rather than a label, the image is aligned based on a value defined by
the ImageAlign constant group (see Table 269).

Table 269. Constants defined by the com.sun.star.awt.ImageAlign constant group.
Constant Name Description

0 LEFT Align the image to the left.

1 TOP Align the image to the top.

2 RIGHT Align the image to the right.

3 BOTTOM Align the image to the bottom.

TIP Although a button can contain an image, it crops the image to fit. Use an Image control, rather than a
button, if you need to scale the image.

The button model supports many of the same properties as the dialog model but it also supports some
button-specific properties (see Table 270).

Table 270. Properties defined by the com.sun.star.awt.UnoControlButtonModel service.
Property Description

Align Optional, specifies the horizontal alignment of the text in the ctonrol.

BackgroundColor Dialog’s background color as a Long Integer.

DefaultButton If True, this button is the default button.

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the control.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

ImageAlign Specify how an image is aligned in the button (see Table 269).

ImageURL URL of the image to display on the button. If the image is too large, it is
cropped.

Label String label displayed on the control.

618

Property Description

MultiLine Optional, specifies that the text may be displayed on more than one line.

Printable If True, the button is printed when the document is printed.

PushButtonType The default button action (see Table 268).

State If 1, the button is activated; otherwise, the state is 0.

Tabstop If True, the control can be reached by using the Tab key.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

Toggle Optional, specifies if the button should toggle in a single operation.

VerticalAlign Optional, specifies the vertical alignment of the text in the control. Supported
values are from com.sun.star.style.VerticalAlignment with supporting values of
TOP, MIDDLE, or BOTTOM.

Note Add an OK button to close the OOMESample dialog. Add a second button, named ClickButton, that calls
OOMEDlgButton in Listing 529.

Add two buttons to the OOMESample dialog. Set one button to close the dialog when it is selected; label the
button “Close” and set the button type to OK. The close button will automatically close the dialog when it is
selected. Name the second button ClickButton and set the label to “Click Here”. Enter the code in Listing
529 and set the “Execute action” event of the ClickButton to call the OOMEDlgButton subroutine. When
the ClickButton is selected, its label is changed to indicate the number of times that the button has been
clicked.

Listing 529. Run the sample OOME Dialog.
Option Explicit

REM Global variables
Dim oOOMEDlg 'The run-time dialog that is created
Dim nClickCount% 'Number of times the button was clicked

Sub RunOOMEDlg
 REM Declare the primary variables
 Dim oLib 'Library that contains the dialog
 Dim oLibDlg 'Dialog as stored in the library

 REM Load the library and the dialog
 DialogLibraries.loadLibrary("OOME_30")
 oLib = DialogLibraries.getByName("OOME_30")
 oLibDlg = oLib.getByName("OOMESample")
 oOOMEDlg = CreateUnoDialog(oLibDlg)

 REM Initial setup code here
 nClickCount = 0
 oOOMEDlg.getModel.Title = "OpenOffice.org Macros Explained Sample Dialog"

 REM This can be used with the check box to be added.

619

 REM oOOMEDlg.getModel().getByName("CheckBox").TriState = True

 REM Run the dialog
 oOOMEDlg.execute()
End Sub

Sub OOMEDlgButton
 Dim oButtonModel
 nClickCount = nClickCount + 1
 oButtonModel = oOOMEDlg.getModel().getByName("ClickButton")
 oButtonModel.Label = "Click " & nClickCount
End Sub

 18.3.2. Check box

Although a check box is usually used to indicate a single state of yes or no, the check box in OOo can be
used as a tristate check box. The default behavior is for a check box to support the states 0 (not checked) and
1 (checked); this is the State property in the model. If the TriState property is True, however, a third state of
2 is allowed. The third state is displayed as checked, but the check box is dimmed. The properties in Table
271 are supported by the check box button model.

Table 271. Properties defined by com.sun.star.awt.UnoControlCheckBoxModel.
Property Description

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the dialog’s caption bar.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

Label String label displayed on the control.

Printable If True, the button is printed when the document is printed.

State If 0, the button is not checked; if 1, the button is checked; 2 is the “don’t know”
state.

Tabstop If True, the control can be reached by using the Tab key.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

TriState If True, the button supports the “don’t know” state of 2.

Note Add a check box to the OOMESample dialog and name it CheckBox. The “When initiating” event will call
OOMEDlgCheckBox in Listing 530.

Add a check box to the sample dialog and set the button name to CheckBox. In the RunOOMEDlg routine,
add code to the initialization section to set the check box to be a tristate check box. The TriState property
can also be enabled in the Properties dialog for the control in the Basic IDE.

 oOOMEDlg.getModel().getByName("CheckBox").TriState = True

620

Add the code in Listing 530 and then set the “When initiating” event to call the routine in Listing 530. When
the check box is selected, its label is updated to show its state.

Listing 530. Change the label on the checkbox to indicate state.
Sub OOMEDlgCheckBox
 Dim oModel
 oModel = oOOMEDlg.getModel().getByName("CheckBox")
 oModel.Label = "State " & oModel.state

' If oModel.state = 0 Then
' oOOMEDlg.getModel().getByName("OBClear").state = 1
' ElseIf oModel.state = 1 Then
' oOOMEDlg.getModel().getByName("OBSet").state = 1
' ElseIf oModel.state = 2 Then
' oOOMEDlg.getModel().getByName("OBUnknown").state = 1
' End If

End Sub

 18.3.3. Radio button

Radio buttons are usually used to select one item from a small list. (For a large list, it’s common to use a
combo box or a list box.) Radio buttons are always used in a group, and only one radio button in each group
is active at a time. When a radio button is selected, OOo automatically marks all other radio buttons in the
same group as not active.

Every control supports the UnoControlDialogElement service (see Table 266). The TabIndex property
specifies the order in which controls are visited while repeatedly pressing the Tab key. The TabIndex
property is usually set in the IDE at design time by setting the control’s “order” property. Unfortunately, a
different name is used in the IDE than in the defining service.

In OOo, a visual grouping that uses an UnoControlGroupBox has no effect other than to draw a frame
around the controls. In other words, it provides a visual reminder that the radio buttons should be grouped,
but it does not group them. Radio buttons are in the same group if (and only if) they have a sequential tab
order; in Visual Basic, radio buttons are grouped based on the group box. Create all of the radio buttons that
will exist in a single group in sequence. By creating the buttons sequentially, they will automatically have
sequential tab stops and will therefore all be in the same group. If you then create a group box to place
around the radio buttons, the group box will break the tab-stop sequence so that you can safely create a new
sequence of radio buttons. See Table 272.

Table 272. Properties in the com.sun.star.awt.UnoControlRadioButtonModel.
Property Description

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the dialog’s caption bar.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

Label String label displayed on the control.

Printable If True, the button is printed when the document is printed.

621

Property Description

State If 0, the button is not checked; if 1, the button is checked.

Tabstop If True, the control can be reached by using the Tab key.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

Note Add three radio buttons to the OOMESample dialog.

Add three radio buttons to the sample dialog and name them OBSet, OBClear, and OBUnknown. The three
radio buttons will influence the state of the check box, so set an appropriate label as well (see Figure 139).
In other words, the OBSet button will set the check box, the OBClear radio button will clear the check box,
and the OBUnknown radio button will set the check box to the “don’t know” state of 3. Enter the macro in
Listing 531 and then set the “When initiating” event to call the OOMEDlgRadioButton routine for each of
the three radio buttons. Each of the radio buttons is inspected to see which one is currently selected.

Listing 531. Handle the sample radio buttons.
REM When a radio button is selected, set the state of the check box
REM based on which radio button is selected. Set the check box
REM label to indicate why the check box was set to that state.
Sub OOMEDlgRadioButton
 Dim oModel
 Dim i As Integer
 Dim sBNames (0 To 2) As String
 REM These are ordered so that the button names are in the order
 REM that will set the check box state.
 sBNames(0) = "OBClear" : sBNames(1) = "OBSet" : sBNames(2) = "OBUnknown"
 For i = 0 To 2
 oModel = oOOMEDlg.getModel().getByName(sbNames(i))
 If oModel.State = 1 Then
 oOOMEDlg.getModel().getByName("CheckBox").State = i
 oOOMEDlg.getModel().getByName("CheckBox").Label = "Set by " & sBNames(i)
 REM oOOMEDlg.getModel().getByName("RBFrame").Label = sBNames(i)
 Exit For
 End If
 Next
End Sub

Change the code for the checkbox as follows

 18.3.4. Group box

The purpose of a group box is to draw a visual frame—a useful visual cue to the user that a group of
controls are related in some way. The group box model supports the properties Enabled, FontDescriptor,
FontEmphasisMark, FontRelief, HelpText, HelpURL, TextColor, TextLineColor, Label, and Printable.

Note Draw a group box around the three radio buttons in the OOMESample dialog.

622

Draw a group box around the three radio buttons and name the group box RBFrame. The macro in Listing
531 contains one line of code that will set the frame label to the name of the currently selected radio button.
Remove the comment mark (REM) from the front of this line or the frame label will not update.

 18.3.5. Fixed line control

The fixed line control, like the group box control, provides a nice visual separator for the user. Its only
purpose is to draw a separating line in the dialog. The only interesting property in the fixed-line-control
model is the Orientation property, which specifies if the line is drawn horizontally (0) or vertically (1).

 18.3.6. Combo box

A combo box, sometimes called a “drop-down” control, is an input field with an attached list box. The
combo box control is used to select a single value. The attached list box facilitates selecting a value from a
predefined list. The selected text is available from the Text property in the control’s model. See Table 273.

Table 273. Properties defined by com.sun.star.awt.UnoControlComboBoxModel.
Property Description

Autocomplete If True, automatic completion of text is enabled.

Border Specify no border (0), a 3-D border (1), or a simple border (2) as an Integer.

Dropdown If True, the control contains a drop-down button.

LineCount Maximum line count displayed in the drop-down box.

MaxTextLen Maximum character count. If 0, the text length is unlimited.

Printable If True, the button is printed when the document is printed.

ReadOnly If True, the Text entry cannot be modified by the user.

StringItemList Array of strings that identify the items in the list.

Tabstop If True, the control can be reached by using the Tab key.

Text Text that is displayed in the input field section of the box.

BackgroundColor Dialog’s background color as a Long Integer.

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the dialog’s caption bar.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

Although it is considered good practice to interact with a control through the control’s model, the combo
box control contains some useful utility methods that are not directly available from the model. The methods
listed in Table 274 essentially provide a shortcut to writing your own array utility functions to add and
remove items from the StringItemList array in Table 273.

623

Table 274. Extra utility methods supported by the combo box control.
Method Description

addItem(String, position) Add an item at the specified position.

addItems(StringArray, position) Add multiple items at the specified position.

removeItems(position, count) Remove a number of items at the specified position.

Note Add a combo box to the OOMESample dialog and name it ColorBox.

Add a combo box to the dialog with a name of “ColorBox”. Select the “List entries” property and enter the
three values “Red”, “Green”, and “Blue”. In earlier versions of OO, you entered multiple values by
separating them with Ctrl+Enter. In AOO 3.4.1, use Shift+Enter. To place each entry on a separate line, type
the word Red and press Shift+Enter, type the word Green and press Shift+Enter, and so on—it took me
longer than it should have to figure out how to do this. It’s easy, of course, to simply set these values directly
into the model by setting the StringItemList property shown in Table 273.

Enter the code shown in Listing 532 and then set the “Text modified” event to call the OOMDDlgColorBox
subroutine in Listing 532. The “Text modified” event causes the subroutine to be called every time that the
text in the input line changes. In other words, while typing text, the subroutine is called with every
keystroke. If the “Item status changed” event is used, then the subroutine is called when a new selection is
chosen from the drop-down list.

The macro in Listing 532 changes the background color of the drop-down list box based on the value of the
entered text. The text comparison is case sensitive, so the text in the drop-down box must match exactly.

Listing 532. Modify drop down list box background color.
Sub OOMEDlgColorBox
 Dim oModel
 Dim s As String
 oModel = oOOMEDlg.getModel().getByName("ColorBox")
 s = oModel.Text
 If s = "Red" Then
 REM Set to Red
 oModel.BackGroundColor = RGB(255, 0, 0)
 ElseIf s = "Green" Then
 REM Set to Green
 oModel.BackGroundColor = RGB(0, 255, 0)
 ElseIf s = "Blue" Then
 REM Set to Blue
 oModel.BackGroundColor = RGB(0, 0, 255)
 Else
 Rem set back to white
 oModel.BackGroundColor = RGB(255, 255, 255)
 End If
End Sub

 18.3.7. Text edit controls

The UnoControlEdit service is a basic edit field that acts as the base service for the other edit fields. An edit
control is used to hold regular text. It is possible to limit the length of the text and to even add scroll bars.
The edit control model supports the properties shown in Table 275.

624

Table 275. Properties defined by the com.sun.star.awt.UnoControlEditModel service.
Property Description

Align Specify that the text is aligned left (0), center (1), or right (2).

BackgroundColor Dialog’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

EchoChar A password field displays the character specified by this integer rather than the
entered text.

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the dialog’s caption bar.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

HardLineBreaks If True, hard line breaks are returned by the control’s getText() method.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

HScroll If True, the text in the control can be scrolled in the horizontal direction.

MaxTextLen Maximum number of characters the control may contain. If zero, the text length
is not purposely limited.

MultiLine If True, the text may use more than one line.

Printable If True, the control is printed with the document.

ReadOnly If True, the control’s content cannot be modified by the user.

Tabstop If True, the control can be reached by using the Tab key.

Text The text that is displayed in the control.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

VScroll If True, the text in the control can be scrolled in the vertical direction.

Although I encourage you to use the model for most things, some features are not available without going
directly to the control. For example, the control supplies the capability of selecting some or all of the text
and determining which portion of the text is currently selected. In a regular document, the current controller
provides this capability, but controls in dialogs combine the controller’s capabilities with the control itself.
To obtain or set the selected range, use the Selection structure (see Table 276).

Table 276. Properties in the com.sun.star.awt.Selection structure.
Property Description

Min Lower limit of the range as a Long Integer.

Max Upper limit of the range as a Long Integer.

The control uses the Selection structure to get and set the current text selection range. The control is also
able to directly return the text that is selected in a text control. The purpose is to allow a user to select only a
portion of the text and to determine which portion is selected. Table 277 contains the standard text methods
supported by text type controls.

625

Table 277. Methods defined by the com.sun.star.awt.XTextComponent interface.
Method Description

addTextListener(XTextListener) Add a text listener.

getMaxTextLen() Get the model’s MaxTextLen property (see Table 275).

getSelectedText() Return the currently selected text string.

getSelection() Return a Selection object that identifies the selected text (see Table 274).

getText() Get the model’s Text property (see Table 275).

insertText(Selection, string) Insert the string at the specified Selection location.

isEditable() Return the model’s ReadOnly flag (see Table 275).

removeTextListener(XTextListener) Remove a text listener.

setEditable(boolean) Set the model’s ReadOnly flag (see Table 275).

setMaxTextLen(len) Set the model’s MaxTextLen property (see Table 275).

setSelection(Selection) Set the text that is selected (see Table 274).

setText(string) Set the model’s Text property (see Table 275).

Currency control

The currency control is used to input and edit monetary values. The currency control is defined by the
UnoControlCurrencyField service, which also implements the standard edit control service. Table 278 lists
some properties that are unique to the currency model, all of which may also be set from the control’s
property dialog in the IDE. Pay special attention to the default values, and notice that the property dialog
uses Yes and No rather than True and False. Besides the specific properties in Table 278, the currency
control model also supports these properties: BackgroundColor, Border, Enabled, FontDescriptor,
FontEmphasisMark, FontRelief, HelpText, HelpURL, Printable, ReadOnly, Tabstop, TextColor, and
TextLineColor.

Table 278. Properties in the com.sun.star.awt.UnoControlCurrencyFieldModel service.
Property Description Default

CurrencySymbol Currency symbol as a String. $

DecimalAccuracy Decimal accuracy as an Integer. 2

PrependCurrencySymbol If True, the currency symbol is prepended to the currency
amount.

No

ShowThousandsSeparator If True, the thousands separator is displayed. No

Spin If True, the control has a spin button. No

StrictFormat If True, the entered text is checked during the user input. No

Value The value displayed in the control as a floating-point Double. 0

ValueMax The maximum value as a floating-point Double. 1000000

ValueMin The minimum value as a floating-point Double. -1000000.00

ValueStep The amount that the spin button changes the entered values as
a Double. 1

TIP The default values shown in Table 278 are for the United States. Local specific default
values are used.

626

The XCurrencyField interface implemented by the currency control defines methods to get and set the
properties defined in Table 278. The XSpinField interface, which is also supported by the currency control,
defines methods to interact with the spin control (see Table 279).

Table 279. Methods defined by the the com.sun.star.awt.XSpinField interface.
Method Description

addSpinListener(XSpinListener) Add a spin listener.

down() Decreases the value by ValueStep (see Table 278).

enableRepeat(boolean) Enable/disable automatic repeat mode.

first() Set the value to ValueMin (see Table 278).

last() Set the value to ValueMax (see Table 278).

removeSpinListener(XSpinListener) Remove a spin listener.

up() Increases the value by ValueStep (see Table 278).

TIP All of the edit controls that support spin buttons also support the methods in Table 279.

Numeric control

The numeric control is used to accept numeric input. The numeric control is almost identical to the currency
control except that the numeric control does not support the properties CurrencySymbol or
PrependCurrencySymbol—even the default values are the same. If you know how to use a currency control,
you know how to use a numeric control.

Date control

The date control is a text-edit control that supports date input. The input formats supported by the date
control are predefined and set based on a numeric constant (see Table 280). The descriptions show formats
such as (DD/MM/YY), but in reality, the separator is locale specific. In other words, dates are shown and
edited in a way that is appropriate for where you live. The last two formats are not locale specific because
they are described by the ISO 8601 standard.

The date control (see Table 281 for its model properties) is similar to the currency control in that it supports
a minimum value, a maximum value, and a spin control. The spin control works by incrementing or
decrementing the portion of the date in which it resides. For example, if the cursor is in the month field, the
spin control affects the month rather than the year or the day.

TIP The DropDown property allows for a drop-down calendar that greatly facilitates date entry.

627

Table 280. Date input formats supported by a Date control.
Value Description

0 Default system short format.

1 Default system short format with a two-digit year (YY).

2 Default system short format with a four-digit year (YYYY).

3 Default system long format.

4 Short format (DD/MM/YY).

5 Short format (MM/DD/YY).

6 Short format (YY/MM/DD).

7 Short format (DD/MM/YYYY).

8 Short format (MM/DD/YYYY).

9 Short format (YYYY/MM/DD).

10 Short format for ISO 8601 (YY-MM-DD).

11 Short format for ISO 8601 (YYYY-MM-DD).

Table 281. Properties in the com.sun.star.awt.UnoControlDateFieldModel service.
Property Definition

BackgroundColor Dialog’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

Date The date:

– as a Long Integer (AOO and old versions of LO)

– as a structure com.sun.star.util.Date (LO new, see Table 282).

DateFormat Date format as an Integer (see Table 280).

DateMax Maximum allowed date as a Long Integer.

DateMin Minimum allowed date as a Long Integer.

DropDown If True, a drop-down exists that shows a calendar for choosing a date.

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the dialog’s caption bar.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

Spin If True, spin buttons are drawn.

StrictFormat If True, the date is checked during the user input.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

Note Add a date input control to the OOMESample dialog and name it MyDateField.

Use the code in Listing 535 to initialize the date control.

628

The Date data type that is used by Basic is not compatible with the Date property used in a date control. It
depends from the OpenOffice application used which data format you have to choose for a date control.

In older versions of LO and in AOO (still at least in the latest version 4.1.1) the date control uses a Long that
represents the date in the form YYYYMMDD. For example, “February 3, 2004” is represented as the long
integer 20040203. The Basic function CDateToIso() converts a Basic Date variable to the required format.
Add a date input control and name it MyDateField. The code in Listing 533 sets the date control to the
current day using the old method.

Listing 533. Initialize a date control to today’s date (AOO and old LO).
 REM Set the initial date to TODAY
 oOOMEDlg.getModel().getByName("MyDateField").Date = CdateToIso(Date())

LibreOffice made a change to use a structure, so the above code will fail on LO. You must instead create a
com.sun.star.util.Date object (see Table 282) and then set the date with the new object.

Table 282. Properties in the com.sun.star.util.Date structure
Property Description

Day Day of month. Integer (1-31 or 0 for a void date).

Month Month of year. Integer (1-12 or 0 for a void date).

Year Year. Integer.

Listing 534. Initialize a date control to today’s date. (new/current versions of LO)
Dim x As Date
Dim x2 as New com.sun.star.util.Date
....
x = Date() 'Start with a date, then populate the struct:
x2.Year = Year(x) ' Year
x2.Month = Month(x) ' Month
x2.Day = Day(x) ' Day
oOOMEDlg.getModel().getByName("MyDateField").Date = x2 'Set the model Date

Sadly there seems to be no workaround to work for both variations. If you need a date control in a macro
that runs on AOO as well as on all LO versions you can control it by an error handler (see Listing 534). If
you forgot how this works, recall section 3.10 Error handling using On Error. You can also call the
GetProductName() macro in the Misc module in the Tools library, which is included with both AOO and
LO.

Listing 535. Initialize a date control to today’s date (works with all versions of AOO and LO).
 REM Initialize the date control.
 REM Set the initial date to TODAY.
 Dim tToday As Date
 tToday = Date()

 On Error Goto LO
 REM Try to initialize the control with a Long Integer.
 REM This is the correct format for AOO and for older versions of LO.
 oOOMEDlg.getModel().getByName("MyDateField").Date = CdateToIso(tToday)
 On Error Goto 0 'Clear the error handler.
 Goto GoOn

629

 LO:
 REM On Error the control is initialized using a structure.
 REM This is the correct format for newer versions of LO.
 On Error Goto 0 'Clear the error handler to prevent an infinite loop,
 'in case the macro runs into some other runtime error.
 Dim oToday As New com.sun.star.util.Date
 oToday.Year = Year(tToday)
 oToday.Month = Month(tToday)
 oToday.Day = Day(tToday)
 oOOMEDlg.getModel().getByName("MyDateField").Date = oToday

 GoOn:

Although the control implements methods that get and set properties in the model, the more interesting
methods are related to the user interface. While using a date field, press the Page Up key to cause the control
to jump to the “last” date. By default, the last date is the same as the DateMax property. The last date is set
by the control and not by the model, and it may differ from the DateMax. Analogously, the pressing the Page
Down key causes the control to jump to the “first” date. The first and last dates are set using the setFirst()
and setLast() methods shown in Table 283. Use the method isEmpty() to determine if the control contains no
value, and use the method setEmpty() to cause the control to contain no value.

Table 283. Methods in the com.sun.star.awt.UnoControlDateField interface.
Method Description

setDate(long) [LO old and AOO]

setDate(com.sun.star.util.Date) [LO new]

Set the model’s Date property.

getDate() Get the model’s Date property.

setMin(long) Set the model’s DateMin property.

getMin(long) Get the model’s DateMin property.

setMax(long) Set the model’s DateMax property.

getMax(long) Get the model’s DateMax property.

setFirst(long) Set the date used for the Page Down key.

getFirst() Get the date used for the Page Down key.

setLast(long) Set the date used for the Page Up key.

getLast() Get the date used for the Page Up key.

setLongFormat(boolean) Set to use the long date format.

isLongFormat() Return True if the long date format is used.

setEmpty() Set the empty value.

isEmpty() Return True if the current value is empty.

setStrictFormat(boolean) Set the model’s StrictFormat property.

isStrictFormat() Get the model’s StrictFormat property.

Time control

The time control is very similar to the date control. Time values may indicate either a time on a clock or a
length of time (duration). The supported formats are shown in Table 284.

630

Table 284. Time input formats supported by a time control.
Value Description

0 Short 24-hour format.

1 Long 24-hour format.

2 Short 12-hour format.

3 Long 12-hour format.

4 Short time duration.

5 Long time duration.

The properties supported by the time-control model are shown in Table 285. Modify Table 281 by changing
the word Date to Time, and by removing the DropDown property, and Table 281 becomes Table 285. In
other words, the date and time models are almost identical.

Table 285. Properties in the com.sun.star.awt.UnoControlTimeFieldModel service.
Property Definition

Time The time displayed in the control:

– as a Long Integer (LO old and AOO)

– as a structure com.sun.star.util.Time (LO new, see Table 286).

TimeFormat Time format as an Integer (see Table 284).

TimeMax Maximum allowed date as a Long Integer.

TimeMin Minimum allowed date as a Long Integer.

Spin If True, spin buttons are drawn.

StrictFormat If True, the date is checked during the user input.

As expected, the methods supported by the date control are similar to the methods supported by the time
control (see Table 283). There are two differences: The time control has getTime() and setTime() rather than
getDate() and setDate(), and the time control does not support the methods setLongFormat() and
isLongFormat().

In older versions of LO and in AOO (still at least in the latest version 4.1.1) the time control uses a Long
Integer to store and return the entered value. The rightmost two digits represent fractions of a second, the
next two digits represent seconds, the next two digits represent minutes, and the leftmost two digits
represent hours. Leading zeros are, of course, not returned because the value is really a Long Integer. The
good news, however, is that the values are easy to extract. Assuming that the dialog contains a time field
named MyTimeField, the code in Listing 536 obtains the time value and extracts the hours, minutes,
seconds, and portions of a second.

Listing 536. Extracting values from a time control (AOO and old versions of LO).
 n = oOOMEDlg.getModel().getByName("MyTimeField").Time
 h = n / 1000000 MOD 100 REM Get the hours
 m = n / 10000 MOD 100 REM Get the minutes
 s = n / 100 MOD 100 REM Get the seconds
 ss = n MOD 100 REM portions of a second

The new versions of LO use the com.sun.star.util.Time structure for the time control, see Table 286.

631

Table 286. Properties in the com.sun.star.util.Time structure..
Property Description

HundredthSeconds [LO old and AOO]

NanoSeconds [LO new]

Portions of a second:

Integer (0 – 99)

Long Integer (0 – 999 999 999)

Seconds Integer (0 – 59).

Minutes Integer (0 – 59).

Hours Integer (0 – 23).

IsUTC [only LO new] True: time zone is UTC, False: unknown time zone.

Reading a time value from a time control in newer versions of LO needs a variable of the
com.sun.star.util.Time structure type, see Listing 537.

Listing 537. Extracting values from a time control (LO new).
Dim oTime As New com.sun.star.util.Time
oTime = oOOMEDlg.getModel().getByName("MyTimeField").Time
h = oTime.Hours REM Get the hours.
m = oTime.Minutes REM Get the minutes.
s = oTime.Seconds REM Get the seconds.
ss = oTime.NanoSeconds REM Get the portions of a second.

If you need a time control in a macro that runs with AOO as well as with all LO versions you can control it
with an error handler like the one for the date control in Listing 535.

Formatted control

The formatted control is a generic number input field. Numbers can be entered as a formatted number,
percent, currency, date, time, scientific, fraction, or Boolean number. Unfortunately, this level of control
comes with a price. The formatted control requires a numeric formatter provided by OpenOffice.org to
function. The easiest method to associate a formatted control to a numeric format object is to use the
Properties dialog in the IDE. To use a number formatter, the following sequence of events is likely to occur:

• Choose a numeric format.

• Use the methods in Table 289 to search the FormatsSupplier (see Table 29) using the constants in
Table 288 to find or create a suitable number formatter.

• Set the FormatKey (see Table 287) to reference the desired format contained in the FormatsSupplier.

Table 287. Properties in the com.sun.star.awt.UnoControlFormattedFieldModel service.
Property Description

Align Specify that the text is aligned left (0), center (1), or right (2).

BackgroundColor Dialog's background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

EffectiveDefault The default value of the formatted field. This is a number or a string based on
TreatAsNumber.

EffectiveMax The maximum value as a Double if TreatAsNumber is True.

632

Property Description

EffectiveMin The minimum value as a Double if TreatAsNumber is True.

EffectiveValue The current value as a Double or a String based on the value of TreatAsNumber.

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the dialog’s caption bar.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

FormatKey Long Integer that specifies the format for formatting.

FormatsSupplier XNumberFormatsSupplier that supplies the formats used by this control.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

MaxTextLen Maximum number of characters the control may contain. If zero, the text length
is not purposely limited.

Printable If True, the control is printed with the document.

ReadOnly If True, the control’s content cannot be modified by the user.

Spin If True, a spin control is used.

StrictFormat If True, the text is checked during the user input.

Tabstop If True, the control can be reached by using the Tab key.

Text The text that is displayed in the control.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

TreatAsNumber If True, the text is treated as a number. This property controls how the other
values are treated.

The number formatter that controls the formatting in the input box must be created by the number format
supplier in the FormatsSupplier property. In other words, you can’t simply take a number formatter created
by the document or some other number formatter. When the formats supplier is searched to determine what
numeric formats it contains, the constants in the NumberFormat constant group are used (see Table 288).

Table 288. Constants in the com.sun.star.util.NumberFormat constant group.
Constant Value Description

0 ALL All number formats.

1 DEFINED User-defined number formats.

2 DATE Date formats.

4 TIME Time formats.

8 CURRENCY Currency formats.

16 NUMBER Decimal number formats.

32 SCIENTIFIC Scientific number formats.

64 FRACTION Number formats for fractions.

128 PERCENT Percentage number formats.

633

Constant Value Description

256 TEXT Text number formats.

6 DATETIME Number formats that contain date and time.

1024 LOGICAL Boolean number formats.

2048 UNDEFINED Used if no number format exists.

The formatted control model contains a number format supplier in the FormatsSupplier property. The
supplier identifies its contained numeric formats based on a numeric key. The FormatKey property in Table
287 must be set with the key obtained from the FormatsSupplier. Use the methods in Table 289 to find or
create the numeric format for the formatted control.

Table 289. Properties in the com.sun.star.awt.UnoControlFormattedFieldModel service.
Method Description

getByKey(key) Return the com.sun.star.util.NumberFormatProperties based on the numeric key.

queryKeys(NumberFormat, Locale,
boolean)

Return an array of Long Integer keys that identify numeric formats of the
specified type (see Table 288) for the specified locale. If the final Boolean
parameter is True and if no formats exist, one will be created.

queryKey(format, Locale, boolean) Return the Long Integer key for the specified format string.

addNew(format, Locale) Add a number format and return the Long Integer key.

addNewConverted(format, Locale,
Locale)

Add a number format, using a format string in a locale that is different than the
desired locale.

removeByKey(key) Remove a number format based on the Long Integer key.

generateFormat(key, Locale,
bThousands, bRed, nDecimals,
nLeading)

Return a format string based on the input values, but do not actually create the
number format.

Note Add a formatted control to the OOMESample dialog.

Although it is not overly difficult to use the methods in Table 289 to find and create your own numeric
formats,
the easiest method to associate a formatted control to a numeric format object is to use the Properties dialog
in the IDE. Add a formatted control to the dialog and name it MyFormattedField. The code in Listing 538
initializes the control to use the current date as its initial value and sets the desired date format. The date is
formatted using the format “DD. MMM YYYY”.

Listing 538. Set a formatted control to use a date as “DD. MMM YYYY”.
 REM Set the formatted field to a specific format.
 Dim oFormats 'All of the format objects
 Dim oSupplier 'All of the format objects
 Dim nKey As Long 'Index of number format in the number formats
 Dim oLocale as new com.sun.star.lang.Locale
 Dim sFormat As String

 sFormat = "DD. MMM YYYY"
 oSupplier =oOOMEDlg.getModel().getByName("MyFormattedField").FormatsSupplier
 oFormats =oSupplier.getNumberFormats()

634

 REM See if the number format exists by obtaining the key.
 nKey = oFormats.queryKey(sFormat, oLocale, True)

 REM If the number format does not exist, add it.
 If (nKey = -1) Then
 nKey = oFormats.addNew(sFormat, oLocale)
 REM If it failed to add, and it should not fail to add, then use zero.
 If (nKey = -1) Then nKey = 0
 End If

 REM I can set the date using a string or the date.
 REMEffectiveValue = "12. Apr 2004"
 REM ...EffectiveValue = Date() fails but this works.
 oOOMEDlg.getModel().getByName("MyFormattedField").EffectiveValue = CStr(Date())

 REM Now, set the key for the desired date formatting.
 REM I set this to treat the value as a number.
 oOOMEDlg.getModel().getByName("MyFormattedField").FormatKey = nKey
 oOOMEDlg.getModel().getByName("MyFormattedField").TreatAsNumber = True

There are a couple of interesting things to notice in Listing 538. First, the EffectiveValue property is used
rather than the Text property (which I can use). The TreatAsNumber property is set to True because the spin
control does not properly increment an initial date if the TreatAsNumber property is set to False. Although it
is not shown, the formatted control uses the same numeric values for dates as the Basic Date data type—
unlike the Date control. Finally, the spin button in a formatted control always increments and decrements the
value by 1—unlike the Date control, which can independently increment and decrement each portion of the
date.

Pattern control

Use a pattern control to enter formatted strings based on an edit mask and a literal mask. The literal mask is
the string value that is initially displayed when the control starts. The user then edits the value in the control
but is limited by the edit mask. The edit mask contains special characters that define what value can be
entered at which location. For example, the character L (literal) indicates that the user cannot enter a value at
the specified location, and the value N (number) indicates that the user can only enter the characters 0
through 9.

In the United States, each person is issued an identification number for tax purposes called a social security
number. The social security number is composed of three numbers, a dash, two numbers, a dash, and four
numbers. The edit mask is given as “NNNLNNLNNN”. This allows the user to enter numeric values at the
appropriate locations, but prevents any modifications where the dashes are located. A literal mask of the
form “___-__-___” provides the initial template for the user to see, as illustrated in Listing 539. The use of
the character “_” is an arbitrary choice; you may use any value that you desire, such as a space character.

Listing 539. Edit mask and literal mask for a social security number.
EditMask = "NNNLNNLNNN"
LiteralMask = "___-__-___"

The number of characters that can be entered is determined by the length of the edit mask. It is considered an
error if the edit mask and the literal mask are not the same length. Table 290 shows the edit mask characters
supported by the pattern control. The pattern field supports the properties in Table 291.

635

Table 290. Edit mask characters supported by the pattern control.
Character Description

L A text constant that is displayed but cannot be edited.

a The characters a–z and A–Z can be entered.

A The characters a–z and A–Z are valid, but the letters a–z are converted to
uppercase.

c The characters a–z, A–Z, and 0–9 can be entered.

C The characters a–z, A–Z, and 0–9 are valid, but the letters a–z are converted to
uppercase.

N The characters 0–9 can be entered.

x Any printable character can be entered.

X Any printable character can be entered, but the letters a–z are converted to
uppercase.

Table 291. Properties in the com.sun.star.awt.UnoControlPatternFieldModel service.
Property Description

BackgroundColor Dialog’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

EditMask The edit mask.

Enabled If True, the dialog is enabled.

FontDescriptor FontDescriptor structure for the text in the dialog’s caption bar.

FontEmphasisMark FontEmphasis for the text in the dialog’s caption bar.

FontRelief FontRelief for the text in the dialog’s caption bar.

HelpText Dialog’s help text as a String.

HelpURL Dialog’s help URL as a String.

LiteralMask The literal mask.

MaxTextLen Maximum number of characters the control may contain. If zero, the text length is not
purposely limited.

Printable If True, the control is printed with the document.

ReadOnly If True, the control’s content cannot be modified by the user.

StrictFormat If True, the text is checked during the user input.

Tabstop If True, the control can be reached by using the Tab key.

Text The text that is displayed in the control.

TextColor Dialog’s text color as a Long Integer.

TextLineColor Dialog’s text line color as a Long Integer.

TIP If the StrictFormat property is False, the pattern control ignores the edit mask and the literal mask.

636

Fixed text control

Use the fixed text control to label other controls and areas in a dialog. In the IDE, the fixed text control is
called a “label field.” The fixed text control is a very simple text edit field. The model supports the
properties in Table 292.

Table 292. Properties in the com.sun.star.awt.UnoControlFixedTextFieldModel service.
Property Description

Align Specify that the text is aligned left (0), center (1), or right (2).

BackgroundColor Control’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

Enabled If True, the control is enabled.

FontDescriptor FontDescriptor structure for the text in the control.

FontEmphasisMark FontEmphasis for the text in the control.

FontRelief FontRelief for the text in the control.

HelpText Control’s help text as a String.

HelpURL Control’s help URL as a String.

Label Text label displayed in the control.

MultiLine If True, the text may use more than one line.

Printable If True, the control is printed with the document.

TextColor Control’s text color as a Long Integer.

TextLineColor Control’s text line color as a Long Integer.

File control

The file control is a text edit control that contains a command button, which opens the File dialog. The
initial directory that is used is set by the Text property. Table 293 contains the properties defined by the file
control model.

Table 293. Properties in the com.sun.star.awt.UnoControlFileControlModel service.
Property Description

BackgroundColor Control’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

Enabled If True, the control is enabled.

FontDescriptor FontDescriptor structure for the text in the control.

FontEmphasisMark FontEmphasis for the text in the control.

FontRelief FontRelief for the text in the control.

HelpText Control’s help text as a String.

HelpURL Control’s help URL as a String.

Printable If True, the control is printed with the document.

Text The text displayed in the control.

TextColor Control’s text color as a Long Integer.

TextLineColor Control’s text line color as a Long Integer.

637

The file control is easy to use, but unfortunately it doesn’t support using filters. A frequent solution for this
is to add a text input box with a button next to it. When the button is selected, it opens a file selection dialog
with the desired filters. When the dialog is closed, it adds the selected file to the text control.

Note Add a text field named FileTextField to the OOMESample dialog. Add a button next to the text field that
calls the macro in Listing 540.

Create a text field and name it FileTextField. Add a button next to the text field and set the “When
initiating” event to call the macro in Listing 540. This macro opens a file selection dialog based on the
directory or file stored in the FileTextfield. If the text field is empty, the macro checks the configuration
information to determine the starting directory. The interesting thing about this example is that it uses
multiple file filters—something that isn’t possible if a file control is used.

Listing 540. Select a file.
Sub FileButtonSelected
 Dim oFileDlg 'File selection dialog
 Dim oSettings 'Settings object to get the path settings
 Dim sFile As String 'File URL as a string
 Dim oFileAccess 'Simple file access object
 Dim oFiles 'The File dialog returns an array of selected files

 REM Start with the value in the text field
 sFile = oOOMEDlg.getModel().getByName("FileTextField").Text
 If sFile <> "" Then
 sFile = ConvertToURL(sFile)
 Else
 REM The text field is blank, so obtain the path settings
 oSettings = CreateUnoService("com.sun.star.util.PathSettings")
 sFile = oSettings.Work
 End If

 REM Dialog to select a file
 oFileDlg = CreateUnoService("com.sun.star.ui.dialogs.FilePicker")

 REM Set the supported filters
 oFileDlg.AppendFilter("All files (*.*)", "*.*")
 oFileDlg.AppendFilter("JPG files (*.jpg)", "*.jpg")
 oFileDlg.AppendFilter("OOo Writer (*.sxw)", "*.sxw")
 oFileDlg.AppendFilter("OOo Calc (*.sxc)", "*.sxc")
 oFileDlg.AppendFilter("OOo Draw (*.sxd)", "*.sxd")
 oFileDlg.AppendFilter("OOo Impress (*.sxi)", "*.sxi")
 oFileDlg.SetCurrentFilter("All files (*.*)")

 REM Determine if the "file" is a directory or a file!
 oFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 If oFileAccess.exists(sFile) Then
 REM I do not force the "display directory" to be a folder.
 REM I could do something fancy with this such as
 REM If NOT oFileAccess.isFolder(sFile) Then extract the folder...
 REM but I won't!
 oFileDlg.setDisplayDirectory(sFile)

638

 End If

 REM Execute the File dialog.
 If oFileDlg.execute() Then
 oFiles = oFileDlg.getFiles()
 If UBound(oFiles) >= 0 Then
 sFile = ConvertFromURL(oFiles(0))
 oOOMEDlg.getModel().getByName("FileTextField").Text = sFile
 End If
 End If
End Sub

 18.3.8. Image control

An image control is used to display a graphic image. The image control is able to automatically scale an
image to fit inside the image control. Use the ImageURL property to specify the image to load and the
ScaleImage property to tell the control to scale the image automatically (see Table 294).

Table 294. Properties in the com.sun.star.awt.UnoControlImageControlModel service.
Property Description

BackgroundColor Control’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

Enabled If True, the dialog is enabled.

HelpText Control’s help text as a String.

HelpURL Control’s help URL as a String.

ImageURL URL of the image to load.

Printable If True, the control is printed with the document.

ScaleImage If True, the image is automatically scaled to the size of the control.

TabStop If True, the Tab key can reach this control.

 18.3.9. Progress control

A progress bar is a straight bar that fills in a solid color starting at the left and moving to the right. The idea
is that at the start the progress bar is empty, and it fills as work is accomplished. A typical example is the
“Saving document” progress bar at the bottom of OpenOffice when you click the Save icon to save an open
document.

Use the ProgressValueMin and ProgressValueMax properties to tell the control the range of values that it
will contain. When the ProgressValue property is at the minimum value, the control is empty—nothing is
filled. When the ProgressValue is halfway between the minimum and the maximum values, the control is
half filled. Finally, when the ProgressValue is at the maximum value, the control is completely filled. The
progress bar is not limited to the values of empty, full, and half; these values are only examples. Table 295
contains the properties supported by the progress control model.

Table 295. Properties in the com.sun.star.awt.UnoControlProgressBarModel service.
Property Description

BackgroundColor Control’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

639

Property Description

Enabled If True, the dialog is enabled.

FillColor Color used to fill the progress bar.

HelpText Control’s help text as a String.

HelpURL Control’s help URL as a String.

Printable If True, the control is printed with the document.

ProgressValue Current progress value as a Long Integer.

ProgressValueMax Maximum progress value as a Long Integer.

ProgressValueMin Minimum progress value as a Long Integer.

TIP You can set both BackgroundColor and FillColor.

 18.3.10. List box control

A list box contains a list of items—one per line—from which the user may select zero or more items. In
other words, a list box provides a mechanism to select multiple items from a list. The list box control
automatically adds scroll bars if they are required. Table 296 contains a list of properties supported by the
list box model.

Table 296. Properties in the com.sun.star.awt.UnoControlListBoxModel service.
Property Description

BackgroundColor Control’s background color as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

Dropdown If True, the control has a drop-down button.

Enabled If True, the control is enabled.

FontDescriptor FontDescriptor structure for the text in the control.

FontEmphasisMark FontEmphasis for the text in the control.

FontRelief FontRelief for the text in the control.

HelpText Control’s help text as a String.

HelpURL Control’s help URL as a String.

LineCount The maximum line count displayed in the drop-down box.

MultiSelection If True, more than one entry can be selected.

Printable If True, the control is printed with the document.

ReadOnly If True, the user cannot modify the data in the control.

SelectedItems Array of Short Integers that represent the index of the selected items.

StringItemList Array of strings that represent the items in the list box.

Tabstop If True, the control can be reached by using the Tab key.

TextColor Control’s text color as a Long Integer.

TextLineColor Control’s text line color as a Long Integer.

640

Although I recommend doing most manipulations through the model, many things are frequently done using
methods defined for the control. The list box control supports the same special functions supported by the
combo box control (see Table 274) to add and remove items at specific locations. The list box control
supports other useful methods that are primarily related to the user interaction (see Table 297).

Table 297. Methods defined by the com.sun.star.awt.XListBox interface.
Method Description

addItemListener(XItemListener) Add a listener for item events.

removeItemListener(XItemListener) Remove a listener for item events.

addActionListener(XActionListener) Add a listener for action events.

removeActionListener(XActionListener) Remove a listener for action events.

addItem(String, position) Add an item at the specified position.

addItems(StringArray, position) Add multiple items at the specified position.

removeItems(position, count) Remove a number of items at the specified position.

getItemCount() Get the number of items in the list box.

getItem(position) Get the specified item.

getItems() Return the StringItemList property (see Table 296).

getSelectedItemPos() Return the position of one of the selected items. This is useful
if
only one item can be selected.

getSelectedItemsPos() Return the SelectedItems property (see Table 296).

getSelectedItem() Return one of the selected items. This is useful if only one item

can be selected.

getSelectedItems() Return all selected items as an array of strings.

selectItemPos(position, boolean) Select or deselect the item at the specified position.

selectItemsPos(positions, boolean) Select or deselect multiple items at the positions specified by
the
array of positions.

selectItem(item, boolean) Select or deselect the specified item string.

isMutipleMode() Get the MultiSelection property (see Table 296).

setMultipleMode(boolean) Set the MultiSelection property (see Table 296).

getDropDownLineCount() Get the LineCount property (see Table 296).

setDropDownLineCount(integer) Set the LineCount property (see Table 296).

makeVisible(position) Scroll the items in the list box so that the specified item is
visible.

 18.3.11. Scroll bar control

The scroll bar control can be used to scroll a control or dialog that does not already contain or support a
scroll bar. All of the work to control another object and synchronize the external object with the scroll bar
must be done using a macro. In other words, the scroll bar control does not automatically connect to or
control another object, but requires a macro to implement the connection. To use the scroll bar control, write
a macro that responds to the control’s events and then manipulate another object based on what happens in
the control. If you want the scroll bar to track changes in the controlled object, you must write handlers for

641

the other object to update the scroll bar. As an input or an output, the scroll bar serves to indicate a
relationship in another object; the relationship displayed and the corresponding action depends on the
programming of a macro. See Table 141.

Table 298. Properties in the com.sun.star.awt.UnoControlScrollBarModel service.
Property Description

BlockIncrement Increment for a block move as a Long Integer.

Border Specify no border (0), a 3-D border (1), or a simple border (2).

Enabled If True, the control is enabled.

HelpText Control’s help text as a String.

HelpURL Control’s help URL as a String.

LineIncrement Increment for a single-line move as a Long Integer.

Orientation Scroll bar orientation with values
com.sun.star.awt.ScrollBarOrientation.HORIZONTAL (0) and
com.sun.star.awt.ScrollBarOrientation.VERTICAL (1).

Printable If a scroll bar is embedded into a document, setting this to True causes the scroll
bar to be printed when the document is printed.

ScrollValue Current scroll value.

ScrollValueMax Maximum scroll value of the control.

VisibleSize Visible size of the scroll bar.

Note Add a horizontal scroll bar to the OOMESample dialog. Add the global variable oBPosSize
to store a button’s original position and size (see Listing 541).

To illustrate how the scroll bar functions, add a horizontal scroll bar to the sample dialog and name it
ButtonScrollBar. All of the work done by a scroll bar control is done by a macro. A scroll bar doesn’t know
if something is horizontal or vertical, so it’s just as easy to use a vertical scroll bar as a horizontal scroll bar
for the same application—a person using a vertical scroll bar to move something horizontally might face
ridicule by his peers, but the control doesn’t care. I chose a horizontal scroll bar because I want to use it to
move the Close button horizontally on the dialog. Add a global variable to store the initial position of the
Close button (see Listing 541).

Listing 541. Global variables for the Close button’s initial position and size.
Dim oBPosSize 'Button original position and size

In my sample dialog, there is nothing between the Close button and the right edge of the dialog (see Figure
139). I want the scroll bar to cause the Close button to move right and left.

642

Figure 139. OOMESample dialog referred to throughout this chapter.
The maximum scroll bar value defaults to 100. This is usually used as a percentage to scroll something. In
the sample dialog, however, I calculate the maximum distance that I can move the Close button, and then I
set the maximum value that the scroll bar can return as this number. This allows me to use the scroll value
directly, rather than calculating a position based on a percentage, which is the usual case.

In the initialization section, add code that saves the Close button’s initial position and size (see Listing 542);
this information is used later as a reference point. Next, calculate how far the button can be shifted to the
right based on the size and position of the button and the size of the dialog that contains the button.

Listing 542. Save the initial button position and set the scroll bar’s maximum value.
 REM Get the Close button's original position and size.
 REM Set the maximum value that the scroll bar can become
 REM based on the maximum distance that I can move the Close button.
 oBPosSize = oOOMEDlg.getControl("CloseButton").getPosSize()
 oOOMEDlg.getModel().getByName("ButtonScrollBar").ScrollValueMax = _
 oOOMEDlg.getPosSize.Width - oBPosSize.X - oBPosSize.Width - 10

Set the scroll bar to call the ScrollButton method in Listing 543 for the “While Adjusting” event. The
ScrollButton method uses the scroll value to position the Close button.

Listing 543. ScrollButton is in the DlgCode module.
Sub ScrollButton
 Dim oModel 'Scroll bar model
 Dim oButton 'Close button
 Dim newX As Long 'New X location for the Close button

 oModel = oOOMEDlg.getModel().getByName("ButtonScrollBar")
 oButton = oOOMEDlg.getControl("CloseButton")

643

 REM The scroll bar was set so that its maximum value is
 REM the maximum desired value.
 newX = oBPosSize.X + oModel.ScrollValue
 oButton.setPosSize(newX, 0, 0, 0, com.sun.star.awt.PosSize.X)
End Sub

Now you can move the Close button to the right and to the left by moving the scroll bar.

 18.4. Using the Step property for multi-page AutoPilot dialogs

A multi-page dialog can display different sets of controls in the same dialog. Each set of controls is
sometimes referred to as a “page.” OpenOffice.org frequently refers to multi-page dialogs as AutoPilot
dialogs because they are frequently used to guide you through some process. At each step in the process, a
different set of controls is displayed in the same dialog. For example, OOo comes with an ImportWizard
macro library. The Main() subroutine in the Main module opens a dialog that assists in converting multiple
documents. The first page (or step) allows you to select what document types will be imported. The second
page (or step) allows you to select the directory that contains the documents to import.

The dialog model contains the Step property, which tells the dialog the current step in the process. If the
dialog’s Step property is set to zero, the default value, then the dialog displays every control. The model for
every control that the dialog contains, also supports the Step property. In a control, the Step property is used
to determine at which step the control is displayed. If a control’s Step property is zero, the control is
displayed for every step. A Cancel button is likely to be displayed at every step, for example.

 18.5. The object inspector example

This section discusses an object inspector, that I use to inspect objects to understand what I can do with
them. I am taking code that I have changed over the years to accomplish specific tasks, and significant
improvements are possible; but this serves my needs.

The object inspector accepts an optional argument that identifies the object to inspect. If the object is a UNO
object, then the object contains debug properties that list the supported properties, methods, services, and
interfaces.

In this example, a dialog is created without using the Basic IDE. The inspection information is stored in a
multi-line text edit control. I use a text edit control rather than a list box, because the text control allows me
to copy the contained text to the clipboard and the list box control does not. I frequently inspect an object
and then copy the supported properties, methods, and interfaces to the clipboard so that I can use them as a
reference.

Radio buttons dictate what is displayed in the text control. The text control can display the supported
properties, methods, interfaces and services, and general inspection information such as the object’s data
type (see Figure 140).

 18.5.1. Utility subroutines and functions

Numerous utility methods are required to generically inspect an object in OO. The utility methods do not
control, access, or update the dialog or any controls so I have separated them from the common
functionality. The techniques and methods used here should be somewhat familiar, so I haven’t discussed
them in depth. All of the routines are contained in the Inspector module in this chapter’s source code.

644

Identifying and removing white space from a string

A text character that appears as open space is called a “white space character.” For example, in this book
there is a single space between each word. The new-line character can create white space between lines.
While inspecting an object, the resulting strings frequently contain leading and trailing white space of
different types that must be removed. The functions in Listing 544 identify the different types of white space
and remove them from a string.

Listing 544. Identify and remove white space from a string.
REM Utility Functions and Methods

'***
'** Is the specified character whitespace? The answer is true if the
'** character is a tab, CR, LF, space, or a non-breaking space character!
'** These correspond to the ASCII values 9, 10, 13, 32, and 160
'***
Function IsWhiteSpace(iChar As Integer) As Boolean
 Select Case iChar
 Case 9, 10, 13, 32, 160
 IsWhiteSpace = True
 Case Else
 IsWhiteSpace = False
 End Select
End Function

'***
'** Find the first character starting at location i% that is not whitespace.
'** If there are none, then the return value will be greater than the
'** length of the string.
'***
Function FirstNonWhiteSpace(ByVal i%, s$) As Integer
 If i <= Len(s) Then
 Do While IsWhiteSpace(Asc(Mid$(s, i, 1)))
 i = i + 1
 If i > Len(s) Then
 Exit Do
 End If
 Loop
 End If
 FirstNonWhiteSpace = i
End Function

'***
'** Remove white space text from both the front and the end of a string.
'** This modifies the argument string and it returns the modified string.
'** This removes all types of white space, not just a regular space.
'***
Function TrimWhite(s As String) As String
 s = Trim(s)
 Do While Len(s) > 0
 If Not IsWhiteSpace(ASC(s)) Then Exit Do
 s = Right(s, Len(s) - 1)
 Loop

645

 Do While Len(s) > 0
 If Not IsWhiteSpace(ASC(Right(s, 1))) Then Exit Do
 s = Left(s, Len(s) - 1)
 Loop
 TrimWhite = s
End Function

Convert a simple object to a string

The CStr() method converts most standard data types to a string. Not all variables are easily converted to a
string using CStr(), so the ObjToString() method attempts to make an intelligent conversion. The most
troublesome variable types are Object and Variant, which can contain the value Empty or Null—these two
cases are identified and printed in Listing 545. Variables of type Object cannot be trivially converted to a
String, so they are not. The standard types are converted to a String by Listing 545. The ObjToString()
method truncates the string at 100 characters.

Listing 545. String representation of an object.
Function ObjToString(oInsObj, optional arraySep$, _
 Optional maxDepth%, Optional CRReplace As Boolean) As String

 Dim iMaxDepth% ' Maximum number of array elements to display
 Dim sArraySep$ ' Separator used for array elements
 Dim s$ ' Contains the results.
 Dim bCRReplace As Boolean

 ' Optional arguments
 If IsMissing(CRReplace) Then
 bCRReplace = False
 Else
 bCRReplace = CRReplace
 End If

 If IsArray(oInsObj) Then
 If IsMissing(arraySep) Then
 sArraySep = CHR$(10)
 Else
 sArraySep = arraySep
 End If

 If IsMissing(maxDepth) THen
 iMaxDepth = 100
 Else
 iMaxDepth = maxDepth
 End If

 s = ObjArrayToString(oInsObj, sArraySep, iMaxDepth)
 Else
 ' Not an array
 Select Case VarType(oInsObj)
 Case 0
 s = "Empty"
 Case 1
 s = "Null"

646

 Case 2, 3, 4, 5, 7, 8, 11, 16 To 23, 33 To 37
 s = CStr(oInsObj)
 Case Else
 If IsUnoStruct(oInsObj) Then
 s = "[Cannot convert an UnoStruct to a string]"
 Else
 Dim sImplName$: sImplName = GetImplementationName(oInsObj)
 If sImplName = "" Then
 s = "[Cannot convert " & TypeName(oInsObj) & " to a string]"
 Else
 s = "[Cannot convert " & TypeName(oInsObj) & _
 " (" & sImplName & ") to a string]"
 End If
 End If
 End Select
 If bCRReplace Then
 s = Replace(s, CHR$(10), "|", 1, -1, 1)
 s = Replace(s, CHR$(13), "|", 1, -1, 1)
 End If
 If Len(s) > 100 Then s = Left(s, 100) & "...."
 End If
 ObjToString = s
End Function

Arrays are identified and converted separately. One and two dimensional arrays are supported.

Listing 546. Convert an array to a string.
'***
'** Convert an array of objects to a string if possible.
'**
'** oInsObj - Object to Inspect
'** sArraySep - Separator character for arrays
'** maxDepth - Maximum number of array elements to show
'***
Function ObjArrayToString(oInsObj, sArraySep$, Optional maxDepth%) As String
 Dim iMaxDepth%
 Dim iDimensions%

 If IsMissing(maxDepth) THen
 iMaxDepth = 100
 Else
 iMaxDepth = maxDepth
 End If

 iDimensions = NumArrayDimensions(oInsObj)
 If iDimensions = 1 Then
 ObjArrayToString = ObjArray_1_ToString(oInsObj, iMaxDepth%, sArraySep)
 ElseIf iDimensions = 2 Then
 ObjArrayToString = ObjArray_2_ToString(oInsObj, iMaxDepth%, sArraySep)
 Else
 ObjArrayToString = "[Unable to convert array with dimension " & iDimensions & "]"
 End If
End Function

647

'***
'** Convert a 1-D array of objects to a string.
'**
'** oInsObj - Object to Inspect
'** iMaxDepth - Maximum number of array elements to show
'** sSep - Separator character for arrays
'***
Function ObjArray_1_ToString(oInsObj, iMaxDepth%, sSep$) As String
 Dim iDim_1%
 Dim iMax_1%
 Dim iCounter%
 Dim s$
 Dim sTempSep$

 sTempSep = ""
 iDim_1 = LBound(oInsObj, 1)
 iMax_1 = UBound(oInsObj, 1)
 Do While (iCounter < iMaxDepth AND iDim_1 <= iMax_1)
 iCounter = iCounter + 1
 s = s & sTempSep & "[" & iDim_1 & "] " _
 & ObjToString(oInsObj(iDim_1), ", ")
 sTempSep = sSep
 iDim_1 = iDim_1 + 1
 Loop
 ObjArray_1_ToString = s
End Function

'***
'** Convert a 2-D array of objects to a string.
'**
'** oInsObj - Object to Inspect
'** iMaxDepth - Maximum number of array elements to show
'** sSep - Separator character for arrays
'***
Function ObjArray_2_ToString(oInsObj, iMaxDepth%, sSep$) As String
 Dim iDim_1%, iDim_2%
 Dim iMax_1%, iMax_2%
 Dim iCounter%
 Dim s$
 Dim sTempSep$

 sTempSep = ""
 iDim_1 = LBound(oInsObj, 1)
 iMax_1 = UBound(oInsObj, 1)
 iMax_2 = UBound(oInsObj, 2)
 Do While (iCounter < iMaxDepth AND iDim_1 <= iMax_1)
 iCounter = iCounter + 1
 iDim_2 = LBound(oInsObj, 2)
 Do While (iCounter < iMaxDepth AND iDim_2 <= iMax_2)
 s = s & sTempSep & "[" & iDim_1 & ", " & iDim_2 & "] " _
 & ObjToString(oInsObj(iDim_1, iDim_2), ", ")
 sTempSep = sSep
 iDim_2 = iDim_2 + 1

648

 Loop
 iDim_1 = iDim_1 + 1
 Loop
 ObjArray_2_ToString = s
End Function

'***
'** Number of dimension for an array. a(4) returns 1 and a(3, 4) returns 2.
'**
'** oInsObj - Object to Inspect
'***
Function NumArrayDimensions(oInsObj) As Integer
 Dim i% : i = 0
 If IsArray(oInsObj) Then
 On Local Error Goto DebugBoundsError:
 Do While (i% >= 0)
 LBound(oInsObj, i% + 1)
 UBound(oInsObj, i% + 1)
 i% = i% + 1
 Loop
 DebugBoundsError:
 On Local Error Goto 0
 End If
 NumArrayDimensions = i
End Function

The object implementation name is useful to have, and special care must be taken for objects that do not
support the method.

Listing 547. Get the object's implementation name (if it is an UNO Service).
'***
'** Get an objects implementation name if it exists.
'**
'** oInsObj - Object to Inspect
'***
Function GetImplementationName(oInsObj) As String
 On Local Error GoTo DebugNoSet
 Dim oTmpObj
 oTmpObj = oInsObj
 GetImplementationName = oTmpObj.getImplementationName()
 DebugNoSet:
End Function

Object inspection using Basic methods

The ObjInfoString() method (shown in Listing 548) creates a string that describes an object. This string
includes detailed information about the object type. If the object is an array, the array dimensions are listed.
If possible, even the UNO implementation name is obtained. No other UNO-related information—such as
supported properties or methods—is obtained.

Listing 548. Get information about an object.
'***
'** Return a string that contains useful information about an object.
'** This includes detailed information about the object type. If the

649

'** object is an array, then the array dimensions are listed.
'** If possible, even the UNO implementation name is obtained.
'***
Function ObjInfoString(oInsObj) As String
 Dim s As String

 REM We can always get the type name and variable type.
 s = "TypeName = " & TypeName(oInsObj) & CHR$(10) &_
 "VarType = " & VarType(oInsObj) & CHR$(10)

 REM Check for NULL and EMPTY
 If IsNull(oInsObj) Then
 s = s & "IsNull = True"
 ElseIf IsEmpty(oInsObj) Then
 s = s & "IsEmpty = True"
 Else
 If IsObject(oInsObj) Then
 s = s & "Implementation Name = " & GetImplementationName(oInsObj)
 s = s & CHR$(10) & "IsObject = True" & CHR$(10)
 End If
 If IsUnoStruct(oInsObj) Then s = s & "IsUnoStruct = True" & CHR$(10)
 If IsDate(oInsObj) Then s = s & "IsDate = True" & CHR$(10)
 If IsNumeric(oInsObj) Then s = s & "IsNumeric = True" & CHR$(10)
 If IsArray(oInsObj) Then
 On Local Error Goto DebugBoundsError:
 Dim i%, sTemp$
 s = s & "IsArray = True" & CHR$(10) & "range = ("
 Do While (i% >= 0)
 i% = i% + 1
 sTemp$ = LBound(oInsObj, i%) & " To " & UBound(oInsObj, i%)
 If i% > 1 Then s = s & ", "
 s = s & sTemp$
 Loop
 DebugBoundsError:
 On Local Error Goto 0
 s = s & ")" & CHR$(10)
 End If
 End If

 s = s & "Value : " & CHR$(10) & ObjToString(oInsObj) & CHR$(10)
 ObjInfoString = s
End Function

Sort an array

Many objects contain so many properties and implement so many methods, that when they are displayed in
the text box, it is difficult to find a specific entry. Sorting the output makes it easier to find individual
entries.

Assume that I have two arrays. The first array contains a list of names and the second array contains a list of
ages. The third item in the age array contains the age of the third item in the name array. In computer
science, these are referred to as “parallel arrays.” Parallel arrays are used in the object browser. When

650

dealing with properties, the property type is stored in the first array, and the property name is stored in the
second array. The same thing is done while dealing with the supported methods.

While creating the data for inspection, parallel arrays are created and maintained. I want to sort the
information, but I can’t sort one array unless I sort all of the arrays. A typical solution to this problem is to
create an index array that contains integers, which are used to index into the array. The index array is sorted
rather than the actual data. For example, sort the array oItems()=("B", "C", "A"). The sorted index array is
(2, 0, 1), implying that oItems(2) is the first item, oItems(0) is the second item, and oItems(1) is the last
item. The function SortMyArray() in Listing 549 sorts an array by using an index array.

Listing 549. Indirectly Sort an array by moving indexes.
'***
'** Sort the oItems() array by arranging the iIdx() array.
'** If oItems() = ("B", "C", "A") Then on output, iIdx() = (2, 0, 1)
'** This means that the item that should come first is oItems(2), second
'** is oItems(0), and finally, oItems(1)
'***
Sub SortMyArray(oItems(), iIdx() As Integer)
 Dim i As Integer 'Outer index variable
 Dim j As Integer 'Inner index variable
 Dim temp As Integer 'Temporary variable to swap two values.
 Dim bChanged As Boolean 'Becomes True when something changes
 For i = LBound(oItems()) To UBound(oItems()) - 1
 bChanged = False
 For j = UBound(oItems()) To i+1 Step -1
 If oItems(iIdx(j)) < oItems(iIdx(j-1)) Then
 temp = iIdx(j)
 iIdx(j) = iIdx(j-1)
 iIdx(j-1) = temp
 bChanged = True
 End If
 Next
 If Not bChanged Then Exit For
 Next
End Sub

 18.5.2. Creating a dialog at run time

The Object Inspector uses Private variables for the dialog and frequently referenced objects. The dialog
contains a progress bar that is updated while information is retrieved to fill the text control. The inspected
object is also stored as a global variable because it is used in event handlers that have no other way to obtain
the object. See Listing 550.

Listing 550. Global variables defined in the Inspector module.
Private oDlg 'Displayed dialog
Private oProgress 'Progress control model
Private oTextEdit 'Text edit control model that displays information
Private oObjects(100) 'Objects to inspect
Private Titles(100) 'Titles
Private iDepth% 'Which object / title to use

Unfortunately, dialogs created in the IDE can only be created and run from within Basic. It is possible,
however, to create and use a dialog at run time in any programming language that can use the OOo UNO
API. The dialog functionality is scheduled to be improved in OOo 2.0 so that you can design dialogs in an

651

IDE and display them using languages other than Basic. The Inspect() method in Listing 551 creates a dialog
and all of its contained controls without using the IDE. Follow these steps to create and display the dialog:

1. Use CreateUnoService("com.sun.star.awt.UnoControlDialogModel") to create a dialog model and then
set the model’s properties.

2. Use the createInstance(name) method in the dialog model to create a model for each control that is
inserted into the dialog model. Set the properties on the control’s model and then use the
insertByName(name, oModel) method—defined by the dialog model—to insert the control’s model into
the dialog’s model. This step is important! To insert a control into a dialog, you must use the dialog
model to create a control model, which is then inserted into the dialog model. You don’t create or
manipulate controls, only models.

3. Use CreateUnoService("com.sun.star.awt.UnoControlDialog") to create a dialog.

4. Use the setModel() method on the dialog to set the dialog’s model.

5. Use CreateUnoListener(name) to create any desired listeners. Add the listener to the correct object; the
correct object is usually a control.

6. Use CreateUnoService("com.sun.star.awt.Toolkit") to create a window toolkit object.

7. Use the createPeer(oWindow, null) method on the dialog to tell the dialog to create an appropriate
window to use.

8. Execute the dialog.

Listing 551. Create the dialog, the controls, and the listeners.
Sub Inspect(Optional oInsObj, Optional title$)
 Dim oDlgModel 'The dialog's model
 Dim oModel 'Model for a control
 Dim oListener 'A created listener object
 Dim oControl 'References a control
 Dim iTabIndex As Integer 'The current tab index while creating controls
 Dim iDlgHeight As Long 'The dialog's height
 Dim iDlgWidth As Long 'The dialog's width
 Dim sTitle$

 iDepth = LBound(oObjects)
 sTitle = ""
 If Not IsMissing(title) Then sTitle = title

 REM If no object is passed in, then use ThisComponent.
 If IsMissing(oInsObj) Then
 oObjects(iDepth) = ThisComponent
 If IsMissing(title) Then sTitle = "ThisComponent"
 Else
 oObjects(iDepth) = oInsObj
 If IsMissing(title) Then sTitle = "Obj"
 End If
 Titles(iDepth) = sTitle

 iDlgHeight = 300
 iDlgWidth = 350

652

 REM Create the dialog's model
 oDlgModel = CreateUnoService("com.sun.star.awt.UnoControlDialogModel")
 setProperties(oDlgModel, Array("PositionX", 50, "PositionY", 50,_
 "Width", iDlgWidth, "Height", iDlgHeight, "Title", sTitle))

 createInsertControl(oDlgModel, iTabIndex, "PropButton",_
 "com.sun.star.awt.UnoControlRadioButtonModel",_
 Array("PositionX", 10, "PositionY", 10, "Width", 50, "Height", 15,_
 "Label", "Properties"))

 createInsertControl(oDlgModel, iTabIndex, "MethodButton",_
 "com.sun.star.awt.UnoControlRadioButtonModel",_
 Array("PositionX", 65, "PositionY", 10, "Width", 50, "Height", 15,_
 "Label", "Methods"))

 createInsertControl(oDlgModel, iTabIndex, "ServiceButton",_
 "com.sun.star.awt.UnoControlRadioButtonModel",_
 Array("PositionX", 120, "PositionY", 10, "Width", 50, "Height", 15,_
 "Label", "Services"))

 createInsertControl(oDlgModel, iTabIndex, "ObjectButton",_
 "com.sun.star.awt.UnoControlRadioButtonModel",_
 Array("PositionX", 175, "PositionY", 10, "Width", 50, "Height", 15,_
 "Label", "Object"))

 createInsertControl(oDlgModel, iTabIndex, "EditControl",_
 "com.sun.star.awt.UnoControlEditModel",_
 Array("PositionX", 10, "PositionY", 25, "Width", iDlgWidth - 20,_
 "Height", (iDlgHeight - 75), "HScroll", True, "VScroll", True,_
 "MultiLine", True, "HardLineBreaks", True))

 REM Store the edit control's model in a global variable.
 oTextEdit = oDlgModel.getByName("EditControl")

 createInsertControl(oDlgModel, iTabIndex, "Progress",_
 "com.sun.star.awt.UnoControlProgressBarModel",_
 Array("PositionX", 10, "PositionY", (iDlgHeight - 45),_
 "Width", iDlgWidth - 20, "Height", 15, "ProgressValueMin", 0,_
 "ProgressValueMax", 100))

 REM Store a reference to the progress bar
 oProgress = oDlgModel.getByName("Progress")

 REM Notice that I set the type to OK so I do not require an action
 REM listener to close the dialog.
 createInsertControl(oDlgModel, iTabIndex, "OKButton",_
 "com.sun.star.awt.UnoControlButtonModel",_
 Array("PositionX", Clng(25), "PositionY", iDlgHeight-20,_
 "Width", 50, "Height", 15, "Label", "Close",_
 "PushButtonType", com.sun.star.awt.PushButtonType.OK))

 createInsertControl(oDlgModel, iTabIndex, "InspectButton",_

653

 "com.sun.star.awt.UnoControlButtonModel",_
 Array("PositionX", Clng(iDlgWidth / 2 - 50), "PositionY", iDlgHeight-20,_
 "Width", 50, "Height", 15, "Label", "Inspect Selected",_
 "PushButtonType", com.sun.star.awt.PushButtonType.STANDARD))

 createInsertControl(oDlgModel, iTabIndex, "BackButton",_
 "com.sun.star.awt.UnoControlButtonModel",_
 Array("PositionX", Clng(iDlgWidth / 2 + 50), "PositionY", iDlgHeight-20,_
 "Width", 50, "Height", 15, "Label", "Inspect Previous",_
 "Enabled", False, _
 "PushButtonType", com.sun.star.awt.PushButtonType.STANDARD))

 REM Create the dialog and set the model
 oDlg = CreateUnoService("com.sun.star.awt.UnoControlDialog")
 oDlg.setModel(oDlgModel)

 REM the item listener for all of the radio buttons.
 oListener = CreateUnoListener("radio_", "com.sun.star.awt.XItemListener")
 oControl = oDlg.getControl("PropButton")
 ocontrol.addItemListener(oListener)
 oControl = oDlg.getControl("MethodButton")
 ocontrol.addItemListener(oListener)
 oControl = oDlg.getControl("ServiceButton")
 ocontrol.addItemListener(oListener)
 oControl = oDlg.getControl("ObjectButton")
 ocontrol.addItemListener(oListener)
 oControl.getModel().State = 1

 oListener = CreateUnoListener("ins_", "com.sun.star.awt.XActionListener")
 oControl = oDlg.getControl("InspectButton")
 ocontrol.addActionListener(oListener)

 oListener = CreateUnoListener("back_", "com.sun.star.awt.XActionListener")
 oControl = oDlg.getControl("BackButton")
 ocontrol.addActionListener(oListener)

 REM Now, set the dialog to contain the standard dialog information
 DisplayNewObject()

 REM Create a window and then tell the dialog to use the created window.
 Dim oWindow
 oWindow = CreateUnoService("com.sun.star.awt.Toolkit")
 oDlg.createPeer(oWindow, null)

 REM Finally, execute the dialog.
 oDlg.execute()
End Sub

To shorten the code in Listing 551, try using two utility methods to set properties, create a control model,
and insert the control model into the dialog model. Notice that the control itself is never created—only the
model is created. Listing 552 contains the methods to create the control models and to set the properties.

654

Although properties are set using the setPropertyValue method, in Basic you can set the properties directly if
desired.

Listing 552. Create a control model and insert it into the dialog’s model.
'***
'** Create a control of type sType with name sName, and insert it into
'** oDlgModel.
'**
'** oDlgModel - Dialog model into which the control will be placed.
'** index - Tab index, which is incremented each time.
'** sName - Control name.
'** sType - Full service name for the control model.
'** props - Arry of property name / property value pairs.
'***
Sub createInsertControl(oDlgModel, index%, sName$, sType$, props())
 Dim oModel

 oModel = oDlgModel.createInstance(sType$)
 setProperties(oModel, props())
 setProperties(oModel, Array("Name", sName$, "TabIndex", index%))
 oDlgModel.insertByName(sName$, oModel)

 REM This changes the value because it is not passed by value.
 index% = index% + 1
End Sub

The following macro is used to set many properties based on a single call.

Listing 553. Set many properties at one time.
REM Generically set properties based on an array of name/value pairs.
Sub setProperties(oModel, props())
 Dim i As Integer
 For i=LBound(props()) To UBound(props()) Step 2
 oModel.setPropertyValue(props(i), props(i+1))
 Next
End sub

 18.5.3. Listeners

Radio buttons

Each time a new radio button is selected, the method radio_itemStateChanged() is called (the listener is set
up in Listing 551). The event handler calls the DisplayNewObject() subroutine, which handles the actual
work when a new property type is requested. See Listing 554. I wrote a separate routine so that it can be
used apart from the event handler. For example, it calls DisplayNewObject() before the dialog is displayed
so that the dialog contains useful information when it first appears.

Listing 554. The event handler is very simple; it calls DisplayNewObject().
REM This method is to support the com.sun.star.awt.XItemListener interface
REM for the radio button listener. This method is called when a radio button
REM is selected.
Sub radio_itemStateChanged(oItemEvent)
 DisplayNewObject()
End Sub

655

Sub DisplayNewObject()
 REM Reset the progress bar!
 oProgress.ProgressValue = 0
 oTextEdit.Text = ""

 On Local Error GoTo IgnoreError:
 If IsNull(oObjects(iDepth)) OR IsEmpty(oObjects(iDepth)) Then
 oTextEdit.Text = ObjInfoString(oObjects(iDepth))
 ElseIf oDlg.getModel().getByName("PropButton").State = 1 Then
 processStateChange(oObjects(iDepth), "p")
 ElseIf oDlg.getModel().getByName("MethodButton").State = 1 Then
 processStateChange(oObjects(iDepth), "m")
 ElseIf oDlg.getModel().getByName("ServiceButton").State = 1 Then
 processStateChange(oObjects(iDepth), "s")
 Else
 oTextEdit.Text = ObjInfoString(oObjects(iDepth))
 End If
 oProgress.ProgressValue = 100

 IgnoreError:
End Sub

Inspect selected

The handler for the Inspect Selected button looks at the text that is selected and then based on the selected
text, attempts to inspect a new object. I considered making the processing more user friendly, but it meets
my needs. If you select text, a property with the selected name is inspected. If you select a number, the
current object is assumed to be an array, and the object at the specified index is inspected.

Listing 555. Inspect a new item.
Sub Ins_actionPerformed(oActionEvent)
 Dim oControl
 Dim oSel
 Dim sText$
 Dim v
 Dim oOldObj
 Dim sOldTitle$
 Dim sNewTitle$

 If iDepth = UBound(oObjects) Then
 Print "Sorry, already nested too deeply"
 Exit Sub
 End If

 oControl = oDlg.getControl("EditControl")
 sText = oControl.getSelectedText()
 sOldTitle = oDlg.Title
 sNewTitle = sOldTitle & "/" & sText

 If IsNumeric(sText) Then
 ' oDlg.getModel().getByName("ObjButton").State = 1
 If NumArrayDimensions(oObjects(iDepth)) <> 1 Then

656

 Print "You can only select a number with a one dimensional array."
 Else
 oOldObj = oObjects(iDepth)
 iDepth = iDepth + 1
 oDlg.getControl("BackButton").GetModel().Enabled = True
 oObjects(iDepth) = oOldObj(sText)
 oDlg.Title = sNewTitle
 Titles(iDepth) = sNewTitle
 DisplayNewObject()
 End If
 Else
 v = RunFromLib(GlobalScope.BasicLibraries, _
 "xyzzylib", "TestMod", oObjects(iDepth), sText, False, False)
 If IsNull(v) OR IsEmpty(v) Then
 '
 Else
 iDepth = iDepth + 1
 oDlg.getControl("BackButton").GetModel().Enabled = True
 oObjects(iDepth) = v
 oDlg.Title = sNewTitle
 Titles(iDepth) = sNewTitle
 DisplayNewObject()
 End If
 End If
 'oSel = oControl.getSelection ()
 'Print "Min: " & oSel.Min & " Max: " & oSel.Max
 'sText = oControl.getText()
 'Inspect oControl
End Sub

Inspect previous

A stack of inspected objects is maintained. The “previous item” means the last item on the stack.

Listing 556. Inspect a previous item.
Sub back_actionPerformed(oActionEvent)
 If iDepth <= LBound(oObjects) Then
 Exit Sub
 End If
 iDepth = iDepth - 1
 If iDepth = LBound(oObjects) Then
 oDlg.getControl("BackButton").GetModel().Enabled = False
 End If

 oDlg.Title = Titles(iDepth)
 DisplayNewObject()
End Sub

 18.5.4. Obtaining the debug information

In Listing 554, notice that if the properties, methods, or services are requested, then the
processStateChange() subroutine (see Listing 557) is called. If properties, methods, or services are not
requested, simple object information is added to the text control.

657

Again, the processStateChange() subroutine contains very little logic. The primary purpose of Listing 557 is
to add the supported services to the end of the text control after the interfaces are obtained from the
dbg_SupportedInterfaces property.

Listing 557. Build the text string that is displayed about the object.
'***
'** Set the text. For a service, show the interfaces and services in
'** Separate sections so that they are easier to find.
'***
Sub processStateChange(oInsObj, sPropType$)
 Dim oItems()
 BuildItemArray(oInsObj, sPropType$, oItems())
 If sPropType$ = "s" Then
 Dim s As String
 On Local Error Resume Next
 s = "** INTERFACES **" & CHR$(10) & Join(oItems, CHR$(10))
 s = s & CHR$(10) & CHR$(10) & "** SERVICES **" & CHR$(10) & _
 Join(oInsObj.getSupportedServiceNames(), CHR$(10))
 oTextEdit.Text = s
 Else
 oTextEdit.Text = Join(oItems, CHR$(10))
 End If
End Sub

The BuildItemArray() subroutine contains the majority of the important code for this dialog. First, the code
inspects the dbg_ properties to obtain the list of properties, methods, or interfaces as a single string. It then
separates the individual items from the single string and sorts them. If properties are displayed, the property
set information object is used to obtain the value of each supported property. This allows you to see both the
property name and its value. Although the property set information object does not support all of the
properties returned by the property dbg_properties, it supports most of them. The individual data is returned
as an array of strings in the oItems() array. See Error: Reference source not found for an example.

Listing 558. Build an array of properties, methods, or services.
'***
'** This routine parses the strings returned from the dbg_Methods,
'** dbg_Properties, and Dbg_SupportedInterfaces calls. The interesting
'** data starts after the first colon.
'**
'** Because of this, all data before the first colon is discarded
'** and then the string is separated into pieces based on the
'** separator string that is passed in.
'**
'** All instances of the string Sbx are removed. If this string
'** is valid and exists in a method name, it will still be removed so perhaps
'** it is not the safest thing to do, but I have never seen this case and it
'** makes the output easier to read.
'**
'** the oItems() contains all of the parsed sections on output.
'***
Sub BuildItemArray(oInsObj, sType$, oItems())
 On Error Goto BadErrorHere
 Dim s As String 'Primary list to parse
 Dim sSep As String 'Separates the items in the string

658

 Dim iCount% '
 Dim iPos% '
 Dim sNew$ '
 Dim i% '
 Dim j% '
 Dim sFront() As String 'When each piece is parsed, this is the front
 Dim sMid() As String 'When each piece is parsed, this is the middle
 Dim iIdx() As Integer 'Used to sort parallel arrays.
 Dim nFrontMax As Integer 'Maximum length of front section
 Dim sArraySep$: sArraySep = ", "
 Dim iArrayMaxDepth% : iArrayMaxDepth = 10

 nFrontMax = 0

 REM First, see what should be inspected.
 s = ""
 On Local Error Resume Next
 If sType$ = "s" Then
 REM Dbg_SupportedInterfaces returns interfaces and
 REM getSupportedServiceNames() returns services.
 s = oInsObj.Dbg_SupportedInterfaces
 's = s & Join(oInsObj.getSupportedServiceNames(), CHR$(10))
 sSep = CHR$(10)
 ElseIf sType$ = "m" Then
 s = oInsObj.DBG_Methods
 sSep = ";"
 ElseIf sType$ = "p" Then
 s = oInsObj.DBG_Properties
 sSep = ";"
 Else
 s = ""
 sSep = ""
 End If

 REM The dbg_ variables have some introductory information that
 REM we do not want so remove it.
 REM We only care about what is after the colon.
 iPos = InStr(1, s, ":") + 1
 If iPos > 0 Then s = TrimWhite(Right(s, Len(s) - iPos))

 REM All data types are prefixed with the text Sbx.
 REM Remove all of the "SbX" charcters
 s = Join(Split(s, "Sbx"), "")

 REM If the separator is NOT CHR$(10), then remove
 REM all instances of CHR$(10)
 If ASC(sSep) <> 10 Then s = Join(Split(s, CHR$(10)), "")

 REM split on the separator character and update the progress bar.
 oItems() = Split(s, sSep)
 oProgress.ProgressValue = 20

 Rem Create arrays to hold the different portions of the text.

659

 Rem the string usually contains text similar to "SbxString getName()"
 Rem sFront() holds the data type if it exists and "" if it does not.
 Rem sMid() holds the rest
 ReDim sFront(UBound(oItems)) As String
 ReDim sMid(UBound(oItems)) As String
 ReDim iIdx(UBound(oItems)) As Integer

 REM Initialize the index array and remove leading and trailing
 REM spaces from each string.
 For i=LBound(oItems()) To UBound(oItems())
 oItems(i) = Trim(oItems(i))
 iIdx(i) = i
 j = InStr(1, oItems(i), " ")
 If (j > 0) Then
 REM If the string contains more than one word, the first word is stored
 REM in sFront() and the rest of the string is stored in sMid().
 sFront(i) = Mid$(oItems(i), 1, j)
 sMid(i) = Mid$(oItems(i), j+1)
 If j > nFrontMax Then nFrontMax = j
 Else
 REM If the string contains only one word, sFront() is empty
 REM and the string is stored in sMid().
 sFront(i) = ""
 sMid(i) = oItems(i)
 End If
 Next

 oProgress.ProgressValue = 40
 Rem Sort the primary names. The array is left unchanged, but the
 Rem iIdx() array contains index values that allow a sorted traversal
 SortMyArray(sMid(), iIdx())
 oProgress.ProgressValue = 50

 REM Dealing with properties so attempt to find the value
 REM of each property.
 If sType$ = "p" Then
 Dim oPropInfo 'PropertySetInfo object
 Dim oProps 'Array of properties
 Dim oProp 'com.sun.star.beans.Property
 Dim v 'Value of a single property
 Dim bHasPI As Boolean
 Dim bUsePI As Boolean
 Dim bConvertReturns As Boolean

 bConvertReturns = True
 bHasPI = False
 bUsePI = False
 On Error Goto NoPropertySetInfo
 oPropInfo = oInsObj.getPropertySetInfo()
 bHasPI = True
 NoPropertySetInfo:

 On Error Goto BadErrorHere:

660

 For i=LBound(sMid()) To UBound(sMid())
 If bHasPI Then
 bUsePI = oPropInfo.hasPropertyByName(sMid(i))
 End If

 If bUsePI Then
 v = oInsObj.getPropertyValue(sMid(i))
 Else
 v = RunFromLib(GlobalScope.BasicLibraries, _
 "xyzzylib", "TestMod", oInsObj, sMid(i), False, False)
 End If
 sMid(i) = sMid(i) & " = " & _
 ObjToString(v, sArraySep, iArrayMaxDepth, bConvertReturns)
 Next
 End If
 oProgress.ProgressValue = 60

 nFrontMax = nFrontMax + 1
 iCount = LBound(oItems())
 REM Now build the array of the items in sorted order
 REM Sometimes, a service is listed more than once.
 REM this routine removes multiple instances of the same service.
 For i = LBound(oItems()) To UBound(oItems())
 sNew = sFront(iIdx(i)) & " " & sMid(iIdx(i))
 'Uncomment these lines if you want to add uniform space
 'between front and mid. This is only useful if the font is fixed in width.
 'sNew = sFront(iIdx(i))
 'sNew = sNew & Space(nFrontMax - Len(sNew)) & sMid(iIdx(i))
 If i = LBound(oItems()) Then
 oItems(iCount) = sNew
 ElseIf oItems(iCount) <> sNew Then
 iCount = iCount + 1
 oItems(iCount) = sNew
 End If
 Next
 oProgress.ProgressValue = 75
 ReDim Preserve oItems(iCount)
 Exit Sub
BadErrorHere:
 MsgBox "Error " & err & ": " & error$ + chr(13) + "In line : " + Erl
End Sub

The object inspector is shown below. ThisComponent was inspected, I viewed properties, selected
“ChapterNumberingRules”, and then I clicked Inspect Selected. The path is shown in the dialog title.

661

Figure 140. The Object Inspector dialog.
You can use the object inspector to investigate objects when you aren’t certain exactly what you can do with
them. You might want to copy this to an application-level library so that you can access the macro from all
of your other macros.

 18.5.5. Getting property values

Most UNO objects have a PropertySetInfo object, which allows you to see what properties exist, get the
properties, and set the properties. Oddly, not all of the properties are available through this interface, but
they are available from the Dbg_Properties property. When the PropertySetInfo object is unable to get a
property value, the RunFromLib method is used.

The following macro creates a library, module, and function and then calls it. The library and module name
are provided. The module is deleted if it exists, and replaced with a single function. The primary reason is to
access a named property and return the value of the named property.

Listing 559. Create a library, module, and function, then call it.
'***
'** Create a module that contains a function that returns the value from a

662

'** property or makes a method call on an object.
'**
'** Not all properties are available from the PropertySetInfo object, and
'** I am not aware of any other way to make a method call.
'**
'** oLibs - Library container to use
'** sLName - Library name
'** sMName - Module name
'** oObj - Object of interest
'** sCall - Method or property name to call
'** bClean - If true, remove the module. Library is only removed if created.
'** bIsMthd- If true, create as a method rather than a property.
'** x - If exists, then used as parameter for the method call.
'** y - If exists, then used as parameter for the method call.
'**
'***
Function RunFromLib(oLibs, sLName$, sMName$, oObj, sCall$, _
 bClean As Boolean, bIsMthd As Boolean, _
 Optional x, optional y)
 Dim oLib 'The library to use to run the new function.
 Dim s$ 'Generic string variable.
 Dim bAddedLib As Boolean

 REM If the library does not exist, then create it.
 bAddedLib = False
 If NOT oLibs.hasByName(sLName) Then
 bAddedLib = True
 oLibs.createLibrary(sLName)
 End If
 oLibs.loadLibrary(sLName)
 oLib = oLibs.getByName(sLName)

 If oLib.hasByName(sMName) Then
 oLib.removeByName(sMName)
 End If

 s = "Option Explicit" & CHR$(10) & _
 "Function MyInsertedFunc(ByRef oObj"

 If NOT IsMissing(x) Then s = s & ", x"
 If NOT IsMissing(y) Then s = s & ", y"
 s = s & ")" & CHR$(10) & "On Local Error Resume Next" & CHR$(10)
 s = s & "MyInsertedFunc = oObj." & sCall

 If bIsMthd Then
 s = s & "("
 If NOT IsMissing(x) Then s = s & "x"
 If NOT IsMissing(y) Then s = s & ", y"
 s = s & ")"
 End If

 s = s & CHR$(10) & "End Function"

663

 oLib.insertByName(sMName, s)

 If IsMissing(x) Then
 RunFromLib = MyInsertedFunc(oObj)
 ElseIf IsMissing(y) Then
 RunFromLib = MyInsertedFunc(oObj, x)
 Else
 RunFromLib = MyInsertedFunc(oObj, x, y)
 End If

 If bClean Then
 oLib.removeByName(sMName)
 If bAddedLib Then
 oLibs.removeLibrary(sLName)
 End If
 End If
End Function

Warn While debugging the code used to inspect objects, the system was left in a strange state, and removing the
existing module failed. I believe that this was related to calling a handler containing breakpoints and then
killing the dialog while the breakpoints were active. The important thing to note, however, is that if the
module cannot be deleted, stop the object inspector and then remove the library named “xyzzylib” using
the macro organizer.

 18.6. Conclusion

The methods outlined in this chapter should get you started in using dialogs and controls. The methods to
access and use controls in dialogs are very similar to accessing controls in forms, so you’re well on your way
to using forms as well. When a control is stored in a document rather than a dialog, the control is stored in a
form.

664

 19. Sources of Information
The internals of OpenOffice.org are very extensive, not completely documented, and in a state of change due
to ongoing feature development and bug fixes. This chapter introduces sources of information that can assist
you in finding your own solutions.

While solving any problem, it is most important to have a basic understanding of the problem, and to know
how to find the relevant information that you don’t know about the problem and possible solutions. You
might produce faster and more reliable code if you knew everything about OpenOffice.org, but this simply
isn’t possible because of the broad scope of the product. Even if you could know it all, and keep up with the
changes of successive releases of OOo, it is probably more productive to use some of that mental energy to
remember the phone numbers of your closest friends, your wedding anniversary, or funny stories about your
parents—or to remember how to order extra copies of this book as gifts for your friends, spouse, and
parents!

There are many excellent sources of information on OOo, each addressing different needs. Knowing which
information is available at which location can save a lot of time and effort in solving problems.

 19.1. Help pages included with OpenOffice.org

Do not neglect the excellent help that is included with OOo (see Figure 141). Although it may seem like I’m
frequently complaining about inaccurate or missing items in the help pages, in reality those are few and far
between. I mention this simply because it’s important to note when there are deficiencies, so you can be
prepared to deal with some of the inevitable rough spots. (Hey, if I didn’t offer something of original value,
what would be the point in writing this book? After all, I have a day job that keeps me busy—I don’t want
this book to be a waste of time for either of us!)

The help pages cover each of the components in OOo: Writer, Calc, Basic, Draw, Math, and Impress. The
upper-left corner of the help page contains a drop-down list that determines which help set is displayed. To
view the help for Basic, the drop-down must display “Help about OpenOffice.org Basic.” If you open the
help window from the Basic IDE, this is the default. The included help contains a lot of current information
on OOo Basic syntax and routines.

Figure 141. The included help is very good.

 19.2. Macros included with OpenOffice.org

Many macros are included with OOo in libraries. Spend some time investigating these macros. Many
wonderful examples are included. For example, the Gimmicks library contains a ReadDir module that reads
an entire directory and creates a draw page with the information displayed in a tree structure. The Tools

665

library also contains numerous excellent examples. The Debug module in the Tools library contains some
useful macros, such as WriteDbgInfo and PrintDbgInfo—check them out.

If you don’t know how to solve a problem, you should always try to find the answer first, rather than writing
a completely new solution. The macros included with OOo are a good place to start. I once posted a request
for help to determine the size of a control in a dialog. The response, which included the solution, indicated
that I should look in the ModuleControls module in the Tools library that is included with OOo. In other
words, the macros included with OOo contained the solution to my problem.

TIP You can see the libraries and modules included with OOo by selecting Tools | Macros | Organize Macros

to open the Macro dialog. The macros available at the application level are in the OpenOffice library

container.

 19.3. Web sites

On more than one occasion, I knew what I needed to use to solve a problem, but I just couldn’t figure out the
details. This is where a working example is invaluable. There are numerous sources for help on the Internet;
more become available all the time. Here is a list of sites that may help you:

TIP Although I have attempted to provide accurate links and descriptions, the OpenOffice Web sites are
constantly changing and improving.

 19.3.1. Reference material

http://www.openoffice.org/api/ is the site where I spend most of my time. This site lists most interfaces
and services and contains the primary Developer’s Guide. The guide has a reputation for being difficult to
understand, but the authors are working to make the content more accessible to less technical readers.

http://www.odfauthors.org/ Documentation and books.

http://wiki.openoffice.org/wiki/Documentation: Apache documentation project.

 19.3.2. Macro examples

http://www.pitonyak.org/oo.php is my personal Web site, created before I decided to write a book. This
site contains numerous documents and links. “AndrewMacro” contains numerous examples. The direct link
to my macro document is http://www.pitonyak.org/AndrewMacro.odt.

http://kienlein.com/pages/oo.html contains some excellent macros, with short descriptions of the macros
in German.

http://www.darwinwars.com/lunatic/bugs/oo_macros.html is a good first stop when looking for Writer
macros. The author of this site is a professional writer who uses the macros—so they work!

 19.3.3. Miscellaneous

http://www.openoffice.org/ is the main OOo link. This site contains a lot of information, such as links to
mailing lists that you can search, and the OOo bug­tracking system IssueZilla. You can join the site (it’s
free) to gain more capabilities, such as entering bug reports and subscribing to mailing lists.

http://www.openoffice.org/development/index.html is the developer project link from the main OOo Web

666

page. Numerous links and resources are available from this page.

http://forum.openoffice.org/ The official OpenOffice forum.

http://www.oooforum.org/ contains numerous help forums. This site includes help for the different
components of OOo—including macro programming.

http://ooodocs.sourceforge.net/ contains many help files separated into categories, including a section on
macro programming.

http://www.openoffice.org/documentation/ is the home page for the documentation project. This site
contains documentation on numerous topics. The How­To link references a document that discusses how to
embed controls that call macros into documents. This is an excellent interactive document.
http://documentation.openoffice.org/HOW_TO/various_topics/How_to_use_basic_macros.sxw

http://sourceforge.net/project/showfiles.php?group_id=43716 contains numerous templates and
examples.

 19.4. http://www.openoffice.org/api/ or http://api.libreoffice.org

For the serious macro writer, the site http://www.openoffice.org/api/ is very important. I spend most of my
time here while investigating how to solve problems. The first accessible programming document for
StarOffice version 5.x is available from this site. The document,
www.openoffice.org/api/basic/man/tutorial/tutorial.pdf, may be old, but it contains some nice examples
—and it is very accessible.

http://wiki.openoffice.org/wiki/Documentation/DevGuide/OpenOffice.org_Developers_Guide contains
the Developer’s Guide, which is kept up-to-date. The target audience for this document is the professional
developer. A lot of information is here, and it requires some talent to find what you need. This is only
because so much information is available. Basic programming is only a small portion of this document’s
coverage. When you require the complete story, or at least the most complete story available, look in the
Developer’s Guide. (But, be prepared for the complete story...)

I spend most of my time in the portion investigating the individual modules, which list the interfaces and
services available. A good starting point is

 http://www.openoffice.org/api/docs/common/ref/module-ix.html

because it contains all of the main modules. Notice that the name of the Web page is “module-ix.html”. If
you are looking at a Web page for a service or interface, you can usually remove the name of the Web page
and substitute the name “module-ix.html”. For example, assume that you are looking at the TextCursor
service at http://www.openoffice.org/api/docs/common/ref/com/sun/star/text/TextCursor.html and you
want to see the services. Change “TextCursor.html” to “module-ix.html” and you can see all of the
definitions, services, contained modules, constants, and interfaces in the com.sun.star.text module.

You should start investigating the different modules at the main Sun module,
http://www.openoffice.org/api/docs/common/ref/com/sun/star/module-ix.html, which will provide a feel
for the different modules and their purposes. Because the modules group related functionality, I sometimes
look here when I need to find a service that solves a specific problem but I don’t know what the service is.

667

http://api.libreoffice.org/
http://www.openoffice.org/api/

 19.5. Mailing lists and newsgroups

Numerous mailing lists are available for OpenOffice users. Information on each mailing list is available
from the lists-related Web site.

• http://www.openoffice.org/mail_list.html

• http://www.libreoffice.org/get-help/mailing-lists/

When you ask a question on a mailing list, the answers go to the mailing list rather than directly to you. You
must subscribe to the mailing list so that you can receive the answers. Instructions are provided to subscribe
to each of the mailing lists. Although developers read the mailing lists and answer questions, this is not a
support forum in the sense of guaranteed help. If other users or developers have a solution or an idea for a
solution, they will post an answer. Answers requiring a lot of work or time are not likely to be answered. The
LO development mailing list is expected to be used by people developing the LO software so you may not
have much luck asking macro related questions on that mailing list.

A good first step before asking a question is to subscribe to the mailing list. Remember, the people
answering your questions are not paid to do so. It is appreciated if you answer other people’s questions if
you know the answer. Here are some hints to ensure that you receive answers on the mailing lists.

Before asking a question, try to find the answer yourself. Search the Web, search the mailing­list archives,
search the Developer’s Guide, search Google, read a FAQ. Inspect returned objects. The user community
members prefer to help people who can help themselves and give back to the community.

Choose a meaningful message header. I receive hundreds of e­mails every day so I am likely to skip a
message that is titled “Please Help,” “Urgent,” or “Macro Problem.” A better title is “How do I run a macro
from the command line?” or “Searching macro fails to find attributes.” I can then look at questions that I am
likely to already understand or that interest me. We all get more e­mail than we need. Vague or misleading
subject lines often inspire liberal use of the Delete feature.

Carefully word your question so that you ask the right question. “My macro has a run­time error” is rather
vague. Including a little code certainly helps. Including the run­time error in your message also helps. The
fact that your sort macro does not sort as it should might be specific, but I need more information and
perhaps some code before I can comment. State the problem precisely, and include how you tried to solve
the problem. Specific error messages—and anything you know about the circumstances or likely causes of
the problem—are welcome.

Do not expect someone else to do your work for you. “My client is paying me $2000 to convert this macro;
will you do it for free?” is not likely to receive a response. I have translated macros from other systems
because they were interesting and of broad scope, and I was allowed to then release them to the user
community. If you are really in a bind, someone on the list might be willing to do your work for a fee.

Do not directly ask a single individual, even if they are knowledgeable. Many people can answer your
question using pooled knowledge, and you will often receive a better solution. In other words, ask the
question on the list rather than directly to an individual, unless you have a good reason for doing so. The last
question that I helped answer on the list generated roughly 10 messages from four different people.

It’s considered bad form to request an answer to be e­mailed to you at a different address. If you don’t care
enough to check the mailing list for the answer, why should someone else care enough to spend time
answering your question in the first place? Again, remember that these folks are volunteers! Also, the
answer to your question—an online discussion leading to the understanding of your circumstances and

668

http://www.libreoffice.org/get-help/mailing-lists/
http://www.openoffice.org/mail_list.html

eventual solution—may be of value to others in the community. In this way, the shared pool of knowledge
grows larger and better over time.

When you do have a solution, post it to help others. A polite “thank you” is also appropriate. Again,
courtesy and sharing are important to the development of a functioning community that benefits you and all
the other members as well. (I feel like a public service announcement when I say these things, just in case
you were wondering.)

 19.6. How to find answers

When I want to know about a specific issue, I usually search the Developer’s Guide and the old StarOffice
tutorial, and finally I perform a Google search such as “cursor OpenOffice”. When I want to narrow the
search to the api.openoffice.org site, I use “site:www.openoffice.org/api cursor”; the results usually include
an interface or a service that I can inspect, such as:

MsgBox vObj.dbg_methods
MsgBox vObj.dbg_supportedInterfaces
MsgBox vObj.dbg_properties

If you aren’t certain what to do with an object, inspect it. For example, print the properties dbg_methods,
dbg_supportedInterfaces, and dbg_properties. If you are still at a loss, you can search the Internet or other
documents for the services, methods, or properties that are implemented.

TIP I don't really print the methods and properties, I use the object inspector or X-Ray (see section 18.5 The
object inspector example).

Quickly search for examples that might solve the same problem that you face. This is an ideal situation
because it requires less work on your part. As a last resort, post a message on a mailing list and ask for help.

 19.7. Conclusion

Many excellent sources of information discuss how to write code that directs OpenOffice.org. Becoming
familiar with these sources can save you a lot of time, and regularly browsing the mailing lists also keeps
you in touch with how things are changing. Participation in the community of a mailing list or newsgroup
offers opportunity to gain solutions and to allow others to benefit from your experience as well.

669

	General Information
	Table of Contents
	1. Introduction and housekeeping
	1.1. Comments from the author
	1.2. Environment and comments

	2. Getting Started
	2.1. Macro storage
	2.1.1. Library container
	2.1.2. Libraries
	2.1.3. Modules and dialogs
	2.1.4. Key points

	2.2. Creating new modules and libraries
	2.3. Macro language
	2.4. Create a module in a document
	2.5. Integrated Debugging Environment
	2.6. Enter the macro
	2.7. Run a macro
	2.8. Macro security
	2.9. Using breakpoints
	2.10. How libraries are stored
	2.11. How documents are stored
	2.12. Conclusion

	3. Language Constructs
	3.1. Compatibility with Visual Basic
	3.2. Compiler options and directives
	3.3. Variables
	3.3.1. Constant, subroutine, function, label, and variable names
	3.3.2. Declaring variables
	3.3.3. Assigning values to variables
	3.3.4. Boolean variables are True or False
	3.3.5. Numeric variables
	Integer variables
	Long Integer variables
	Currency variables
	Single variables
	Double variables

	3.3.6. String variables contain text
	3.3.7. Date variables
	3.3.8. Create your own data types
	3.3.9. Declare variables with special types
	3.3.10. Object variables
	3.3.11. Variant variables
	3.3.12. Constants

	3.4. The With statement
	3.5. Arrays
	3.5.1. Changing the dimension of an array
	3.5.2. The unexpected behavior of arrays

	3.6. Subroutines and functions
	3.6.1. Arguments
	Pass by reference or by value
	Optional arguments
	Default argument values

	3.6.2. Recursive routines

	3.7. Scope of variables, subroutines, and functions
	3.7.1. Local variables defined in a subroutine or function
	3.7.2. Variables defined in a module
	Global
	Public
	Private or Dim

	3.8. Operators
	3.8.1. Mathematical and string operators
	Unary plus (+) and minus (-)
	Exponentiation (^)
	Multiplication (*) and Division (/)
	Remainder after division (MOD)
	Integer division ()
	Addition (+), subtraction (-), and string concatenation (& and +)

	3.8.2. Logical and bit-wise operators
	AND
	OR
	XOR
	EQV
	IMP
	NOT

	3.8.3. Comparison operators

	3.9. Flow control
	3.9.1. Define a label as a jump target
	3.9.2. GoSub
	3.9.3. GoTo
	3.9.4. On GoTo and On GoSub
	3.9.5. If Then Else
	3.9.6. IIf
	3.9.7. Choose
	3.9.8. Select Case
	Case expressions
	If Case statements are easy, why are they frequently incorrect?
	Writing correct Case expressions

	3.9.9. While ... Wend
	3.9.10. Do ... Loop
	Exit the Do Loop
	Which Do Loop should I use?

	3.9.11. For ... Next
	3.9.12. Exit Sub and Exit Function

	3.10. Error handling using On Error
	3.10.1. CVErr
	3.10.2. Ignore errors with On Error Resume Next
	3.10.3. Clear an error handler with On Error GoTo 0
	3.10.4. Specify your own error handler with On Error GoTo Label
	3.10.5. Error handlers — why use them?

	3.11. Conclusion

	4. Numerical Routines
	4.1. Trigonometric functions
	4.2. Rounding errors and precision
	4.3. Mathematical functions
	4.4. Numeric conversions
	4.5. Number to string conversions
	4.6. Simple formatting
	4.7. Other number bases, hexadecimal, octal, and binary
	4.8. Random numbers
	4.9. Conclusion

	5. Array Routines
	5.1. Array() quickly builds a one-dimensional array with data
	5.2. DimArray creates empty multi-dimensional arrays
	5.3. Change the dimension of an array
	5.4. Array to String and back again
	5.5. Array inspection functions
	5.6. Conclusion

	6. Date Routines
	6.1. Compatibility issues
	6.2. Retrieve the current date and time
	6.3. Dates, numbers, and strings
	6.4. Locale formatted dates
	6.5. ISO 8601 dates
	6.6. Problems with dates
	6.7. Extract each part of a date
	6.8. Date arithmetic
	6.9. Assembling dates from components
	6.10. Measuring elapsed time over short intervals
	6.11. How fast does this run? A real-world example!
	6.12. Long time intervals and special dates
	6.13. Conclusion

	7. String Routines
	7.1. ASCII and Unicode values
	7.2. Standard string functions
	7.3. Locale and strings
	7.4. Substrings
	7.5. Replace
	7.6. Aligning strings with LSet and RSet
	7.7. Fancy formatting with Format
	7.8. Converting data to a string
	7.9. Advanced searching
	7.10. Conclusion

	8. File Routines
	8.1. Using URL notation to specify a file
	8.2. Directory manipulation functions
	8.3. File manipulation functions
	8.4. File attributes, bitmasks, and binary numbers
	8.5. Obtaining a directory listing
	8.6. Open a file
	8.7. Information about open files
	8.8. Reading and writing data
	8.9. File and directory related services
	8.9.1. Path Settings
	8.9.2. Path Substitution
	8.9.3. Simple File Access
	8.9.4. Streams
	8.9.5. Pipes

	8.10. Conclusion

	9. Miscellaneous Routines
	9.1. Display and color
	9.1.1. Determine the GUI type
	9.1.2. Determine pixel size (in twips)
	9.1.3. Use color functions

	9.2. Flow control
	9.2.1. Return an argument
	9.2.2. Pause or end the macro
	9.2.3. Dynamic Link Libraries
	9.2.4. Calling external applications
	9.2.5. Dynamic Data Exchange

	9.3. User input and output
	9.3.1. Simple output
	9.3.2. Multi-line output
	9.3.3. Prompting for input

	9.4. Error-related routines
	9.5. Miscellaneous routines
	9.6. Partition
	9.7. Inspection and identification of variables
	9.8. Routines you should not use and other curiosities
	9.9. Routines I do not understand
	9.10. Conclusion

	10. Universal Network Objects
	10.1. Base types and structures
	10.2. UNO interface
	10.3. UNO service
	10.3.1. Setting a Read-Only Value

	10.4. Context
	10.5. Inspecting Universal Network Objects
	10.6. Using the type description manager
	10.7. Use Object or Variant
	10.8. Comparing UNO variables
	10.9. Built-in global UNO variables
	10.10. Creating UNO values for OOo internals
	10.11. Finding objects and properties
	10.12. UNO listeners
	10.12.1. Your first listener
	10.12.2. A complete listener: selection change listener

	10.13. Creating a UNO dialog
	10.14. Conclusion

	11. The Dispatcher
	11.1. The environment
	11.1.1. Two different methods to control OOo
	11.1.2. Finding dispatch commands
	Use the WIKI
	Probe the interface
	Read source code

	11.2. Writing a macro using the dispatcher
	11.3. Dispatch failure – an advanced clipboard example
	11.4. Conclusion

	12. StarDesktop
	12.1. The Frame service
	12.1.1. The XIndexAccess interface
	12.1.2. Find frames with FrameSearchFlag constants

	12.2. The XEventBroadcaster interface
	12.3. The XDesktop interface
	12.3.1. Closing the desktop and contained components
	12.3.2. Enumerating components using XEnumerationAccess
	12.3.3. Current component
	12.3.4. Current component (again)
	12.3.5. Current frame

	12.4. Load a document
	12.4.1. Named arguments
	12.4.2. Loading a template
	12.4.3. Enabling macros while loading a document
	12.4.4. Importing and exporting
	12.4.5. Filter names
	12.4.6. Loading and saving documents
	12.4.7. Error handling while loading a document

	12.5. Conclusion

	13. Generic Document Methods
	13.1. Service Manager
	13.2. Services and interfaces
	13.3. Getting and setting properties
	13.4. Document properties
	13.4.1. Document properties from a closed document
	13.4.2. Custom properties
	13.4.3. Deprecated document information object

	13.5. List events
	13.5.1. Registering your own listener
	13.5.2. Intercepting dispatch commands

	13.6. Link targets
	13.7. Accessing view data: XViewDataSupplier
	13.8. Close a document: XCloseable
	13.9. Draw Pages: XDrawPagesSupplier
	13.9.1. Draw and Impress
	13.9.2. Draw lines with arrows in Calc
	13.9.3. Writer

	13.10. The model
	13.10.1. Document arguments

	13.11. Saving a document
	13.12. Manipulating styles
	13.12.1. Style utilities

	13.13. Dealing with locale
	13.14. Enumerating printers
	13.15. Printing documents
	13.15.1. Printing Writer documents
	13.15.2. Printing Calc documents
	13.15.3. A Calc example with a Print listener
	13.15.4. Print examples by Vincent Van Houtte

	13.16. Creating services
	13.17. Document settings
	13.18. The coolest trick I know
	13.19. Converting to a URL in other languages
	13.20. Conclusion

	14. Writer Documents
	14.1. Basic building blocks
	14.1.1. Primary text content: the XText interface
	14.1.2. Text ranges: the XTextRange interface
	14.1.3. Inserting simple text
	14.1.4. Text content: the TextContent service

	14.2. Enumerating paragraphs
	14.2.1. Paragraph properties
	Insert a page break
	Set the paragraph style

	14.2.2. Character properties
	14.2.3. Enumerating text sections (paragraph portions)

	14.3. Graphics
	14.4. Paste HTML then embed linked graphics
	14.5. Cursors
	14.5.1. View cursors
	14.5.2. Text (non-view) cursors
	14.5.3. Using cursors to traverse text
	Keep the view cursor and text cursor in sync

	14.5.4. Accessing content using cursors

	14.6. Selected text
	14.6.1. Is text selected?
	14.6.2. Selected text: Which end is which?
	14.6.3. Selected text framework
	14.6.4. Remove empty spaces and lines: A larger example
	What is white space?
	Rank characters for deletion
	Use the standard framework
	The worker macro

	14.6.5. Selected text, closing thoughts

	14.7. Search and replace
	14.7.1. Searching selected text or a specified range
	Searching for all occurrences
	14.7.2. Searching and replacing
	14.7.3. Advanced search and replace

	14.8. Text content
	14.9. Text tables
	14.9.1. Using the correct text object
	14.9.2. Methods and properties
	14.9.3. Simple and complex tables
	14.9.4. Tables contain cells
	14.9.5. Using a table cursor
	14.9.6. Formatting a text table

	14.10. Text fields
	14.10.1. Text master fields
	14.10.2. Creating and adding text fields

	14.11. Bookmarks
	14.12. Sequence fields, references, and formatting
	14.12.1. Formatting numbers and dates
	List formats known to the current document
	Find or create a numeric format.
	Default formats

	14.12.2. Create a field master
	14.12.3. Insert a sequence field
	14.12.4. Replace text with a sequence field
	14.12.5. Create a GetReference field
	14.12.6. Replace text with a GetReference field
	14.12.7. The worker that ties it all together

	14.13. Table of contents
	14.14. Conclusion

	15. Calc Documents
	15.1. Accessing sheets
	15.2. Sheet cells contain the data
	15.2.1. Cell address
	15.2.2. Cell data
	15.2.3. Cell properties
	15.2.4. Cell annotations

	15.3. Uninterpreted XML Attributes
	15.4. Sheet cell ranges
	15.4.1. Sheet cell range properties
	Validation settings
	Conditional formatting

	15.4.2. Sheet cell range services
	Retrieving cells and ranges
	Querying cells
	Finding non-empty cells in a range
	Using complex queries
	Query Precedents and Dependents
	Query Column Differences

	15.4.3. Searching and replacing
	15.4.4. Merging cells
	15.4.5. Retrieving, inserting, and deleting columns and rows
	15.4.6. Retrieving and setting data as an array
	15.4.7. Computing functions on a range
	15.4.8. Clearing cells and cell ranges
	15.4.9. Automatic data fill
	15.4.10. Array formulas
	15.4.11. Computing multiple functions on a range
	15.4.12. Cells with the same formatting
	15.4.13. Sorting

	15.5. Sheets
	15.5.1. Linking to an external spreadsheet
	15.5.2. Finding dependencies by using auditing functions
	15.5.3. Outlines
	15.5.4. Copying, moving, and inserting cells
	15.5.5. Copy data between documents
	Data functions
	Clipboard
	Transferable content

	15.5.6. Data pilot and pivot tables
	A data pilot example
	Generating the data
	Creating the data pilot table

	Manipulating data pilot tables
	Data pilot fields
	Filtering data pilot fields
	Tables

	15.5.7. Sheet cursors

	15.6. Calc documents
	15.6.1. Named range
	15.6.2. Database range
	15.6.3. Filters
	15.6.4. Protecting documents and sheets
	15.6.5. Controlling recalculation
	15.6.6. Using Goal Seek

	15.7. Write your own Calc functions
	15.8. Using the current controller
	15.8.1. Selected cells
	Enumerating the selected cells
	Selecting text
	The active cell

	15.8.2. General functionality

	15.9. Control Calc from Microsoft Office
	15.10. Accessing Calc functions
	15.11. Finding URLs in Calc
	15.12. Importing and Exporting XML Files Using Calc
	15.12.1. Read an XML file
	15.12.2. Write XML File

	15.13. Charts
	15.14. Conclusion

	16. Draw and Impress Documents
	16.1. Draw pages
	16.1.1. Generic draw page
	16.1.2. Combining shapes

	16.2. Shapes
	16.2.1. Common attributes
	Drawing text service
	MeasureShape
	Drawing line properties
	Filling space with a ClosedBezierShape
	Shadows and a RectangleShape
	Rotation and shearing

	16.2.2. Shape types
	Simple lines
	PolyLineShape
	PolyPolygonShape
	RectangleShape and TextShape
	EllipseShape
	Bezier curves
	ConnectorShape
	Creating your own glue points
	Adding arrows by using styles

	Insert a TableShape

	16.3. Forms
	16.4. Presentations
	16.4.1. Presentation draw pages
	16.4.2. Presentation shapes

	16.5. Conclusion

	17. Library Management
	17.1. Accessing libraries using OOo Basic
	17.2. Libraries contained in a document
	17.3. Writing an installer
	17.4. Conclusion

	18. Dialogs and Controls
	18.1. My first dialog
	18.1.1. The Properties dialog
	18.1.2. Starting a dialog from a macro
	18.1.3. Assign an event handler

	18.2. Dialog and control paradigm
	18.2.1. Dialog and control similarities
	18.2.2. Dialog-specific methods
	18.2.3. The dialog model

	18.3. Controls
	18.3.1. Control button
	18.3.2. Check box
	18.3.3. Radio button
	18.3.4. Group box
	18.3.5. Fixed line control
	18.3.6. Combo box
	18.3.7. Text edit controls
	Currency control
	Numeric control
	Date control
	Time control
	Formatted control
	Pattern control
	Fixed text control
	File control

	18.3.8. Image control
	18.3.9. Progress control
	18.3.10. List box control
	18.3.11. Scroll bar control

	18.4. Using the Step property for multi-page AutoPilot dialogs
	18.5. The object inspector example
	18.5.1. Utility subroutines and functions
	Identifying and removing white space from a string
	Convert a simple object to a string
	Object inspection using Basic methods
	Sort an array

	18.5.2. Creating a dialog at run time
	18.5.3. Listeners
	Radio buttons
	Inspect selected
	Inspect previous

	18.5.4. Obtaining the debug information
	18.5.5. Getting property values

	18.6. Conclusion

	19. Sources of Information
	19.1. Help pages included with OpenOffice.org
	19.2. Macros included with OpenOffice.org
	19.3. Web sites
	19.3.1. Reference material
	19.3.2. Macro examples
	19.3.3. Miscellaneous

	19.4. http://www.openoffice.org/api/ or http://api.libreoffice.org
	19.5. Mailing lists and newsgroups
	19.6. How to find answers
	19.7. Conclusion

